Properties

Label 5610.2.a.bu.1.1
Level $5610$
Weight $2$
Character 5610.1
Self dual yes
Analytic conductor $44.796$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5610,2,Mod(1,5610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 5610.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{6} -1.23607 q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} +1.00000 q^{11} -1.00000 q^{12} -3.23607 q^{13} -1.23607 q^{14} +1.00000 q^{15} +1.00000 q^{16} -1.00000 q^{17} +1.00000 q^{18} +5.70820 q^{19} -1.00000 q^{20} +1.23607 q^{21} +1.00000 q^{22} -0.763932 q^{23} -1.00000 q^{24} +1.00000 q^{25} -3.23607 q^{26} -1.00000 q^{27} -1.23607 q^{28} +0.472136 q^{29} +1.00000 q^{30} -4.00000 q^{31} +1.00000 q^{32} -1.00000 q^{33} -1.00000 q^{34} +1.23607 q^{35} +1.00000 q^{36} -6.00000 q^{37} +5.70820 q^{38} +3.23607 q^{39} -1.00000 q^{40} +8.94427 q^{41} +1.23607 q^{42} +1.23607 q^{43} +1.00000 q^{44} -1.00000 q^{45} -0.763932 q^{46} -6.47214 q^{47} -1.00000 q^{48} -5.47214 q^{49} +1.00000 q^{50} +1.00000 q^{51} -3.23607 q^{52} -1.23607 q^{53} -1.00000 q^{54} -1.00000 q^{55} -1.23607 q^{56} -5.70820 q^{57} +0.472136 q^{58} +1.23607 q^{59} +1.00000 q^{60} +6.00000 q^{61} -4.00000 q^{62} -1.23607 q^{63} +1.00000 q^{64} +3.23607 q^{65} -1.00000 q^{66} +6.00000 q^{67} -1.00000 q^{68} +0.763932 q^{69} +1.23607 q^{70} -5.23607 q^{71} +1.00000 q^{72} -3.23607 q^{73} -6.00000 q^{74} -1.00000 q^{75} +5.70820 q^{76} -1.23607 q^{77} +3.23607 q^{78} -9.70820 q^{79} -1.00000 q^{80} +1.00000 q^{81} +8.94427 q^{82} -12.9443 q^{83} +1.23607 q^{84} +1.00000 q^{85} +1.23607 q^{86} -0.472136 q^{87} +1.00000 q^{88} +10.9443 q^{89} -1.00000 q^{90} +4.00000 q^{91} -0.763932 q^{92} +4.00000 q^{93} -6.47214 q^{94} -5.70820 q^{95} -1.00000 q^{96} -5.47214 q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{5} - 2 q^{6} + 2 q^{7} + 2 q^{8} + 2 q^{9} - 2 q^{10} + 2 q^{11} - 2 q^{12} - 2 q^{13} + 2 q^{14} + 2 q^{15} + 2 q^{16} - 2 q^{17} + 2 q^{18} - 2 q^{19} - 2 q^{20}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) −1.00000 −0.408248
\(7\) −1.23607 −0.467190 −0.233595 0.972334i \(-0.575049\pi\)
−0.233595 + 0.972334i \(0.575049\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) 1.00000 0.301511
\(12\) −1.00000 −0.288675
\(13\) −3.23607 −0.897524 −0.448762 0.893651i \(-0.648135\pi\)
−0.448762 + 0.893651i \(0.648135\pi\)
\(14\) −1.23607 −0.330353
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 1.00000 0.235702
\(19\) 5.70820 1.30955 0.654776 0.755823i \(-0.272763\pi\)
0.654776 + 0.755823i \(0.272763\pi\)
\(20\) −1.00000 −0.223607
\(21\) 1.23607 0.269732
\(22\) 1.00000 0.213201
\(23\) −0.763932 −0.159291 −0.0796454 0.996823i \(-0.525379\pi\)
−0.0796454 + 0.996823i \(0.525379\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.00000 0.200000
\(26\) −3.23607 −0.634645
\(27\) −1.00000 −0.192450
\(28\) −1.23607 −0.233595
\(29\) 0.472136 0.0876734 0.0438367 0.999039i \(-0.486042\pi\)
0.0438367 + 0.999039i \(0.486042\pi\)
\(30\) 1.00000 0.182574
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.00000 −0.174078
\(34\) −1.00000 −0.171499
\(35\) 1.23607 0.208934
\(36\) 1.00000 0.166667
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 5.70820 0.925993
\(39\) 3.23607 0.518186
\(40\) −1.00000 −0.158114
\(41\) 8.94427 1.39686 0.698430 0.715678i \(-0.253882\pi\)
0.698430 + 0.715678i \(0.253882\pi\)
\(42\) 1.23607 0.190729
\(43\) 1.23607 0.188499 0.0942493 0.995549i \(-0.469955\pi\)
0.0942493 + 0.995549i \(0.469955\pi\)
\(44\) 1.00000 0.150756
\(45\) −1.00000 −0.149071
\(46\) −0.763932 −0.112636
\(47\) −6.47214 −0.944058 −0.472029 0.881583i \(-0.656478\pi\)
−0.472029 + 0.881583i \(0.656478\pi\)
\(48\) −1.00000 −0.144338
\(49\) −5.47214 −0.781734
\(50\) 1.00000 0.141421
\(51\) 1.00000 0.140028
\(52\) −3.23607 −0.448762
\(53\) −1.23607 −0.169787 −0.0848935 0.996390i \(-0.527055\pi\)
−0.0848935 + 0.996390i \(0.527055\pi\)
\(54\) −1.00000 −0.136083
\(55\) −1.00000 −0.134840
\(56\) −1.23607 −0.165177
