Properties

Label 5610.2.a.bw.1.2
Level $5610$
Weight $2$
Character 5610.1
Self dual yes
Analytic conductor $44.796$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5610,2,Mod(1,5610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 5610.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} -1.00000 q^{11} +1.00000 q^{12} +1.12311 q^{13} -1.00000 q^{15} +1.00000 q^{16} -1.00000 q^{17} +1.00000 q^{18} -5.12311 q^{19} -1.00000 q^{20} -1.00000 q^{22} -9.12311 q^{23} +1.00000 q^{24} +1.00000 q^{25} +1.12311 q^{26} +1.00000 q^{27} -9.12311 q^{29} -1.00000 q^{30} -7.12311 q^{31} +1.00000 q^{32} -1.00000 q^{33} -1.00000 q^{34} +1.00000 q^{36} +1.12311 q^{37} -5.12311 q^{38} +1.12311 q^{39} -1.00000 q^{40} +3.12311 q^{41} -1.00000 q^{44} -1.00000 q^{45} -9.12311 q^{46} +7.12311 q^{47} +1.00000 q^{48} -7.00000 q^{49} +1.00000 q^{50} -1.00000 q^{51} +1.12311 q^{52} +4.00000 q^{53} +1.00000 q^{54} +1.00000 q^{55} -5.12311 q^{57} -9.12311 q^{58} +10.2462 q^{59} -1.00000 q^{60} -8.24621 q^{61} -7.12311 q^{62} +1.00000 q^{64} -1.12311 q^{65} -1.00000 q^{66} -6.87689 q^{67} -1.00000 q^{68} -9.12311 q^{69} -8.00000 q^{71} +1.00000 q^{72} -16.2462 q^{73} +1.12311 q^{74} +1.00000 q^{75} -5.12311 q^{76} +1.12311 q^{78} -5.12311 q^{79} -1.00000 q^{80} +1.00000 q^{81} +3.12311 q^{82} +6.24621 q^{83} +1.00000 q^{85} -9.12311 q^{87} -1.00000 q^{88} +12.2462 q^{89} -1.00000 q^{90} -9.12311 q^{92} -7.12311 q^{93} +7.12311 q^{94} +5.12311 q^{95} +1.00000 q^{96} +11.1231 q^{97} -7.00000 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{8} + 2 q^{9} - 2 q^{10} - 2 q^{11} + 2 q^{12} - 6 q^{13} - 2 q^{15} + 2 q^{16} - 2 q^{17} + 2 q^{18} - 2 q^{19} - 2 q^{20} - 2 q^{22} - 10 q^{23} + 2 q^{24} + 2 q^{25} - 6 q^{26} + 2 q^{27} - 10 q^{29} - 2 q^{30} - 6 q^{31} + 2 q^{32} - 2 q^{33} - 2 q^{34} + 2 q^{36} - 6 q^{37} - 2 q^{38} - 6 q^{39} - 2 q^{40} - 2 q^{41} - 2 q^{44} - 2 q^{45} - 10 q^{46} + 6 q^{47} + 2 q^{48} - 14 q^{49} + 2 q^{50} - 2 q^{51} - 6 q^{52} + 8 q^{53} + 2 q^{54} + 2 q^{55} - 2 q^{57} - 10 q^{58} + 4 q^{59} - 2 q^{60} - 6 q^{62} + 2 q^{64} + 6 q^{65} - 2 q^{66} - 22 q^{67} - 2 q^{68} - 10 q^{69} - 16 q^{71} + 2 q^{72} - 16 q^{73} - 6 q^{74} + 2 q^{75} - 2 q^{76} - 6 q^{78} - 2 q^{79} - 2 q^{80} + 2 q^{81} - 2 q^{82} - 4 q^{83} + 2 q^{85} - 10 q^{87} - 2 q^{88} + 8 q^{89} - 2 q^{90} - 10 q^{92} - 6 q^{93} + 6 q^{94} + 2 q^{95} + 2 q^{96} + 14 q^{97} - 14 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.00000 0.408248
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) −1.00000 −0.301511
\(12\) 1.00000 0.288675
\(13\) 1.12311 0.311493 0.155747 0.987797i \(-0.450222\pi\)
0.155747 + 0.987797i \(0.450222\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 1.00000 0.235702
\(19\) −5.12311 −1.17532 −0.587661 0.809108i \(-0.699951\pi\)
−0.587661 + 0.809108i \(0.699951\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −9.12311 −1.90230 −0.951150 0.308731i \(-0.900096\pi\)
−0.951150 + 0.308731i \(0.900096\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.00000 0.200000
\(26\) 1.12311 0.220259
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −9.12311 −1.69412 −0.847059 0.531499i \(-0.821629\pi\)
−0.847059 + 0.531499i \(0.821629\pi\)
\(30\) −1.00000 −0.182574
\(31\) −7.12311 −1.27935 −0.639674 0.768647i \(-0.720931\pi\)
−0.639674 + 0.768647i \(0.720931\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.00000 −0.174078
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 1.12311 0.184637 0.0923187 0.995730i \(-0.470572\pi\)
0.0923187 + 0.995730i \(0.470572\pi\)
\(38\) −5.12311 −0.831077
\(39\) 1.12311 0.179841
\(40\) −1.00000 −0.158114
\(41\) 3.12311 0.487747 0.243874 0.969807i \(-0.421582\pi\)
0.243874 + 0.969807i \(0.421582\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −1.00000 −0.150756
\(45\) −1.00000 −0.149071
\(46\) −9.12311 −1.34513
\(47\) 7.12311 1.03901 0.519506 0.854467i \(-0.326116\pi\)
0.519506 + 0.854467i \(0.326116\pi\)
\(48\) 1.00000 0.144338
\(49\) −7.00000 −1.00000
\(50\) 1.00000 0.141421
\(51\) −1.00000 −0.140028
\(52\) 1.12311 0.155747
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 1.00000 0.136083
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) −5.12311 −0.678572
\(58\) −9.12311 −1.19792
\(59\) 10.2462 1.33394 0.666972 0.745083i \(-0.267590\pi\)
0.666972 + 0.745083i \(0.267590\pi\)
\(60\) −1.00000 −0.129099
\(61\) −8.24621 −1.05582 −0.527910 0.849301i \(-0.677024\pi\)
−0.527910 + 0.849301i \(0.677024\pi\)
\(62\) −7.12311 −0.904635
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.12311 −0.139304
\(66\) −1.00000 −0.123091
\(67\) −6.87689 −0.840146 −0.420073 0.907490i \(-0.637996\pi\)
−0.420073 + 0.907490i \(0.637996\pi\)
\(68\) −1.00000 −0.121268
