Properties

Label 5610.2.a.bw
Level $5610$
Weight $2$
Character orbit 5610.a
Self dual yes
Analytic conductor $44.796$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5610,2,Mod(1,5610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{17}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9} - q^{10} - q^{11} + q^{12} + ( - \beta - 3) q^{13} - q^{15} + q^{16} - q^{17} + q^{18} + (\beta - 1) q^{19} - q^{20} - q^{22} + (\beta - 5) q^{23} + q^{24} + q^{25} + ( - \beta - 3) q^{26} + q^{27} + (\beta - 5) q^{29} - q^{30} + (\beta - 3) q^{31} + q^{32} - q^{33} - q^{34} + q^{36} + ( - \beta - 3) q^{37} + (\beta - 1) q^{38} + ( - \beta - 3) q^{39} - q^{40} + ( - \beta - 1) q^{41} - q^{44} - q^{45} + (\beta - 5) q^{46} + ( - \beta + 3) q^{47} + q^{48} - 7 q^{49} + q^{50} - q^{51} + ( - \beta - 3) q^{52} + 4 q^{53} + q^{54} + q^{55} + (\beta - 1) q^{57} + (\beta - 5) q^{58} + ( - 2 \beta + 2) q^{59} - q^{60} + 2 \beta q^{61} + (\beta - 3) q^{62} + q^{64} + (\beta + 3) q^{65} - q^{66} + ( - \beta - 11) q^{67} - q^{68} + (\beta - 5) q^{69} - 8 q^{71} + q^{72} + (2 \beta - 8) q^{73} + ( - \beta - 3) q^{74} + q^{75} + (\beta - 1) q^{76} + ( - \beta - 3) q^{78} + (\beta - 1) q^{79} - q^{80} + q^{81} + ( - \beta - 1) q^{82} + ( - 2 \beta - 2) q^{83} + q^{85} + (\beta - 5) q^{87} - q^{88} + ( - 2 \beta + 4) q^{89} - q^{90} + (\beta - 5) q^{92} + (\beta - 3) q^{93} + ( - \beta + 3) q^{94} + ( - \beta + 1) q^{95} + q^{96} + ( - \beta + 7) q^{97} - 7 q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{8} + 2 q^{9} - 2 q^{10} - 2 q^{11} + 2 q^{12} - 6 q^{13} - 2 q^{15} + 2 q^{16} - 2 q^{17} + 2 q^{18} - 2 q^{19} - 2 q^{20} - 2 q^{22} - 10 q^{23} + 2 q^{24} + 2 q^{25} - 6 q^{26} + 2 q^{27} - 10 q^{29} - 2 q^{30} - 6 q^{31} + 2 q^{32} - 2 q^{33} - 2 q^{34} + 2 q^{36} - 6 q^{37} - 2 q^{38} - 6 q^{39} - 2 q^{40} - 2 q^{41} - 2 q^{44} - 2 q^{45} - 10 q^{46} + 6 q^{47} + 2 q^{48} - 14 q^{49} + 2 q^{50} - 2 q^{51} - 6 q^{52} + 8 q^{53} + 2 q^{54} + 2 q^{55} - 2 q^{57} - 10 q^{58} + 4 q^{59} - 2 q^{60} - 6 q^{62} + 2 q^{64} + 6 q^{65} - 2 q^{66} - 22 q^{67} - 2 q^{68} - 10 q^{69} - 16 q^{71} + 2 q^{72} - 16 q^{73} - 6 q^{74} + 2 q^{75} - 2 q^{76} - 6 q^{78} - 2 q^{79} - 2 q^{80} + 2 q^{81} - 2 q^{82} - 4 q^{83} + 2 q^{85} - 10 q^{87} - 2 q^{88} + 8 q^{89} - 2 q^{90} - 10 q^{92} - 6 q^{93} + 6 q^{94} + 2 q^{95} + 2 q^{96} + 14 q^{97} - 14 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
1.00000 1.00000 1.00000 −1.00000 1.00000 0 1.00000 1.00000 −1.00000
1.2 1.00000 1.00000 1.00000 −1.00000 1.00000 0 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5610.2.a.bw 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5610.2.a.bw 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5610))\):

\( T_{7} \) Copy content Toggle raw display
\( T_{13}^{2} + 6T_{13} - 8 \) Copy content Toggle raw display
\( T_{19}^{2} + 2T_{19} - 16 \) Copy content Toggle raw display
\( T_{23}^{2} + 10T_{23} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$17$ \( (T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 10T + 8 \) Copy content Toggle raw display
$29$ \( T^{2} + 10T + 8 \) Copy content Toggle raw display
$31$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$37$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$41$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$53$ \( (T - 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 4T - 64 \) Copy content Toggle raw display
$61$ \( T^{2} - 68 \) Copy content Toggle raw display
$67$ \( T^{2} + 22T + 104 \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 16T - 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$83$ \( T^{2} + 4T - 64 \) Copy content Toggle raw display
$89$ \( T^{2} - 8T - 52 \) Copy content Toggle raw display
$97$ \( T^{2} - 14T + 32 \) Copy content Toggle raw display
show more
show less