\(57\) −5.70820 −0.756070
\(58\) 0.472136 0.0619945
\(59\) 1.23607 0.160922 0.0804612 0.996758i \(-0.474361\pi\)
0.0804612 + 0.996758i \(0.474361\pi\)
\(60\) 1.00000 0.129099
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) −4.00000 −0.508001
\(63\) −1.23607 −0.155730
\(64\) 1.00000 0.125000
\(65\) 3.23607 0.401385
\(66\) −1.00000 −0.123091
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0.763932 0.0919666
\(70\) 1.23607 0.147738
\(71\) −5.23607 −0.621407 −0.310703 0.950507i \(-0.600565\pi\)
−0.310703 + 0.950507i \(0.600565\pi\)
\(72\) 1.00000 0.117851
\(73\) −3.23607 −0.378753 −0.189377 0.981905i \(-0.560647\pi\)
−0.189377 + 0.981905i \(0.560647\pi\)
\(74\) −6.00000 −0.697486
\(75\) −1.00000 −0.115470
\(76\) 5.70820 0.654776
\(77\) −1.23607 −0.140863
\(78\) 3.23607 0.366413
\(79\) −9.70820 −1.09226 −0.546129 0.837701i \(-0.683899\pi\)
−0.546129 + 0.837701i \(0.683899\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) 8.94427 0.987730
\(83\) −12.9443 −1.42082 −0.710409 0.703789i \(-0.751490\pi\)
−0.710409 + 0.703789i \(0.751490\pi\)
\(84\) 1.23607 0.134866
\(85\) 1.00000 0.108465
\(86\) 1.23607 0.133289
\(87\) −0.472136 −0.0506183
\(88\) 1.00000 0.106600
\(89\) 10.9443 1.16009 0.580045 0.814584i \(-0.303035\pi\)
0.580045 + 0.814584i \(0.303035\pi\)
\(90\) −1.00000 −0.105409
\(91\) 4.00000 0.419314
\(92\) −0.763932 −0.0796454
\(93\) 4.00000 0.414781
\(94\) −6.47214 −0.667550
\(95\) −5.70820 −0.585649
\(96\) −1.00000 −0.102062
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −5.47214 −0.552769
\(99\) 1.00000 0.100504
\(100\) 1.00000 0.100000
\(101\) −8.94427 −0.889988 −0.444994 0.895533i \(-0.646794\pi\)
−0.444994 + 0.895533i \(0.646794\pi\)
\(102\) 1.00000 0.0990148
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) −3.23607 −0.317323
\(105\) −1.23607 −0.120628
\(106\) −1.23607 −0.120058
\(107\) −16.9443 −1.63806 −0.819032 0.573747i \(-0.805489\pi\)
−0.819032 + 0.573747i \(0.805489\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) −1.00000 −0.0953463
\(111\) 6.00000 0.569495
\(112\) −1.23607 −0.116797
\(113\) −10.7639 −1.01259 −0.506293 0.862362i \(-0.668984\pi\)
−0.506293 + 0.862362i \(0.668984\pi\)
\(114\) −5.70820 −0.534622
\(115\) 0.763932 0.0712370
\(116\) 0.472136 0.0438367
\(117\) −3.23607 −0.299175
\(118\) 1.23607 0.113789
\(119\) 1.23607 0.113310
\(120\) 1.00000 0.0912871
\(121\) 1.00000 0.0909091
\(122\) 6.00000 0.543214
\(123\) −8.94427 −0.806478
\(124\) −4.00000 −0.359211
\(125\) −1.00000 −0.0894427
\(126\) −1.23607 −0.110118
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 1.00000 0.0883883
\(129\) −1.23607 −0.108830
\(130\) 3.23607 0.283822
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −1.00000 −0.0870388
\(133\) −7.05573 −0.611809
\(134\) 6.00000 0.518321
\(135\) 1.00000 0.0860663
\(136\) −1.00000 −0.0857493
\(137\) 19.8885 1.69919 0.849596 0.527433i \(-0.176846\pi\)
0.849596 + 0.527433i \(0.176846\pi\)
\(138\) 0.763932 0.0650302
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 1.23607 0.104467
\(141\) 6.47214 0.545052
\(142\) −5.23607 −0.439401
\(143\) −3.23607 −0.270614
\(144\) 1.00000 0.0833333
\(145\) −0.472136 −0.0392088
\(146\) −3.23607 −0.267819
\(147\) 5.47214 0.451334
\(148\) −6.00000 −0.493197
\(149\) −18.4721 −1.51330 −0.756648 0.653822i \(-0.773164\pi\)
−0.756648 + 0.653822i \(0.773164\pi\)
\(150\) −1.00000 −0.0816497
\(151\) −5.52786 −0.449851 −0.224926 0.974376i \(-0.572214\pi\)
−0.224926 + 0.974376i \(0.572214\pi\)
\(152\) 5.70820 0.462996
\(153\) −1.00000 −0.0808452
\(154\) −1.23607 −0.0996052
\(155\) 4.00000 0.321288
\(156\) 3.23607 0.259093
\(157\) −7.41641 −0.591894 −0.295947 0.955204i \(-0.595635\pi\)
−0.295947 + 0.955204i \(0.595635\pi\)
\(158\) −9.70820 −0.772343
\(159\) 1.23607 0.0980266
\(160\) −1.00000 −0.0790569
\(161\) 0.944272 0.0744191
\(162\) 1.00000 0.0785674
\(163\) 2.47214 0.193633 0.0968163 0.995302i \(-0.469134\pi\)
0.0968163 + 0.995302i \(0.469134\pi\)
\(164\) 8.94427 0.698430
\(165\) 1.00000 0.0778499