\(69\) −9.12311 −1.09829
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 1.00000 0.117851
\(73\) −16.2462 −1.90148 −0.950738 0.309997i \(-0.899672\pi\)
−0.950738 + 0.309997i \(0.899672\pi\)
\(74\) 1.12311 0.130558
\(75\) 1.00000 0.115470
\(76\) −5.12311 −0.587661
\(77\) 0 0
\(78\) 1.12311 0.127167
\(79\) −5.12311 −0.576394 −0.288197 0.957571i \(-0.593056\pi\)
−0.288197 + 0.957571i \(0.593056\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) 3.12311 0.344889
\(83\) 6.24621 0.685611 0.342805 0.939406i \(-0.388623\pi\)
0.342805 + 0.939406i \(0.388623\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) −9.12311 −0.978100
\(88\) −1.00000 −0.106600
\(89\) 12.2462 1.29810 0.649048 0.760748i \(-0.275167\pi\)
0.649048 + 0.760748i \(0.275167\pi\)
\(90\) −1.00000 −0.105409
\(91\) 0 0
\(92\) −9.12311 −0.951150
\(93\) −7.12311 −0.738632
\(94\) 7.12311 0.734692
\(95\) 5.12311 0.525620
\(96\) 1.00000 0.102062
\(97\) 11.1231 1.12938 0.564690 0.825303i \(-0.308996\pi\)
0.564690 + 0.825303i \(0.308996\pi\)
\(98\) −7.00000 −0.707107
\(99\) −1.00000 −0.100504
\(100\) 1.00000 0.100000
\(101\) −9.36932 −0.932282 −0.466141 0.884710i \(-0.654356\pi\)
−0.466141 + 0.884710i \(0.654356\pi\)
\(102\) −1.00000 −0.0990148
\(103\) 2.24621 0.221326 0.110663 0.993858i \(-0.464703\pi\)
0.110663 + 0.993858i \(0.464703\pi\)
\(104\) 1.12311 0.110130
\(105\) 0 0
\(106\) 4.00000 0.388514
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 1.00000 0.0962250
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 1.00000 0.0953463
\(111\) 1.12311 0.106600
\(112\) 0 0
\(113\) 9.36932 0.881391 0.440696 0.897657i \(-0.354732\pi\)
0.440696 + 0.897657i \(0.354732\pi\)
\(114\) −5.12311 −0.479823
\(115\) 9.12311 0.850734
\(116\) −9.12311 −0.847059
\(117\) 1.12311 0.103831
\(118\) 10.2462 0.943240
\(119\) 0 0
\(120\) −1.00000 −0.0912871
\(121\) 1.00000 0.0909091
\(122\) −8.24621 −0.746577
\(123\) 3.12311 0.281601
\(124\) −7.12311 −0.639674
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 9.36932 0.831392 0.415696 0.909504i \(-0.363538\pi\)
0.415696 + 0.909504i \(0.363538\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −1.12311 −0.0985029
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −1.00000 −0.0870388
\(133\) 0 0
\(134\) −6.87689 −0.594073
\(135\) −1.00000 −0.0860663
\(136\) −1.00000 −0.0857493
\(137\) −4.24621 −0.362778 −0.181389 0.983411i \(-0.558059\pi\)
−0.181389 + 0.983411i \(0.558059\pi\)
\(138\) −9.12311 −0.776610
\(139\) 14.2462 1.20835 0.604174 0.796852i \(-0.293503\pi\)
0.604174 + 0.796852i \(0.293503\pi\)
\(140\) 0 0
\(141\) 7.12311 0.599874
\(142\) −8.00000 −0.671345
\(143\) −1.12311 −0.0939188
\(144\) 1.00000 0.0833333
\(145\) 9.12311 0.757633
\(146\) −16.2462 −1.34455
\(147\) −7.00000 −0.577350
\(148\) 1.12311 0.0923187
\(149\) 5.36932 0.439872 0.219936 0.975514i \(-0.429415\pi\)
0.219936 + 0.975514i \(0.429415\pi\)
\(150\) 1.00000 0.0816497
\(151\) 9.36932 0.762464 0.381232 0.924479i \(-0.375500\pi\)
0.381232 + 0.924479i \(0.375500\pi\)
\(152\) −5.12311 −0.415539
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 7.12311 0.572142
\(156\) 1.12311 0.0899204
\(157\) −23.6155 −1.88472 −0.942362 0.334595i \(-0.891401\pi\)
−0.942362 + 0.334595i \(0.891401\pi\)
\(158\) −5.12311 −0.407572
\(159\) 4.00000 0.317221
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) 8.49242 0.665178 0.332589 0.943072i \(-0.392078\pi\)
0.332589 + 0.943072i \(0.392078\pi\)
\(164\) 3.12311 0.243874
\(165\) 1.00000 0.0778499
\(166\) 6.24621 0.484800
\(167\) −23.1231 −1.78932 −0.894660 0.446748i \(-0.852582\pi\)
−0.894660 + 0.446748i \(0.852582\pi\)
\(168\) 0 0
\(169\) −11.7386 −0.902972
\(170\) 1.00000 0.0766965
\(171\) −5.12311 −0.391774
\(172\) 0 0
\(173\) −14.8769 −1.13107 −0.565535 0.824725i \(-0.691330\pi\)
−0.565535 + 0.824725i \(0.691330\pi\)
\(174\) −9.12311 −0.691621
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 10.2462 0.770152
\(178\) 12.2462 0.917892
\(179\) −16.4924 −1.23270 −0.616351 0.787472i \(-0.711390\pi\)
−0.616351 + 0.787472i \(0.711390\pi\)
\(180\) −1.00000 −0.0745356
\(181\) −17.6155 −1.30935 −0.654676 0.755910i \(-0.727195\pi\)
−0.654676 + 0.755910i \(0.727195\pi\)
\(182\) 0 0
\(183\) −8.24621 −0.609577
\(184\) −9.12311 −0.672564
\(185\) −1.12311 −0.0825724
\(186\) −7.12311 −0.522291
\(187\) 1.00000 0.0731272
\(188\) 7.12311 0.519506
\(189\) 0 0
\(190\) 5.12311 0.371669
\(191\) 12.8769 0.931739 0.465870 0.884853i \(-0.345742\pi\)
0.465870 + 0.884853i \(0.345742\pi\)
\(192\) 1.00000 0.0721688
\(193\) −22.4924 −1.61904 −0.809520 0.587092i \(-0.800273\pi\)
−0.809520 + 0.587092i \(0.800273\pi\)
\(194\) 11.1231 0.798592
\(195\) −1.12311 −0.0804273
\(196\) −7.00000 −0.500000
