Properties

Label 5610.2.a.bw
Level 5610
Weight 2
Character orbit 5610.a
Self dual Yes
Analytic conductor 44.796
Analytic rank 1
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 5610.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{17}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9} +O(q^{10})\) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9} - q^{10} - q^{11} + q^{12} + ( -3 - \beta ) q^{13} - q^{15} + q^{16} - q^{17} + q^{18} + ( -1 + \beta ) q^{19} - q^{20} - q^{22} + ( -5 + \beta ) q^{23} + q^{24} + q^{25} + ( -3 - \beta ) q^{26} + q^{27} + ( -5 + \beta ) q^{29} - q^{30} + ( -3 + \beta ) q^{31} + q^{32} - q^{33} - q^{34} + q^{36} + ( -3 - \beta ) q^{37} + ( -1 + \beta ) q^{38} + ( -3 - \beta ) q^{39} - q^{40} + ( -1 - \beta ) q^{41} - q^{44} - q^{45} + ( -5 + \beta ) q^{46} + ( 3 - \beta ) q^{47} + q^{48} -7 q^{49} + q^{50} - q^{51} + ( -3 - \beta ) q^{52} + 4 q^{53} + q^{54} + q^{55} + ( -1 + \beta ) q^{57} + ( -5 + \beta ) q^{58} + ( 2 - 2 \beta ) q^{59} - q^{60} + 2 \beta q^{61} + ( -3 + \beta ) q^{62} + q^{64} + ( 3 + \beta ) q^{65} - q^{66} + ( -11 - \beta ) q^{67} - q^{68} + ( -5 + \beta ) q^{69} -8 q^{71} + q^{72} + ( -8 + 2 \beta ) q^{73} + ( -3 - \beta ) q^{74} + q^{75} + ( -1 + \beta ) q^{76} + ( -3 - \beta ) q^{78} + ( -1 + \beta ) q^{79} - q^{80} + q^{81} + ( -1 - \beta ) q^{82} + ( -2 - 2 \beta ) q^{83} + q^{85} + ( -5 + \beta ) q^{87} - q^{88} + ( 4 - 2 \beta ) q^{89} - q^{90} + ( -5 + \beta ) q^{92} + ( -3 + \beta ) q^{93} + ( 3 - \beta ) q^{94} + ( 1 - \beta ) q^{95} + q^{96} + ( 7 - \beta ) q^{97} -7 q^{98} - q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} + 2q^{3} + 2q^{4} - 2q^{5} + 2q^{6} + 2q^{8} + 2q^{9} + O(q^{10}) \) \( 2q + 2q^{2} + 2q^{3} + 2q^{4} - 2q^{5} + 2q^{6} + 2q^{8} + 2q^{9} - 2q^{10} - 2q^{11} + 2q^{12} - 6q^{13} - 2q^{15} + 2q^{16} - 2q^{17} + 2q^{18} - 2q^{19} - 2q^{20} - 2q^{22} - 10q^{23} + 2q^{24} + 2q^{25} - 6q^{26} + 2q^{27} - 10q^{29} - 2q^{30} - 6q^{31} + 2q^{32} - 2q^{33} - 2q^{34} + 2q^{36} - 6q^{37} - 2q^{38} - 6q^{39} - 2q^{40} - 2q^{41} - 2q^{44} - 2q^{45} - 10q^{46} + 6q^{47} + 2q^{48} - 14q^{49} + 2q^{50} - 2q^{51} - 6q^{52} + 8q^{53} + 2q^{54} + 2q^{55} - 2q^{57} - 10q^{58} + 4q^{59} - 2q^{60} - 6q^{62} + 2q^{64} + 6q^{65} - 2q^{66} - 22q^{67} - 2q^{68} - 10q^{69} - 16q^{71} + 2q^{72} - 16q^{73} - 6q^{74} + 2q^{75} - 2q^{76} - 6q^{78} - 2q^{79} - 2q^{80} + 2q^{81} - 2q^{82} - 4q^{83} + 2q^{85} - 10q^{87} - 2q^{88} + 8q^{89} - 2q^{90} - 10q^{92} - 6q^{93} + 6q^{94} + 2q^{95} + 2q^{96} + 14q^{97} - 14q^{98} - 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
1.00000 1.00000 1.00000 −1.00000 1.00000 0 1.00000 1.00000 −1.00000
1.2 1.00000 1.00000 1.00000 −1.00000 1.00000 0 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(11\) \(1\)
\(17\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5610))\):

\( T_{7} \)
\( T_{13}^{2} + 6 T_{13} - 8 \)
\( T_{19}^{2} + 2 T_{19} - 16 \)
\( T_{23}^{2} + 10 T_{23} + 8 \)