\(166\) −12.9443 −1.00467
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 1.23607 0.0953647
\(169\) −2.52786 −0.194451
\(170\) 1.00000 0.0766965
\(171\) 5.70820 0.436517
\(172\) 1.23607 0.0942493
\(173\) −13.4164 −1.02003 −0.510015 0.860165i \(-0.670360\pi\)
−0.510015 + 0.860165i \(0.670360\pi\)
\(174\) −0.472136 −0.0357925
\(175\) −1.23607 −0.0934380
\(176\) 1.00000 0.0753778
\(177\) −1.23607 −0.0929086
\(178\) 10.9443 0.820308
\(179\) −17.2361 −1.28828 −0.644142 0.764906i \(-0.722785\pi\)
−0.644142 + 0.764906i \(0.722785\pi\)
\(180\) −1.00000 −0.0745356
\(181\) −0.472136 −0.0350936 −0.0175468 0.999846i \(-0.505586\pi\)
−0.0175468 + 0.999846i \(0.505586\pi\)
\(182\) 4.00000 0.296500
\(183\) −6.00000 −0.443533
\(184\) −0.763932 −0.0563178
\(185\) 6.00000 0.441129
\(186\) 4.00000 0.293294
\(187\) −1.00000 −0.0731272
\(188\) −6.47214 −0.472029
\(189\) 1.23607 0.0899107
\(190\) −5.70820 −0.414117
\(191\) 10.4721 0.757737 0.378869 0.925450i \(-0.376313\pi\)
0.378869 + 0.925450i \(0.376313\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −5.70820 −0.410886 −0.205443 0.978669i \(-0.565863\pi\)
−0.205443 + 0.978669i \(0.565863\pi\)
\(194\) 0 0
\(195\) −3.23607 −0.231740
\(196\) −5.47214 −0.390867
\(197\) −2.94427 −0.209771 −0.104885 0.994484i \(-0.533448\pi\)
−0.104885 + 0.994484i \(0.533448\pi\)
\(198\) 1.00000 0.0710669
\(199\) −12.0000 −0.850657 −0.425329 0.905039i \(-0.639842\pi\)
−0.425329 + 0.905039i \(0.639842\pi\)
\(200\) 1.00000 0.0707107
\(201\) −6.00000 −0.423207
\(202\) −8.94427 −0.629317
\(203\) −0.583592 −0.0409601
\(204\) 1.00000 0.0700140
\(205\) −8.94427 −0.624695
\(206\) 4.00000 0.278693
\(207\) −0.763932 −0.0530969
\(208\) −3.23607 −0.224381
\(209\) 5.70820 0.394845
\(210\) −1.23607 −0.0852968
\(211\) −24.3607 −1.67706 −0.838529 0.544857i \(-0.816584\pi\)
−0.838529 + 0.544857i \(0.816584\pi\)
\(212\) −1.23607 −0.0848935
\(213\) 5.23607 0.358769
\(214\) −16.9443 −1.15829
\(215\) −1.23607 −0.0842991
\(216\) −1.00000 −0.0680414
\(217\) 4.94427 0.335639
\(218\) −6.00000 −0.406371
\(219\) 3.23607 0.218673
\(220\) −1.00000 −0.0674200
\(221\) 3.23607 0.217681
\(222\) 6.00000 0.402694
\(223\) 3.41641 0.228780 0.114390 0.993436i \(-0.463509\pi\)
0.114390 + 0.993436i \(0.463509\pi\)
\(224\) −1.23607 −0.0825883
\(225\) 1.00000 0.0666667
\(226\) −10.7639 −0.716006
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) −5.70820 −0.378035
\(229\) 2.58359 0.170729 0.0853643 0.996350i \(-0.472795\pi\)
0.0853643 + 0.996350i \(0.472795\pi\)
\(230\) 0.763932 0.0503722
\(231\) 1.23607 0.0813273
\(232\) 0.472136 0.0309972
\(233\) −16.4721 −1.07913 −0.539563 0.841945i \(-0.681410\pi\)
−0.539563 + 0.841945i \(0.681410\pi\)
\(234\) −3.23607 −0.211548
\(235\) 6.47214 0.422196
\(236\) 1.23607 0.0804612
\(237\) 9.70820 0.630616
\(238\) 1.23607 0.0801224
\(239\) 28.3607 1.83450 0.917250 0.398312i \(-0.130404\pi\)
0.917250 + 0.398312i \(0.130404\pi\)
\(240\) 1.00000 0.0645497
\(241\) −18.1803 −1.17110 −0.585549 0.810637i \(-0.699121\pi\)
−0.585549 + 0.810637i \(0.699121\pi\)
\(242\) 1.00000 0.0642824
\(243\) −1.00000 −0.0641500
\(244\) 6.00000 0.384111
\(245\) 5.47214 0.349602
\(246\) −8.94427 −0.570266
\(247\) −18.4721 −1.17535
\(248\) −4.00000 −0.254000
\(249\) 12.9443 0.820310
\(250\) −1.00000 −0.0632456
\(251\) 18.7639 1.18437 0.592184 0.805802i \(-0.298266\pi\)
0.592184 + 0.805802i \(0.298266\pi\)
\(252\) −1.23607 −0.0778650
\(253\) −0.763932 −0.0480280
\(254\) −12.0000 −0.752947
\(255\) −1.00000 −0.0626224
\(256\) 1.00000 0.0625000
\(257\) 4.47214 0.278964 0.139482 0.990225i \(-0.455456\pi\)
0.139482 + 0.990225i \(0.455456\pi\)
\(258\) −1.23607 −0.0769542
\(259\) 7.41641 0.460833
\(260\) 3.23607 0.200692
\(261\) 0.472136 0.0292245
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) −1.00000 −0.0615457
\(265\) 1.23607 0.0759311
\(266\) −7.05573 −0.432614
\(267\) −10.9443 −0.669779
\(268\) 6.00000 0.366508
\(269\) −15.5279 −0.946751 −0.473375 0.880861i \(-0.656965\pi\)