\(197\) 17.6155 1.25505 0.627527 0.778595i \(-0.284067\pi\)
0.627527 + 0.778595i \(0.284067\pi\)
\(198\) −1.00000 −0.0710669
\(199\) −15.1231 −1.07205 −0.536024 0.844203i \(-0.680074\pi\)
−0.536024 + 0.844203i \(0.680074\pi\)
\(200\) 1.00000 0.0707107
\(201\) −6.87689 −0.485059
\(202\) −9.36932 −0.659223
\(203\) 0 0
\(204\) −1.00000 −0.0700140
\(205\) −3.12311 −0.218127
\(206\) 2.24621 0.156501
\(207\) −9.12311 −0.634100
\(208\) 1.12311 0.0778734
\(209\) 5.12311 0.354373
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 4.00000 0.274721
\(213\) −8.00000 −0.548151
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) −6.00000 −0.406371
\(219\) −16.2462 −1.09782
\(220\) 1.00000 0.0674200
\(221\) −1.12311 −0.0755483
\(222\) 1.12311 0.0753779
\(223\) 9.75379 0.653162 0.326581 0.945169i \(-0.394103\pi\)
0.326581 + 0.945169i \(0.394103\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 9.36932 0.623238
\(227\) −18.2462 −1.21104 −0.605522 0.795829i \(-0.707036\pi\)
−0.605522 + 0.795829i \(0.707036\pi\)
\(228\) −5.12311 −0.339286
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 9.12311 0.601560
\(231\) 0 0
\(232\) −9.12311 −0.598961
\(233\) −10.4924 −0.687381 −0.343691 0.939083i \(-0.611677\pi\)
−0.343691 + 0.939083i \(0.611677\pi\)
\(234\) 1.12311 0.0734197
\(235\) −7.12311 −0.464660
\(236\) 10.2462 0.666972
\(237\) −5.12311 −0.332781
\(238\) 0 0
\(239\) 26.2462 1.69773 0.848863 0.528613i \(-0.177288\pi\)
0.848863 + 0.528613i \(0.177288\pi\)
\(240\) −1.00000 −0.0645497
\(241\) 15.6155 1.00588 0.502942 0.864320i \(-0.332251\pi\)
0.502942 + 0.864320i \(0.332251\pi\)
\(242\) 1.00000 0.0642824
\(243\) 1.00000 0.0641500
\(244\) −8.24621 −0.527910
\(245\) 7.00000 0.447214
\(246\) 3.12311 0.199122
\(247\) −5.75379 −0.366105
\(248\) −7.12311 −0.452318
\(249\) 6.24621 0.395838
\(250\) −1.00000 −0.0632456
\(251\) −26.7386 −1.68773 −0.843864 0.536557i \(-0.819724\pi\)
−0.843864 + 0.536557i \(0.819724\pi\)
\(252\) 0 0
\(253\) 9.12311 0.573565
\(254\) 9.36932 0.587883
\(255\) 1.00000 0.0626224
\(256\) 1.00000 0.0625000
\(257\) −10.4924 −0.654499 −0.327250 0.944938i \(-0.606122\pi\)
−0.327250 + 0.944938i \(0.606122\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.12311 −0.0696521
\(261\) −9.12311 −0.564706
\(262\) 0 0
\(263\) 30.2462 1.86506 0.932531 0.361091i \(-0.117596\pi\)
0.932531 + 0.361091i \(0.117596\pi\)
\(264\) −1.00000 −0.0615457
\(265\) −4.00000 −0.245718
\(266\) 0 0
\(267\) 12.2462 0.749456
\(268\) −6.87689 −0.420073
\(269\) 7.75379 0.472757 0.236378 0.971661i \(-0.424040\pi\)
0.236378 + 0.971661i \(0.424040\pi\)
\(270\) −1.00000 −0.0608581
\(271\) −2.63068 −0.159803 −0.0799013 0.996803i \(-0.525461\pi\)
−0.0799013 + 0.996803i \(0.525461\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) −4.24621 −0.256523
\(275\) −1.00000 −0.0603023
\(276\) −9.12311 −0.549146
\(277\) −12.2462 −0.735804 −0.367902 0.929865i \(-0.619924\pi\)
−0.367902 + 0.929865i \(0.619924\pi\)
\(278\) 14.2462 0.854431
\(279\) −7.12311 −0.426449
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 7.12311 0.424175
\(283\) 8.49242 0.504822 0.252411 0.967620i \(-0.418776\pi\)
0.252411 + 0.967620i \(0.418776\pi\)
\(284\) −8.00000 −0.474713
\(285\) 5.12311 0.303467
\(286\) −1.12311 −0.0664106
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) 1.00000 0.0588235
\(290\) 9.12311 0.535727
\(291\) 11.1231 0.652048
\(292\) −16.2462 −0.950738
\(293\) −14.4924 −0.846656 −0.423328 0.905976i \(-0.639138\pi\)
−0.423328 + 0.905976i \(0.639138\pi\)
\(294\) −7.00000 −0.408248
\(295\) −10.2462 −0.596557
\(296\) 1.12311 0.0652792
\(297\) −1.00000 −0.0580259
\(298\) 5.36932 0.311036
\(299\) −10.2462 −0.592554
\(300\) 1.00000 0.0577350
\(301\) 0 0
\(302\) 9.36932 0.539144
\(303\) −9.36932 −0.538253
\(304\) −5.12311 −0.293830
\(305\) 8.24621 0.472177
\(306\) −1.00000 −0.0571662
\(307\) −16.4924 −0.941272 −0.470636 0.882327i \(-0.655976\pi\)
−0.470636 + 0.882327i \(0.655976\pi\)
\(308\) 0 0
\(309\) 2.24621 0.127782
\(310\) 7.12311 0.404565
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 1.12311 0.0635833
\(313\) 3.12311 0.176528 0.0882642 0.996097i \(-0.471868\pi\)
0.0882642 + 0.996097i \(0.471868\pi\)
\(314\) −23.6155 −1.33270
\(315\) 0 0
\(316\) −5.12311 −0.288197
\(317\) 28.2462 1.58647 0.793233 0.608919i \(-0.208396\pi\)
0.793233 + 0.608919i \(0.208396\pi\)
\(318\) 4.00000 0.224309
\(319\) 9.12311 0.510796
\(320\) −1.00000 −0.0559017
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 5.12311 0.285057
\(324\) 1.00000 0.0555556
\(325\) 1.12311 0.0622987
\(326\) 8.49242 0.470352
\(327\) −6.00000 −0.331801
\(328\) 3.12311 0.172445
\(329\) 0 0
\(330\) 1.00000 0.0550482
\(331\) −30.2462 −1.66248 −0.831241 0.555912i \(-0.812369\pi\)