−0.473375 + 0.880861i \(0.656965\pi\)
\(270\) 1.00000 0.0608581
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) −1.00000 −0.0606339
\(273\) −4.00000 −0.242091
\(274\) 19.8885 1.20151
\(275\) 1.00000 0.0603023
\(276\) 0.763932 0.0459833
\(277\) 14.0000 0.841178 0.420589 0.907251i \(-0.361823\pi\)
0.420589 + 0.907251i \(0.361823\pi\)
\(278\) 8.00000 0.479808
\(279\) −4.00000 −0.239474
\(280\) 1.23607 0.0738692
\(281\) −7.52786 −0.449075 −0.224537 0.974465i \(-0.572087\pi\)
−0.224537 + 0.974465i \(0.572087\pi\)
\(282\) 6.47214 0.385410
\(283\) 23.4164 1.39196 0.695980 0.718061i \(-0.254970\pi\)
0.695980 + 0.718061i \(0.254970\pi\)
\(284\) −5.23607 −0.310703
\(285\) 5.70820 0.338125
\(286\) −3.23607 −0.191353
\(287\) −11.0557 −0.652599
\(288\) 1.00000 0.0589256
\(289\) 1.00000 0.0588235
\(290\) −0.472136 −0.0277248
\(291\) 0 0
\(292\) −3.23607 −0.189377
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 5.47214 0.319141
\(295\) −1.23607 −0.0719667
\(296\) −6.00000 −0.348743
\(297\) −1.00000 −0.0580259
\(298\) −18.4721 −1.07006
\(299\) 2.47214 0.142967
\(300\) −1.00000 −0.0577350
\(301\) −1.52786 −0.0880646
\(302\) −5.52786 −0.318093
\(303\) 8.94427 0.513835
\(304\) 5.70820 0.327388
\(305\) −6.00000 −0.343559
\(306\) −1.00000 −0.0571662
\(307\) 23.7082 1.35310 0.676549 0.736397i \(-0.263475\pi\)
0.676549 + 0.736397i \(0.263475\pi\)
\(308\) −1.23607 −0.0704315
\(309\) −4.00000 −0.227552
\(310\) 4.00000 0.227185
\(311\) 6.76393 0.383547 0.191774 0.981439i \(-0.438576\pi\)
0.191774 + 0.981439i \(0.438576\pi\)
\(312\) 3.23607 0.183206
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) −7.41641 −0.418532
\(315\) 1.23607 0.0696445
\(316\) −9.70820 −0.546129
\(317\) −30.9443 −1.73800 −0.869002 0.494809i \(-0.835238\pi\)
−0.869002 + 0.494809i \(0.835238\pi\)
\(318\) 1.23607 0.0693153
\(319\) 0.472136 0.0264345
\(320\) −1.00000 −0.0559017
\(321\) 16.9443 0.945737
\(322\) 0.944272 0.0526222
\(323\) −5.70820 −0.317613
\(324\) 1.00000 0.0555556
\(325\) −3.23607 −0.179505
\(326\) 2.47214 0.136919
\(327\) 6.00000 0.331801
\(328\) 8.94427 0.493865
\(329\) 8.00000 0.441054
\(330\) 1.00000 0.0550482
\(331\) −1.88854 −0.103804 −0.0519019 0.998652i \(-0.516528\pi\)
−0.0519019 + 0.998652i \(0.516528\pi\)
\(332\) −12.9443 −0.710409
\(333\) −6.00000 −0.328798
\(334\) −12.0000 −0.656611
\(335\) −6.00000 −0.327815
\(336\) 1.23607 0.0674330
\(337\) 9.70820 0.528840 0.264420 0.964408i \(-0.414820\pi\)
0.264420 + 0.964408i \(0.414820\pi\)
\(338\) −2.52786 −0.137498
\(339\) 10.7639 0.584617
\(340\) 1.00000 0.0542326
\(341\) −4.00000 −0.216612
\(342\) 5.70820 0.308664
\(343\) 15.4164 0.832408
\(344\) 1.23607 0.0666443
\(345\) −0.763932 −0.0411287
\(346\) −13.4164 −0.721271
\(347\) −4.94427 −0.265422 −0.132711 0.991155i \(-0.542368\pi\)
−0.132711 + 0.991155i \(0.542368\pi\)
\(348\) −0.472136 −0.0253091
\(349\) −11.7082 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(350\) −1.23607 −0.0660706
\(351\) 3.23607 0.172729
\(352\) 1.00000 0.0533002
\(353\) 4.47214 0.238028 0.119014 0.992893i \(-0.462027\pi\)
0.119014 + 0.992893i \(0.462027\pi\)
\(354\) −1.23607 −0.0656963
\(355\) 5.23607 0.277902
\(356\) 10.9443 0.580045
\(357\) −1.23607 −0.0654197
\(358\) −17.2361 −0.910954
\(359\) 19.4164 1.02476 0.512379 0.858759i \(-0.328764\pi\)
0.512379 + 0.858759i \(0.328764\pi\)
\(360\) −1.00000 −0.0527046
\(361\) 13.5836 0.714926
\(362\) −0.472136 −0.0248149
\(363\) −1.00000 −0.0524864
\(364\) 4.00000 0.209657
\(365\) 3.23607 0.169384
\(366\) −6.00000 −0.313625
\(367\) −24.8328 −1.29626 −0.648131 0.761529i \(-0.724449\pi\)
−0.648131 + 0.761529i \(0.724449\pi\)
\(368\) −0.763932 −0.0398227
\(369\) 8.94427 0.465620
\(370\) 6.00000 0.311925
\(371\) 1.52786 0.0793227
\(372\) 4.00000 0.207390
\(373\) −2.29180 −0.118665 −0.0593324 0.998238i \(-0.518897\pi\)
−0.0593324 + 0.998238i \(0.518897\pi\)
\(374\) −1.00000 −0.0517088
\(375\) 1.00000 0.0516398
\(376\) −6.47214 −0.333775
\(377\) −1.52786 −0.0786890
\(378\) 1.23607 0.0635765
\(379\) −7.05573 −0.362428 −0.181214 0.983444i \(-0.558003\pi\)
−0.181214 + 0.983444i \(0.558003\pi\)
\(380\) −5.70820 −0.292825
\(381\) 12.0000 0.614779
\(382\) 10.4721 0.535801
\(383\) 1.52786 0.0780702 0.0390351 0.999238i \(-0.487572\pi\)
0.0390351 + 0.999238i \(0.487572\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 1.23607 0.0629959
\(386\) −5.70820 −0.290540
\(387\) 1.23607 0.0628329
\(388\) 0 0
\(389\) −23.5967 −1.19640 −0.598201 0.801346i \(-0.704118\pi\)
−0.598201 + 0.801346i \(0.704118\pi\)
\(390\) −3.23607 −0.163865
\(391\) 0.763932 0.0386337
\(392\) −5.47214 −0.276385
\(393\) 0 0
\(394\) −2.94427 −0.148330
\(395\) 9.70820 0.488473
\(396\) 1.00000 0.0502519
\(397\) 15.8885 0.797423 0.398712 0.917076i \(-0.369457\pi\)
0.398712 + 0.917076i \(0.369457\pi\)
\(398\) −12.0000 −0.601506
\(399\) 7.05573 0.353228
\(400\) 1.00000 0.0500000
\(401\) −33.7082 −1.68331 −0.841654 0.540018i \(-0.818418\pi\)
−0.841654 + 0.540018i \(0.818418\pi\)
\(402\) −6.00000 −0.299253
\(403\) 12.9443 0.644800
\(404\) −8.94427 −0.444994
\(405\) −1.00000 −0.0496904
\(406\) −0.583592 −0.0289632
\(407\) −6.00000 −0.297409
\(408\) 1.00000 0.0495074
\(409\) −6.94427 −0.343372 −0.171686 0.985152i \(-0.554921\pi\)
−0.171686 + 0.985152i \(0.554921\pi\)
\(410\) −8.94427 −0.441726
\(411\) −19.8885 −0.981030
\(412\) 4.00000 0.197066
\(413\) −1.52786 −0.0751813
\(414\) −0.763932 −0.0375452
\(415\) 12.9443 0.635409
\(416\) −3.23607 −0.158661
\(417\) −8.00000 −0.391762
\(418\) 5.70820 0.279197
\(419\) 1.52786 0.0746410 0.0373205 0.999303i \(-0.488118\pi\)
0.0373205 + 0.999303i \(0.488118\pi\)
\(420\) −1.23607 −0.0603139
\(421\) 10.9443 0.533391 0.266696 0.963781i \(-0.414068\pi\)
0.266696 + 0.963781i \(0.414068\pi\)
\(422\) −24.3607 −1.18586
\(423\) −6.47214 −0.314686
\(424\) −1.23607 −0.0600288
\(425\) −1.00000 −0.0485071
\(426\) 5.23607 0.253688
\(427\) −7.41641 −0.358905
\(428\) −16.9443 −0.819032
\(429\) 3.23607 0.156239
\(430\) −1.23607 −0.0596085
\(431\) −22.9443 −1.10519 −0.552593 0.833451i \(-0.686362\pi\)
−0.552593 + 0.833451i \(0.686362\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 4.94427 0.237333
\(435\) 0.472136 0.0226372
\(436\) −6.00000 −0.287348
\(437\) −4.36068 −0.208600
\(438\) 3.23607 0.154625
\(439\) −17.7082 −0.845166 −0.422583 0.906324i \(-0.638877\pi\)
−0.422583 + 0.906324i \(0.638877\pi\)
\(440\) −1.00000 −0.0476731
\(441\) −5.47214 −0.260578
\(442\) 3.23607 0.153924
\(443\) −34.6525 −1.64639 −0.823194 0.567760i \(-0.807810\pi\)
−0.823194 + 0.567760i \(0.807810\pi\)
\(444\) 6.00000 0.284747
\(445\) −10.9443 −0.518808
\(446\) 3.41641 0.161772
\(447\) 18.4721 0.873702
\(448\) −1.23607 −0.0583987
\(449\) −16.1803 −0.763597 −0.381799 0.924245i \(-0.624695\pi\)
−0.381799 + 0.924245i \(0.624695\pi\)
\(450\) 1.00000 0.0471405
\(451\) 8.94427 0.421169
\(452\) −10.7639 −0.506293
\(453\) 5.52786 0.259722
\(454\) 0 0
\(455\) −4.00000 −0.187523
\(456\) −5.70820 −0.267311
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) 2.58359 0.120723
\(459\) 1.00000 0.0466760
\(460\) 0.763932 0.0356185
\(461\) −19.4164 −0.904312 −0.452156 0.891939i \(-0.649345\pi\)
−0.452156 + 0.891939i \(0.649345\pi\)
\(462\) 1.23607 0.0575071
\(463\) −24.3607 −1.13214 −0.566068 0.824358i \(-0.691536\pi\)
−0.566068 + 0.824358i \(0.691536\pi\)
\(464\) 0.472136 0.0219184
\(465\) −4.00000 −0.185496
\(466\) −16.4721 −0.763057
\(467\) 19.2361 0.890139 0.445070 0.895496i \(-0.353179\pi\)
0.445070 + 0.895496i \(0.353179\pi\)
\(468\) −3.23607 −0.149587
\(469\) −7.41641 −0.342458
\(470\) 6.47214 0.298537
\(471\) 7.41641 0.341730
\(472\) 1.23607 0.0568946
\(473\) 1.23607 0.0568345
\(474\) 9.70820 0.445913
\(475\) 5.70820 0.261910
\(476\) 1.23607 0.0566551
\(477\) −1.23607 −0.0565957
\(478\) 28.3607 1.29719
\(479\) −36.4721 −1.66645 −0.833227 0.552931i \(-0.813509\pi\)
−0.833227 + 0.552931i \(0.813509\pi\)
\(480\) 1.00000 0.0456435
\(481\) 19.4164 0.885312
\(482\) −18.1803 −0.828092
\(483\) −0.944272 −0.0429659