−0.831241 + 0.555912i \(0.812369\pi\)
\(332\) 6.24621 0.342805
\(333\) 1.12311 0.0615458
\(334\) −23.1231 −1.26524
\(335\) 6.87689 0.375725
\(336\) 0 0
\(337\) 10.4924 0.571559 0.285779 0.958295i \(-0.407748\pi\)
0.285779 + 0.958295i \(0.407748\pi\)
\(338\) −11.7386 −0.638498
\(339\) 9.36932 0.508871
\(340\) 1.00000 0.0542326
\(341\) 7.12311 0.385738
\(342\) −5.12311 −0.277026
\(343\) 0 0
\(344\) 0 0
\(345\) 9.12311 0.491171
\(346\) −14.8769 −0.799787
\(347\) 20.0000 1.07366 0.536828 0.843692i \(-0.319622\pi\)
0.536828 + 0.843692i \(0.319622\pi\)
\(348\) −9.12311 −0.489050
\(349\) 4.00000 0.214115 0.107058 0.994253i \(-0.465857\pi\)
0.107058 + 0.994253i \(0.465857\pi\)
\(350\) 0 0
\(351\) 1.12311 0.0599469
\(352\) −1.00000 −0.0533002
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) 10.2462 0.544580
\(355\) 8.00000 0.424596
\(356\) 12.2462 0.649048
\(357\) 0 0
\(358\) −16.4924 −0.871652
\(359\) −22.2462 −1.17411 −0.587055 0.809547i \(-0.699713\pi\)
−0.587055 + 0.809547i \(0.699713\pi\)
\(360\) −1.00000 −0.0527046
\(361\) 7.24621 0.381380
\(362\) −17.6155 −0.925852
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) 16.2462 0.850366
\(366\) −8.24621 −0.431036
\(367\) −14.4924 −0.756498 −0.378249 0.925704i \(-0.623474\pi\)
−0.378249 + 0.925704i \(0.623474\pi\)
\(368\) −9.12311 −0.475575
\(369\) 3.12311 0.162582
\(370\) −1.12311 −0.0583875
\(371\) 0 0
\(372\) −7.12311 −0.369316
\(373\) −37.6155 −1.94766 −0.973829 0.227281i \(-0.927016\pi\)
−0.973829 + 0.227281i \(0.927016\pi\)
\(374\) 1.00000 0.0517088
\(375\) −1.00000 −0.0516398
\(376\) 7.12311 0.367346
\(377\) −10.2462 −0.527707
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 5.12311 0.262810
\(381\) 9.36932 0.480005
\(382\) 12.8769 0.658839
\(383\) 5.36932 0.274359 0.137180 0.990546i \(-0.456196\pi\)
0.137180 + 0.990546i \(0.456196\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −22.4924 −1.14483
\(387\) 0 0
\(388\) 11.1231 0.564690
\(389\) 33.6155 1.70437 0.852187 0.523237i \(-0.175276\pi\)
0.852187 + 0.523237i \(0.175276\pi\)
\(390\) −1.12311 −0.0568707
\(391\) 9.12311 0.461375
\(392\) −7.00000 −0.353553
\(393\) 0 0
\(394\) 17.6155 0.887457
\(395\) 5.12311 0.257771
\(396\) −1.00000 −0.0502519
\(397\) 35.8617 1.79985 0.899925 0.436046i \(-0.143621\pi\)
0.899925 + 0.436046i \(0.143621\pi\)
\(398\) −15.1231 −0.758053
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) −6.87689 −0.342988
\(403\) −8.00000 −0.398508
\(404\) −9.36932 −0.466141
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −1.12311 −0.0556703
\(408\) −1.00000 −0.0495074
\(409\) −22.4924 −1.11218 −0.556089 0.831123i \(-0.687699\pi\)
−0.556089 + 0.831123i \(0.687699\pi\)
\(410\) −3.12311 −0.154239
\(411\) −4.24621 −0.209450
\(412\) 2.24621 0.110663
\(413\) 0 0
\(414\) −9.12311 −0.448376
\(415\) −6.24621 −0.306614
\(416\) 1.12311 0.0550648
\(417\) 14.2462 0.697640
\(418\) 5.12311 0.250579
\(419\) −16.4924 −0.805708 −0.402854 0.915264i \(-0.631982\pi\)
−0.402854 + 0.915264i \(0.631982\pi\)
\(420\) 0 0
\(421\) 8.73863 0.425895 0.212947 0.977064i \(-0.431694\pi\)
0.212947 + 0.977064i \(0.431694\pi\)
\(422\) 20.0000 0.973585
\(423\) 7.12311 0.346337
\(424\) 4.00000 0.194257
\(425\) −1.00000 −0.0485071
\(426\) −8.00000 −0.387601
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) −1.12311 −0.0542241
\(430\) 0 0
\(431\) 34.9848 1.68516 0.842580 0.538571i \(-0.181036\pi\)
0.842580 + 0.538571i \(0.181036\pi\)
\(432\) 1.00000 0.0481125
\(433\) 2.49242 0.119778 0.0598891 0.998205i \(-0.480925\pi\)
0.0598891 + 0.998205i \(0.480925\pi\)
\(434\) 0 0
\(435\) 9.12311 0.437419
\(436\) −6.00000 −0.287348
\(437\) 46.7386 2.23581
\(438\) −16.2462 −0.776274
\(439\) 37.6155 1.79529 0.897646 0.440718i \(-0.145276\pi\)
0.897646 + 0.440718i \(0.145276\pi\)
\(440\) 1.00000 0.0476731
\(441\) −7.00000 −0.333333
\(442\) −1.12311 −0.0534207
\(443\) −17.1231 −0.813543 −0.406772 0.913530i \(-0.633346\pi\)
−0.406772 + 0.913530i \(0.633346\pi\)
\(444\) 1.12311 0.0533002
\(445\) −12.2462 −0.580526
\(446\) 9.75379 0.461855
\(447\) 5.36932 0.253960
\(448\) 0 0
\(449\) −32.7386 −1.54503 −0.772516 0.634996i \(-0.781002\pi\)
−0.772516 + 0.634996i \(0.781002\pi\)
\(450\) 1.00000 0.0471405
\(451\) −3.12311 −0.147061
\(452\) 9.36932 0.440696
\(453\) 9.36932 0.440209
\(454\) −18.2462 −0.856337
\(455\) 0 0
\(456\) −5.12311 −0.239911
\(457\) 18.4924 0.865039 0.432520 0.901625i \(-0.357625\pi\)
0.432520 + 0.901625i \(0.357625\pi\)
\(458\) −6.00000 −0.280362
\(459\) −1.00000 −0.0466760
\(460\) 9.12311 0.425367
\(461\) −3.12311 −0.145458 −0.0727288 0.997352i \(-0.523171\pi\)
−0.0727288 + 0.997352i \(0.523171\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) −9.12311 −0.423530
\(465\) 7.12311 0.330326
\(466\) −10.4924 −0.486052
\(467\) 39.3693 1.82179 0.910897 0.412633i \(-0.135391\pi\)
0.910897 + 0.412633i \(0.135391\pi\)
\(468\) 1.12311 0.0519156
\(469\) 0 0
\(470\) −7.12311 −0.328564
\(471\) −23.6155 −1.08815
\(472\) 10.2462 0.471620
\(473\) 0 0
\(474\) −5.12311 −0.235312
\(475\) −5.12311 −0.235064
\(476\) 0 0
\(477\) 4.00000 0.183147
\(478\) 26.2462 1.20047
\(479\) −12.2462 −0.559544 −0.279772 0.960067i \(-0.590259\pi\)
−0.279772 + 0.960067i \(0.590259\pi\)
\(480\) −1.00000 −0.0456435
\(481\) 1.26137 0.0575134
\(482\) 15.6155 0.711268
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −11.1231 −0.505074
\(486\) 1.00000 0.0453609
\(487\) −42.4924 −1.92552 −0.962758 0.270366i \(-0.912855\pi\)
−0.962758 + 0.270366i \(0.912855\pi\)
\(488\) −8.24621 −0.373288
\(489\) 8.49242 0.384041
\(490\) 7.00000 0.316228
\(491\) −29.6155 −1.33653 −0.668265 0.743923i \(-0.732963\pi\)
−0.668265 + 0.743923i \(0.732963\pi\)
\(492\) 3.12311 0.140800
\(493\) 9.12311 0.410884
\(494\) −5.75379 −0.258875
\(495\) 1.00000 0.0449467
\(496\) −7.12311 −0.319837
\(497\) 0 0
\(498\) 6.24621 0.279899
\(499\) 34.2462 1.53307 0.766535 0.642202i \(-0.221979\pi\)
0.766535 + 0.642202i \(0.221979\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −23.1231 −1.03306
\(502\) −26.7386 −1.19340
\(503\) −39.1231 −1.74441 −0.872207 0.489138i \(-0.837312\pi\)
−0.872207 + 0.489138i \(0.837312\pi\)
\(504\) 0 0
\(505\) 9.36932 0.416929
\(506\) 9.12311 0.405572
\(507\) −11.7386 −0.521331
\(508\) 9.36932 0.415696
\(509\) 38.1080 1.68911 0.844553 0.535473i \(-0.179866\pi\)
0.844553 + 0.535473i \(0.179866\pi\)
\(510\) 1.00000 0.0442807
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −5.12311 −0.226191
\(514\) −10.4924 −0.462801
\(515\) −2.24621 −0.0989799
\(516\) 0 0
\(517\) −7.12311 −0.313274
\(518\) 0 0
\(519\) −14.8769 −0.653023
\(520\) −1.12311 −0.0492514
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) −9.12311 −0.399307
\(523\) −18.7386 −0.819383 −0.409692 0.912224i \(-0.634364\pi\)
−0.409692 + 0.912224i \(0.634364\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 30.2462 1.31880
\(527\) 7.12311 0.310287
\(528\) −1.00000 −0.0435194
\(529\) 60.2311 2.61874
\(530\) −4.00000 −0.173749
\(531\) 10.2462 0.444648
\(532\) 0 0
\(533\) 3.50758 0.151930
\(534\) 12.2462 0.529945
\(535\) −12.0000 −0.518805
\(536\) −6.87689 −0.297037
\(537\) −16.4924 −0.711701
\(538\) 7.75379 0.334290
\(539\) 7.00000 0.301511
\(540\) −1.00000 −0.0430331
\(541\) 18.4924 0.795051 0.397526 0.917591i \(-0.369869\pi\)
0.397526 + 0.917591i \(0.369869\pi\)
\(542\) −2.63068 −0.112998
\(543\) −17.6155 −0.755955
\(544\) −1.00000 −0.0428746
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) −40.4924 −1.73133 −0.865665 0.500623i \(-0.833104\pi\)
−0.865665 + 0.500623i \(0.833104\pi\)
\(548\) −4.24621 −0.181389
\(549\) −8.24621 −0.351940
\(550\) −1.00000 −0.0426401
\(551\) 46.7386 1.99113
\(552\) −9.12311 −0.388305
\(553\) 0 0
\(554\) −12.2462 −0.520292
\(555\) −1.12311 −0.0476732
\(556\) 14.2462 0.604174
\(557\) −34.4924 −1.46149 −0.730745 0.682650i \(-0.760827\pi\)
−0.730745 + 0.682650i \(0.760827\pi\)
\(558\) −7.12311 −0.301545
\(559\) 0 0
\(560\) 0 0
\(561\) 1.00000 0.0422200
\(562\) −18.0000 −0.759284
\(563\) 26.7386 1.12690 0.563450 0.826150i \(-0.309474\pi\)
0.563450 + 0.826150i \(0.309474\pi\)
\(564\) 7.12311 0.299937
\(565\) −9.36932 −0.394170
\(566\) 8.49242 0.356963
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) 34.0000 1.42535 0.712677 0.701492i \(-0.247483\pi\)
0.712677 + 0.701492i \(0.247483\pi\)
\(570\) 5.12311 0.214583
\(571\) 6.24621 0.261396 0.130698 0.991422i \(-0.458278\pi\)
0.130698 + 0.991422i \(0.458278\pi\)
\(572\) −1.12311 −0.0469594
\(573\) 12.8769 0.537940
\(574\) 0 0
\(575\) −9.12311 −0.380460
\(576\) 1.00000 0.0416667
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 1.00000 0.0415945
\(579\) −22.4924 −0.934753
\(580\) 9.12311 0.378816
\(581\) 0 0
\(582\) 11.1231 0.461068
\(583\) −4.00000 −0.165663
\(584\) −16.2462 −0.672273
\(585\) −1.12311 −0.0464347
\(586\) −14.4924 −0.598676
\(587\) 35.3693 1.45985 0.729924 0.683528i \(-0.239555\pi\)
0.729924 + 0.683528i \(0.239555\pi\)
\(588\) −7.00000 −0.288675
\(589\) 36.4924 1.50364
\(590\) −10.2462 −0.421830
\(591\) 17.6155 0.724606
\(592\) 1.12311 0.0461594
\(593\) 7.75379 0.318410 0.159205 0.987246i \(-0.449107\pi\)
0.159205 + 0.987246i \(0.449107\pi\)
\(594\) −1.00000 −0.0410305
\(595\) 0 0
\(596\) 5.36932 0.219936
\(597\) −15.1231 −0.618948
\(598\) −10.2462 −0.418999
\(599\) 33.3693 1.36343 0.681717 0.731616i \(-0.261234\pi\)
0.681717 + 0.731616i \(0.261234\pi\)
\(600\) 1.00000 0.0408248
\(601\) −19.1231 −0.780048 −0.390024 0.920805i \(-0.627533\pi\)