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 32.8328 1.48780 0.743898 0.668293i \(-0.232975\pi\)
0.743898 + 0.668293i \(0.232975\pi\)
\(488\) 6.00000 0.271607
\(489\) −2.47214 −0.111794
\(490\) 5.47214 0.247206
\(491\) 18.9443 0.854943 0.427472 0.904029i \(-0.359404\pi\)
0.427472 + 0.904029i \(0.359404\pi\)
\(492\) −8.94427 −0.403239
\(493\) −0.472136 −0.0212639
\(494\) −18.4721 −0.831101
\(495\) −1.00000 −0.0449467
\(496\) −4.00000 −0.179605
\(497\) 6.47214 0.290315
\(498\) 12.9443 0.580047
\(499\) 30.8328 1.38027 0.690133 0.723682i \(-0.257552\pi\)
0.690133 + 0.723682i \(0.257552\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 12.0000 0.536120
\(502\) 18.7639 0.837475
\(503\) 9.52786 0.424826 0.212413 0.977180i \(-0.431868\pi\)
0.212413 + 0.977180i \(0.431868\pi\)
\(504\) −1.23607 −0.0550588
\(505\) 8.94427 0.398015
\(506\) −0.763932 −0.0339609
\(507\) 2.52786 0.112266
\(508\) −12.0000 −0.532414
\(509\) 39.2361 1.73911 0.869554 0.493838i \(-0.164406\pi\)
0.869554 + 0.493838i \(0.164406\pi\)
\(510\) −1.00000 −0.0442807
\(511\) 4.00000 0.176950
\(512\) 1.00000 0.0441942
\(513\) −5.70820 −0.252023
\(514\) 4.47214 0.197257
\(515\) −4.00000 −0.176261
\(516\) −1.23607 −0.0544149
\(517\) −6.47214 −0.284644
\(518\) 7.41641 0.325858
\(519\) 13.4164 0.588915
\(520\) 3.23607 0.141911
\(521\) 5.12461 0.224513 0.112257 0.993679i \(-0.464192\pi\)
0.112257 + 0.993679i \(0.464192\pi\)
\(522\) 0.472136 0.0206648
\(523\) −19.1246 −0.836261 −0.418130 0.908387i \(-0.637315\pi\)
−0.418130 + 0.908387i \(0.637315\pi\)
\(524\) 0 0
\(525\) 1.23607 0.0539464
\(526\) −12.0000 −0.523225
\(527\) 4.00000 0.174243
\(528\) −1.00000 −0.0435194
\(529\) −22.4164 −0.974626
\(530\) 1.23607 0.0536914
\(531\) 1.23607 0.0536408
\(532\) −7.05573 −0.305905
\(533\) −28.9443 −1.25372
\(534\) −10.9443 −0.473605
\(535\) 16.9443 0.732565
\(536\) 6.00000 0.259161
\(537\) 17.2361 0.743791
\(538\) −15.5279 −0.669454
\(539\) −5.47214 −0.235702
\(540\) 1.00000 0.0430331
\(541\) 25.7771 1.10824 0.554122 0.832436i \(-0.313054\pi\)
0.554122 + 0.832436i \(0.313054\pi\)
\(542\) 20.0000 0.859074
\(543\) 0.472136 0.0202613
\(544\) −1.00000 −0.0428746
\(545\) 6.00000 0.257012
\(546\) −4.00000 −0.171184
\(547\) 31.4164 1.34327 0.671634 0.740883i \(-0.265593\pi\)
0.671634 + 0.740883i \(0.265593\pi\)
\(548\) 19.8885 0.849596
\(549\) 6.00000 0.256074
\(550\) 1.00000 0.0426401
\(551\) 2.69505 0.114813
\(552\) 0.763932 0.0325151
\(553\) 12.0000 0.510292
\(554\) 14.0000 0.594803
\(555\) −6.00000 −0.254686
\(556\) 8.00000 0.339276
\(557\) 32.8328 1.39117 0.695586 0.718443i \(-0.255145\pi\)
0.695586 + 0.718443i \(0.255145\pi\)
\(558\) −4.00000 −0.169334
\(559\) −4.00000 −0.169182
\(560\) 1.23607 0.0522334
\(561\) 1.00000 0.0422200
\(562\) −7.52786 −0.317544
\(563\) 35.7771 1.50782 0.753912 0.656975i \(-0.228164\pi\)
0.753912 + 0.656975i \(0.228164\pi\)
\(564\) 6.47214 0.272526
\(565\) 10.7639 0.452842
\(566\) 23.4164 0.984265
\(567\) −1.23607 −0.0519100
\(568\) −5.23607 −0.219701
\(569\) −43.3050 −1.81544 −0.907719 0.419579i \(-0.862178\pi\)
−0.907719 + 0.419579i \(0.862178\pi\)
\(570\) 5.70820 0.239090
\(571\) 9.88854 0.413823 0.206911 0.978360i \(-0.433659\pi\)
0.206911 + 0.978360i \(0.433659\pi\)
\(572\) −3.23607 −0.135307
\(573\) −10.4721 −0.437480
\(574\) −11.0557 −0.461457
\(575\) −0.763932 −0.0318582
\(576\) 1.00000 0.0416667
\(577\) 19.8885 0.827971 0.413985 0.910283i \(-0.364136\pi\)
0.413985 + 0.910283i \(0.364136\pi\)
\(578\) 1.00000 0.0415945
\(579\) 5.70820 0.237225
\(580\) −0.472136 −0.0196044
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) −1.23607 −0.0511927
\(584\) −3.23607 −0.133909
\(585\) 3.23607 0.133795
\(586\) −18.0000 −0.743573
\(587\) 20.1803 0.832932 0.416466 0.909151i \(-0.363269\pi\)
0.416466 + 0.909151i \(0.363269\pi\)
\(588\) 5.47214 0.225667
\(589\) −22.8328 −0.940810
\(590\) −1.23607 −0.0508881
\(591\) 2.94427 0.121111
\(592\) −6.00000 −0.246598
\(593\) −13.4164 −0.550946 −0.275473 0.961309i \(-0.588834\pi\)