−0.390024 + 0.920805i \(0.627533\pi\)
\(602\) 0 0
\(603\) −6.87689 −0.280049
\(604\) 9.36932 0.381232
\(605\) −1.00000 −0.0406558
\(606\) −9.36932 −0.380602
\(607\) 36.4924 1.48118 0.740591 0.671956i \(-0.234546\pi\)
0.740591 + 0.671956i \(0.234546\pi\)
\(608\) −5.12311 −0.207769
\(609\) 0 0
\(610\) 8.24621 0.333879
\(611\) 8.00000 0.323645
\(612\) −1.00000 −0.0404226
\(613\) −21.6155 −0.873043 −0.436521 0.899694i \(-0.643790\pi\)
−0.436521 + 0.899694i \(0.643790\pi\)
\(614\) −16.4924 −0.665580
\(615\) −3.12311 −0.125936
\(616\) 0 0
\(617\) 6.63068 0.266941 0.133471 0.991053i \(-0.457388\pi\)
0.133471 + 0.991053i \(0.457388\pi\)
\(618\) 2.24621 0.0903559
\(619\) 26.2462 1.05492 0.527462 0.849579i \(-0.323144\pi\)
0.527462 + 0.849579i \(0.323144\pi\)
\(620\) 7.12311 0.286071
\(621\) −9.12311 −0.366098
\(622\) −4.00000 −0.160385
\(623\) 0 0
\(624\) 1.12311 0.0449602
\(625\) 1.00000 0.0400000
\(626\) 3.12311 0.124824
\(627\) 5.12311 0.204597
\(628\) −23.6155 −0.942362
\(629\) −1.12311 −0.0447812
\(630\) 0 0
\(631\) −17.7538 −0.706767 −0.353384 0.935479i \(-0.614969\pi\)
−0.353384 + 0.935479i \(0.614969\pi\)
\(632\) −5.12311 −0.203786
\(633\) 20.0000 0.794929
\(634\) 28.2462 1.12180
\(635\) −9.36932 −0.371810
\(636\) 4.00000 0.158610
\(637\) −7.86174 −0.311493
\(638\) 9.12311 0.361187
\(639\) −8.00000 −0.316475
\(640\) −1.00000 −0.0395285
\(641\) −12.7386 −0.503146 −0.251573 0.967838i \(-0.580948\pi\)
−0.251573 + 0.967838i \(0.580948\pi\)
\(642\) 12.0000 0.473602
\(643\) 40.0000 1.57745 0.788723 0.614749i \(-0.210743\pi\)
0.788723 + 0.614749i \(0.210743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 5.12311 0.201566
\(647\) 6.63068 0.260679 0.130340 0.991469i \(-0.458393\pi\)
0.130340 + 0.991469i \(0.458393\pi\)
\(648\) 1.00000 0.0392837
\(649\) −10.2462 −0.402199
\(650\) 1.12311 0.0440518
\(651\) 0 0
\(652\) 8.49242 0.332589
\(653\) −28.2462 −1.10536 −0.552680 0.833394i \(-0.686395\pi\)
−0.552680 + 0.833394i \(0.686395\pi\)
\(654\) −6.00000 −0.234619
\(655\) 0 0
\(656\) 3.12311 0.121937
\(657\) −16.2462 −0.633825
\(658\) 0 0
\(659\) −42.1080 −1.64029 −0.820146 0.572154i \(-0.806108\pi\)
−0.820146 + 0.572154i \(0.806108\pi\)
\(660\) 1.00000 0.0389249
\(661\) −34.9848 −1.36075 −0.680376 0.732863i \(-0.738184\pi\)
−0.680376 + 0.732863i \(0.738184\pi\)
\(662\) −30.2462 −1.17555
\(663\) −1.12311 −0.0436178
\(664\) 6.24621 0.242400
\(665\) 0 0
\(666\) 1.12311 0.0435195
\(667\) 83.2311 3.22272
\(668\) −23.1231 −0.894660
\(669\) 9.75379 0.377103
\(670\) 6.87689 0.265678
\(671\) 8.24621 0.318341
\(672\) 0 0
\(673\) −42.9848 −1.65694 −0.828472 0.560030i \(-0.810789\pi\)
−0.828472 + 0.560030i \(0.810789\pi\)
\(674\) 10.4924 0.404153
\(675\) 1.00000 0.0384900
\(676\) −11.7386 −0.451486
\(677\) 38.1080 1.46461 0.732304 0.680978i \(-0.238445\pi\)
0.732304 + 0.680978i \(0.238445\pi\)
\(678\) 9.36932 0.359826
\(679\) 0 0
\(680\) 1.00000 0.0383482
\(681\) −18.2462 −0.699196
\(682\) 7.12311 0.272758
\(683\) −32.4924 −1.24329 −0.621644 0.783300i \(-0.713535\pi\)
−0.621644 + 0.783300i \(0.713535\pi\)
\(684\) −5.12311 −0.195887
\(685\) 4.24621 0.162239
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 0 0
\(689\) 4.49242 0.171148
\(690\) 9.12311 0.347311
\(691\) −16.4924 −0.627401 −0.313701 0.949522i \(-0.601569\pi\)
−0.313701 + 0.949522i \(0.601569\pi\)
\(692\) −14.8769 −0.565535
\(693\) 0 0
\(694\) 20.0000 0.759190
\(695\) −14.2462 −0.540390
\(696\) −9.12311 −0.345810
\(697\) −3.12311 −0.118296
\(698\) 4.00000 0.151402
\(699\) −10.4924 −0.396860
\(700\) 0 0
\(701\) 1.36932 0.0517184 0.0258592 0.999666i \(-0.491768\pi\)
0.0258592 + 0.999666i \(0.491768\pi\)
\(702\) 1.12311 0.0423889
\(703\) −5.75379 −0.217008
\(704\) −1.00000 −0.0376889
\(705\) −7.12311 −0.268272
\(706\) 26.0000 0.978523
\(707\) 0 0
\(708\) 10.2462 0.385076
\(709\) −19.3693 −0.727430 −0.363715 0.931510i \(-0.618492\pi\)
−0.363715 + 0.931510i \(0.618492\pi\)
\(710\) 8.00000 0.300235
\(711\) −5.12311 −0.192131
\(712\) 12.2462 0.458946
\(713\) 64.9848 2.43370
\(714\) 0 0
\(715\) 1.12311 0.0420018
\(716\) −16.4924 −0.616351
\(717\) 26.2462 0.980183
\(718\) −22.2462 −0.830221
\(719\) 30.7386 1.14636 0.573179 0.819430i \(-0.305710\pi\)
0.573179 + 0.819430i \(0.305710\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 0 0
\(722\) 7.24621 0.269676
\(723\) 15.6155 0.580748
\(724\) −17.6155 −0.654676
\(725\) −9.12311 −0.338824
\(726\) 1.00000 0.0371135
\(727\) −40.4924 −1.50178 −0.750890 0.660427i \(-0.770375\pi\)
−0.750890 + 0.660427i \(0.770375\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 16.2462 0.601299
\(731\) 0 0
\(732\) −8.24621 −0.304789
\(733\) −33.1231 −1.22343 −0.611715 0.791078i \(-0.709520\pi\)
−0.611715 + 0.791078i \(0.709520\pi\)
\(734\) −14.4924 −0.534925
\(735\) 7.00000 0.258199
\(736\) −9.12311 −0.336282
\(737\) 6.87689 0.253314
\(738\) 3.12311 0.114963
\(739\) 38.8769 1.43011 0.715055 0.699068i \(-0.246402\pi\)
0.715055 + 0.699068i \(0.246402\pi\)
\(740\) −1.12311 −0.0412862
\(741\) −5.75379 −0.211371
\(742\) 0 0
\(743\) −0.384472 −0.0141049 −0.00705245 0.999975i \(-0.502245\pi\)
−0.00705245 + 0.999975i \(0.502245\pi\)
\(744\) −7.12311 −0.261146
\(745\) −5.36932 −0.196717
\(746\) −37.6155 −1.37720
\(747\) 6.24621 0.228537
\(748\) 1.00000 0.0365636
\(749\) 0 0
\(750\) −1.00000 −0.0365148
\(751\) 7.12311 0.259926 0.129963 0.991519i \(-0.458514\pi\)
0.129963 + 0.991519i \(0.458514\pi\)
\(752\) 7.12311 0.259753
\(753\) −26.7386 −0.974410
\(754\) −10.2462 −0.373145
\(755\) −9.36932 −0.340984
\(756\) 0 0
\(757\) −7.12311 −0.258894 −0.129447 0.991586i \(-0.541320\pi\)
−0.129447 + 0.991586i \(0.541320\pi\)
\(758\) 28.0000 1.01701
\(759\) 9.12311 0.331148
\(760\) 5.12311 0.185835
\(761\) 13.5076 0.489649 0.244825 0.969567i \(-0.421270\pi\)
0.244825 + 0.969567i \(0.421270\pi\)
\(762\) 9.36932 0.339415
\(763\) 0 0
\(764\) 12.8769 0.465870
\(765\) 1.00000 0.0361551
\(766\) 5.36932 0.194001
\(767\) 11.5076 0.415515
\(768\) 1.00000 0.0360844
\(769\) −28.2462 −1.01858 −0.509292 0.860594i \(-0.670093\pi\)
−0.509292 + 0.860594i \(0.670093\pi\)
\(770\) 0 0
\(771\) −10.4924 −0.377875
\(772\) −22.4924 −0.809520
\(773\) 20.4924 0.737061 0.368531 0.929616i \(-0.379861\pi\)
0.368531 + 0.929616i \(0.379861\pi\)
\(774\) 0 0
\(775\) −7.12311 −0.255870
\(776\) 11.1231 0.399296
\(777\) 0 0
\(778\) 33.6155 1.20518
\(779\) −16.0000 −0.573259
\(780\) −1.12311 −0.0402136
\(781\) 8.00000 0.286263
\(782\) 9.12311 0.326242
\(783\) −9.12311 −0.326033
\(784\) −7.00000 −0.250000
\(785\) 23.6155 0.842874
\(786\) 0 0
\(787\) −16.4924 −0.587891 −0.293946 0.955822i \(-0.594968\pi\)
−0.293946 + 0.955822i \(0.594968\pi\)
\(788\) 17.6155 0.627527
\(789\) 30.2462 1.07679
\(790\) 5.12311 0.182272
\(791\) 0 0
\(792\) −1.00000 −0.0355335
\(793\) −9.26137 −0.328881
\(794\) 35.8617 1.27269
\(795\) −4.00000 −0.141865
\(796\) −15.1231 −0.536024
\(797\) 25.7538 0.912246 0.456123 0.889917i \(-0.349238\pi\)
0.456123 + 0.889917i \(0.349238\pi\)
\(798\) 0 0
\(799\) −7.12311 −0.251997
\(800\) 1.00000 0.0353553
\(801\) 12.2462 0.432699
\(802\) −18.0000 −0.635602
\(803\) 16.2462 0.573316
\(804\) −6.87689 −0.242529
\(805\) 0 0
\(806\) −8.00000 −0.281788
\(807\) 7.75379 0.272946
\(808\) −9.36932 −0.329611
\(809\) −18.6307 −0.655020 −0.327510 0.944848i \(-0.606210\pi\)
−0.327510 + 0.944848i \(0.606210\pi\)
\(810\) −1.00000 −0.0351364
\(811\) 44.9848 1.57963 0.789816 0.613344i \(-0.210176\pi\)
0.789816 + 0.613344i \(0.210176\pi\)
\(812\) 0 0
\(813\) −2.63068 −0.0922621
\(814\) −1.12311 −0.0393648
\(815\) −8.49242 −0.297477
\(816\) −1.00000 −0.0350070
\(817\) 0 0
\(818\) −22.4924 −0.786429
\(819\) 0 0
\(820\) −3.12311 −0.109064
\(821\) −16.6307 −0.580415 −0.290207 0.956964i \(-0.593724\pi\)
−0.290207 + 0.956964i \(0.593724\pi\)
\(822\) −4.24621 −0.148104
\(823\) 33.2311 1.15836 0.579181 0.815199i \(-0.303372\pi\)
0.579181 + 0.815199i \(0.303372\pi\)
\(824\) 2.24621 0.0782505
\(825\) −1.00000 −0.0348155
\(826\) 0 0
\(827\) 50.2462 1.74723 0.873616 0.486616i \(-0.161769\pi\)
0.873616 + 0.486616i \(0.161769\pi\)
\(828\) −9.12311 −0.317050
\(829\) −20.2462 −0.703180 −0.351590 0.936154i \(-0.614359\pi\)
−0.351590 + 0.936154i \(0.614359\pi\)
\(830\) −6.24621 −0.216809
\(831\) −12.2462 −0.424816
\(832\) 1.12311 0.0389367
\(833\) 7.00000 0.242536
\(834\) 14.2462 0.493306
\(835\) 23.1231 0.800208
\(836\) 5.12311 0.177186
\(837\) −7.12311 −0.246211
\(838\) −16.4924 −0.569721
\(839\) −12.9848 −0.448287 −0.224143 0.974556i \(-0.571958\pi\)
−0.224143 + 0.974556i \(0.571958\pi\)
\(840\) 0 0
\(841\) 54.2311 1.87004
\(842\) 8.73863 0.301153
\(843\) −18.0000 −0.619953
\(844\) 20.0000 0.688428
\(845\) 11.7386 0.403821
\(846\) 7.12311 0.244897
\(847\) 0 0
\(848\) 4.00000 0.137361
\(849\) 8.49242 0.291459
\(850\) −1.00000 −0.0342997
\(851\) −10.2462 −0.351236
\(852\) −8.00000 −0.274075
\(853\) 10.4924 0.359254 0.179627 0.983735i \(-0.442511\pi\)
0.179627 + 0.983735i \(0.442511\pi\)
\(854\) 0 0
\(855\) 5.12311 0.175207
\(856\) 12.0000 0.410152
\(857\) −26.0000 −0.888143 −0.444072 0.895991i \(-0.646466\pi\)
−0.444072 + 0.895991i \(0.646466\pi\)
\(858\) −1.12311 −0.0383422
\(859\) −39.2311 −1.33855 −0.669273 0.743016i \(-0.733394\pi\)
−0.669273 + 0.743016i \(0.733394\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 34.9848 1.19159
\(863\) 19.1231 0.650958 0.325479 0.945549i \(-0.394474\pi\)
0.325479 + 0.945549i \(0.394474\pi\)
\(864\) 1.00000 0.0340207
\(865\) 14.8769 0.505830