−0.275473 + 0.961309i \(0.588834\pi\)
\(594\) −1.00000 −0.0410305
\(595\) −1.23607 −0.0506738
\(596\) −18.4721 −0.756648
\(597\) 12.0000 0.491127
\(598\) 2.47214 0.101093
\(599\) 31.4164 1.28364 0.641820 0.766855i \(-0.278180\pi\)
0.641820 + 0.766855i \(0.278180\pi\)
\(600\) −1.00000 −0.0408248
\(601\) 39.1246 1.59593 0.797963 0.602706i \(-0.205911\pi\)
0.797963 + 0.602706i \(0.205911\pi\)
\(602\) −1.52786 −0.0622711
\(603\) 6.00000 0.244339
\(604\) −5.52786 −0.224926
\(605\) −1.00000 −0.0406558
\(606\) 8.94427 0.363336
\(607\) −11.1246 −0.451534 −0.225767 0.974181i \(-0.572489\pi\)
−0.225767 + 0.974181i \(0.572489\pi\)
\(608\) 5.70820 0.231498
\(609\) 0.583592 0.0236483
\(610\) −6.00000 −0.242933
\(611\) 20.9443 0.847315
\(612\) −1.00000 −0.0404226
\(613\) −33.1246 −1.33789 −0.668945 0.743312i \(-0.733254\pi\)
−0.668945 + 0.743312i \(0.733254\pi\)
\(614\) 23.7082 0.956785
\(615\) 8.94427 0.360668
\(616\) −1.23607 −0.0498026
\(617\) −5.23607 −0.210796 −0.105398 0.994430i \(-0.533612\pi\)
−0.105398 + 0.994430i \(0.533612\pi\)
\(618\) −4.00000 −0.160904
\(619\) 25.8885 1.04055 0.520274 0.853999i \(-0.325830\pi\)
0.520274 + 0.853999i \(0.325830\pi\)
\(620\) 4.00000 0.160644
\(621\) 0.763932 0.0306555
\(622\) 6.76393 0.271209
\(623\) −13.5279 −0.541982
\(624\) 3.23607 0.129546
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −5.70820 −0.227964
\(628\) −7.41641 −0.295947
\(629\) 6.00000 0.239236
\(630\) 1.23607 0.0492461
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) −9.70820 −0.386172
\(633\) 24.3607 0.968250
\(634\) −30.9443 −1.22895
\(635\) 12.0000 0.476205
\(636\) 1.23607 0.0490133
\(637\) 17.7082 0.701625
\(638\) 0.472136 0.0186920
\(639\) −5.23607 −0.207136
\(640\) −1.00000 −0.0395285
\(641\) −22.6525 −0.894719 −0.447360 0.894354i \(-0.647636\pi\)
−0.447360 + 0.894354i \(0.647636\pi\)
\(642\) 16.9443 0.668737
\(643\) −19.0557 −0.751485 −0.375742 0.926724i \(-0.622612\pi\)
−0.375742 + 0.926724i \(0.622612\pi\)
\(644\) 0.944272 0.0372095
\(645\) 1.23607 0.0486701
\(646\) −5.70820 −0.224586
\(647\) 38.8328 1.52668 0.763338 0.646000i \(-0.223559\pi\)
0.763338 + 0.646000i \(0.223559\pi\)
\(648\) 1.00000 0.0392837
\(649\) 1.23607 0.0485199
\(650\) −3.23607 −0.126929
\(651\) −4.94427 −0.193781
\(652\) 2.47214 0.0968163
\(653\) −23.8885 −0.934831 −0.467415 0.884038i \(-0.654815\pi\)
−0.467415 + 0.884038i \(0.654815\pi\)
\(654\) 6.00000 0.234619
\(655\) 0 0
\(656\) 8.94427 0.349215
\(657\) −3.23607 −0.126251
\(658\) 8.00000 0.311872
\(659\) −8.83282 −0.344078 −0.172039 0.985090i \(-0.555035\pi\)
−0.172039 + 0.985090i \(0.555035\pi\)
\(660\) 1.00000 0.0389249
\(661\) −25.4164 −0.988584 −0.494292 0.869296i \(-0.664573\pi\)
−0.494292 + 0.869296i \(0.664573\pi\)
\(662\) −1.88854 −0.0734003
\(663\) −3.23607 −0.125678
\(664\) −12.9443 −0.502335
\(665\) 7.05573 0.273609
\(666\) −6.00000 −0.232495
\(667\) −0.360680 −0.0139656
\(668\) −12.0000 −0.464294
\(669\) −3.41641 −0.132086
\(670\) −6.00000 −0.231800
\(671\) 6.00000 0.231627
\(672\) 1.23607 0.0476824
\(673\) −40.7639 −1.57133 −0.785667 0.618650i \(-0.787680\pi\)
−0.785667 + 0.618650i \(0.787680\pi\)
\(674\) 9.70820 0.373946
\(675\) −1.00000 −0.0384900
\(676\) −2.52786 −0.0972255
\(677\) −4.11146 −0.158016 −0.0790080 0.996874i \(-0.525175\pi\)
−0.0790080 + 0.996874i \(0.525175\pi\)
\(678\) 10.7639 0.413386
\(679\) 0 0
\(680\) 1.00000 0.0383482
\(681\) 0 0
\(682\) −4.00000 −0.153168
\(683\) 47.7771 1.82814 0.914070 0.405557i \(-0.132922\pi\)
0.914070 + 0.405557i \(0.132922\pi\)
\(684\) 5.70820 0.218259
\(685\) −19.8885 −0.759902
\(686\) 15.4164 0.588601
\(687\) −2.58359 −0.0985702
\(688\) 1.23607 0.0471246
\(689\) 4.00000 0.152388
\(690\) −0.763932 −0.0290824
\(691\) −10.8328 −0.412100 −0.206050 0.978541i \(-0.566061\pi\)
−0.206050 + 0.978541i \(0.566061\pi\)
\(692\) −13.4164 −0.510015
\(693\) −1.23607 −0.0469543
\(694\) −4.94427 −0.187682
\(695\) −8.00000 −0.303457
\(696\) −0.472136 −0.0178963
\(697\) −8.94427 −0.338788
\(698\) −11.7082 −0.443162