\(866\) 2.49242 0.0846960
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) 5.12311 0.173789
\(870\) 9.12311 0.309302
\(871\) −7.72348 −0.261700
\(872\) −6.00000 −0.203186
\(873\) 11.1231 0.376460
\(874\) 46.7386 1.58096
\(875\) 0 0
\(876\) −16.2462 −0.548909
\(877\) −12.7386 −0.430153 −0.215077 0.976597i \(-0.569000\pi\)
−0.215077 + 0.976597i \(0.569000\pi\)
\(878\) 37.6155 1.26946
\(879\) −14.4924 −0.488817
\(880\) 1.00000 0.0337100
\(881\) −4.24621 −0.143058 −0.0715292 0.997439i \(-0.522788\pi\)
−0.0715292 + 0.997439i \(0.522788\pi\)
\(882\) −7.00000 −0.235702
\(883\) 1.12311 0.0377955 0.0188978 0.999821i \(-0.493984\pi\)
0.0188978 + 0.999821i \(0.493984\pi\)
\(884\) −1.12311 −0.0377741
\(885\) −10.2462 −0.344423
\(886\) −17.1231 −0.575262
\(887\) −6.63068 −0.222637 −0.111318 0.993785i \(-0.535507\pi\)
−0.111318 + 0.993785i \(0.535507\pi\)
\(888\) 1.12311 0.0376890
\(889\) 0 0
\(890\) −12.2462 −0.410494
\(891\) −1.00000 −0.0335013
\(892\) 9.75379 0.326581
\(893\) −36.4924 −1.22117
\(894\) 5.36932 0.179577
\(895\) 16.4924 0.551281
\(896\) 0 0
\(897\) −10.2462 −0.342111
\(898\) −32.7386 −1.09250
\(899\) 64.9848 2.16737
\(900\) 1.00000 0.0333333
\(901\) −4.00000 −0.133259
\(902\) −3.12311 −0.103988
\(903\) 0 0
\(904\) 9.36932 0.311619
\(905\) 17.6155 0.585560
\(906\) 9.36932 0.311275
\(907\) −5.26137 −0.174701 −0.0873504 0.996178i \(-0.527840\pi\)
−0.0873504 + 0.996178i \(0.527840\pi\)
\(908\) −18.2462 −0.605522
\(909\) −9.36932 −0.310761
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) −5.12311 −0.169643
\(913\) −6.24621 −0.206719
\(914\) 18.4924 0.611675
\(915\) 8.24621 0.272611
\(916\) −6.00000 −0.198246
\(917\) 0 0
\(918\) −1.00000 −0.0330049
\(919\) 36.1080 1.19109 0.595546 0.803321i \(-0.296936\pi\)
0.595546 + 0.803321i \(0.296936\pi\)
\(920\) 9.12311 0.300780
\(921\) −16.4924 −0.543444
\(922\) −3.12311 −0.102854
\(923\) −8.98485 −0.295740
\(924\) 0 0
\(925\) 1.12311 0.0369275
\(926\) −24.0000 −0.788689
\(927\) 2.24621 0.0737753
\(928\) −9.12311 −0.299481
\(929\) 20.2462 0.664257 0.332128 0.943234i \(-0.392233\pi\)
0.332128 + 0.943234i \(0.392233\pi\)
\(930\) 7.12311 0.233576
\(931\) 35.8617 1.17532
\(932\) −10.4924 −0.343691
\(933\) −4.00000 −0.130954
\(934\) 39.3693 1.28820
\(935\) −1.00000 −0.0327035
\(936\) 1.12311 0.0367099
\(937\) 22.4924 0.734795 0.367398 0.930064i \(-0.380249\pi\)
0.367398 + 0.930064i \(0.380249\pi\)
\(938\) 0 0
\(939\) 3.12311 0.101919
\(940\) −7.12311 −0.232330
\(941\) −49.6155 −1.61742 −0.808710 0.588208i \(-0.799834\pi\)
−0.808710 + 0.588208i \(0.799834\pi\)
\(942\) −23.6155 −0.769435
\(943\) −28.4924 −0.927841
\(944\) 10.2462 0.333486
\(945\) 0 0
\(946\) 0 0
\(947\) 56.4924 1.83576 0.917879 0.396861i \(-0.129901\pi\)
0.917879 + 0.396861i \(0.129901\pi\)
\(948\) −5.12311 −0.166391
\(949\) −18.2462 −0.592297
\(950\) −5.12311 −0.166215
\(951\) 28.2462 0.915946
\(952\) 0 0
\(953\) −25.5076 −0.826271 −0.413136 0.910669i \(-0.635567\pi\)
−0.413136 + 0.910669i \(0.635567\pi\)
\(954\) 4.00000 0.129505
\(955\) −12.8769 −0.416687
\(956\) 26.2462 0.848863
\(957\) 9.12311 0.294908
\(958\) −12.2462 −0.395657
\(959\) 0 0
\(960\) −1.00000 −0.0322749
\(961\) 19.7386 0.636730
\(962\) 1.26137 0.0406681
\(963\) 12.0000 0.386695
\(964\) 15.6155 0.502942
\(965\) 22.4924 0.724057
\(966\) 0 0
\(967\) −49.3693 −1.58761 −0.793805 0.608172i \(-0.791903\pi\)
−0.793805 + 0.608172i \(0.791903\pi\)
\(968\) 1.00000 0.0321412
\(969\) 5.12311 0.164578
\(970\) −11.1231 −0.357141
\(971\) 45.4773 1.45943 0.729717 0.683749i \(-0.239652\pi\)
0.729717 + 0.683749i \(0.239652\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) −42.4924 −1.36155
\(975\) 1.12311 0.0359682
\(976\) −8.24621 −0.263955
\(977\) −21.2311 −0.679242 −0.339621 0.940562i \(-0.610299\pi\)
−0.339621 + 0.940562i \(0.610299\pi\)
\(978\) 8.49242 0.271558
\(979\) −12.2462 −0.391391
\(980\) 7.00000 0.223607
\(981\) −6.00000 −0.191565
\(982\) −29.6155 −0.945069
\(983\) −29.1231 −0.928883 −0.464441 0.885604i \(-0.653745\pi\)
−0.464441 + 0.885604i \(0.653745\pi\)
\(984\) 3.12311 0.0995610
\(985\) −17.6155 −0.561277
\(986\) 9.12311 0.290539
\(987\) 0 0
\(988\) −5.75379 −0.183052
\(989\) 0 0
\(990\) 1.00000 0.0317821
\(991\) −11.1231 −0.353337 −0.176669 0.984270i \(-0.556532\pi\)
−0.176669 + 0.984270i \(0.556532\pi\)
\(992\) −7.12311 −0.226159
\(993\) −30.2462 −0.959835
\(994\) 0 0
\(995\) 15.1231 0.479435
\(996\) 6.24621 0.197919
\(997\) 28.7386 0.910162 0.455081 0.890450i \(-0.349610\pi\)
0.455081 + 0.890450i \(0.349610\pi\)
\(998\) 34.2462 1.08404
\(999\) 1.12311 0.0355335
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5610.2.a.bw.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5610.2.a.bw.1.2 2 1.1 even 1 trivial