\(699\) 16.4721 0.623033
\(700\) −1.23607 −0.0467190
\(701\) 17.5279 0.662018 0.331009 0.943628i \(-0.392611\pi\)
0.331009 + 0.943628i \(0.392611\pi\)
\(702\) 3.23607 0.122138
\(703\) −34.2492 −1.29173
\(704\) 1.00000 0.0376889
\(705\) −6.47214 −0.243755
\(706\) 4.47214 0.168311
\(707\) 11.0557 0.415793
\(708\) −1.23607 −0.0464543
\(709\) 28.8328 1.08284 0.541420 0.840753i \(-0.317887\pi\)
0.541420 + 0.840753i \(0.317887\pi\)
\(710\) 5.23607 0.196506
\(711\) −9.70820 −0.364086
\(712\) 10.9443 0.410154
\(713\) 3.05573 0.114438
\(714\) −1.23607 −0.0462587
\(715\) 3.23607 0.121022
\(716\) −17.2361 −0.644142
\(717\) −28.3607 −1.05915
\(718\) 19.4164 0.724614
\(719\) −18.5410 −0.691463 −0.345732 0.938333i \(-0.612369\pi\)
−0.345732 + 0.938333i \(0.612369\pi\)
\(720\) −1.00000 −0.0372678
\(721\) −4.94427 −0.184134
\(722\) 13.5836 0.505529
\(723\) 18.1803 0.676134
\(724\) −0.472136 −0.0175468
\(725\) 0.472136 0.0175347
\(726\) −1.00000 −0.0371135
\(727\) 34.8328 1.29188 0.645939 0.763389i \(-0.276466\pi\)
0.645939 + 0.763389i \(0.276466\pi\)
\(728\) 4.00000 0.148250
\(729\) 1.00000 0.0370370
\(730\) 3.23607 0.119772
\(731\) −1.23607 −0.0457176
\(732\) −6.00000 −0.221766
\(733\) 34.6525 1.27992 0.639959 0.768409i \(-0.278951\pi\)
0.639959 + 0.768409i \(0.278951\pi\)
\(734\) −24.8328 −0.916596
\(735\) −5.47214 −0.201843
\(736\) −0.763932 −0.0281589
\(737\) 6.00000 0.221013
\(738\) 8.94427 0.329243
\(739\) 41.7082 1.53426 0.767131 0.641491i \(-0.221684\pi\)
0.767131 + 0.641491i \(0.221684\pi\)
\(740\) 6.00000 0.220564
\(741\) 18.4721 0.678591
\(742\) 1.52786 0.0560897
\(743\) −13.5279 −0.496289 −0.248145 0.968723i \(-0.579821\pi\)
−0.248145 + 0.968723i \(0.579821\pi\)
\(744\) 4.00000 0.146647
\(745\) 18.4721 0.676767
\(746\) −2.29180 −0.0839086
\(747\) −12.9443 −0.473606
\(748\) −1.00000 −0.0365636
\(749\) 20.9443 0.765287
\(750\) 1.00000 0.0365148
\(751\) −19.4164 −0.708515 −0.354257 0.935148i \(-0.615266\pi\)
−0.354257 + 0.935148i \(0.615266\pi\)
\(752\) −6.47214 −0.236015
\(753\) −18.7639 −0.683796
\(754\) −1.52786 −0.0556415
\(755\) 5.52786 0.201180
\(756\) 1.23607 0.0449554
\(757\) −13.8885 −0.504788 −0.252394 0.967625i \(-0.581218\pi\)
−0.252394 + 0.967625i \(0.581218\pi\)
\(758\) −7.05573 −0.256276
\(759\) 0.763932 0.0277290
\(760\) −5.70820 −0.207058
\(761\) −27.5279 −0.997884 −0.498942 0.866635i \(-0.666278\pi\)
−0.498942 + 0.866635i \(0.666278\pi\)
\(762\) 12.0000 0.434714
\(763\) 7.41641 0.268492
\(764\) 10.4721 0.378869
\(765\) 1.00000 0.0361551
\(766\) 1.52786 0.0552040
\(767\) −4.00000 −0.144432
\(768\) −1.00000 −0.0360844
\(769\) 15.5279 0.559949 0.279975 0.960007i \(-0.409674\pi\)
0.279975 + 0.960007i \(0.409674\pi\)
\(770\) 1.23607 0.0445448
\(771\) −4.47214 −0.161060
\(772\) −5.70820 −0.205443
\(773\) −26.7639 −0.962632 −0.481316 0.876547i \(-0.659841\pi\)
−0.481316 + 0.876547i \(0.659841\pi\)
\(774\) 1.23607 0.0444295
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) −7.41641 −0.266062
\(778\) −23.5967 −0.845984
\(779\) 51.0557 1.82926
\(780\) −3.23607 −0.115870
\(781\) −5.23607 −0.187361
\(782\) 0.763932 0.0273182
\(783\) −0.472136 −0.0168728
\(784\) −5.47214 −0.195433
\(785\) 7.41641 0.264703
\(786\) 0 0
\(787\) 36.9443 1.31692 0.658461 0.752615i \(-0.271208\pi\)
0.658461 + 0.752615i \(0.271208\pi\)
\(788\) −2.94427 −0.104885
\(789\) 12.0000 0.427211
\(790\) 9.70820 0.345402
\(791\) 13.3050 0.473070
\(792\) 1.00000 0.0355335
\(793\) −19.4164 −0.689497
\(794\) 15.8885 0.563863
\(795\) −1.23607 −0.0438388
\(796\) −12.0000 −0.425329
\(797\) −41.0132 −1.45276 −0.726380 0.687293i \(-0.758799\pi\)
−0.726380 + 0.687293i \(0.758799\pi\)
\(798\) 7.05573 0.249770
\(799\) 6.47214 0.228968
\(800\) 1.00000 0.0353553
\(801\) 10.9443 0.386697
\(802\) −33.7082 −1.19028
\(803\) −3.23607 −0.114198
\(804\) −6.00000 −0.211604
\(805\) −0.944272 −0.0332812
\(806\) 12.9443 0.455943
\(807\) 15.5279 0.546607
\(808\) −8.94427 −0.314658
\(809\) 28.3607 0.997108 0.498554 0.866859i \(-0.333864\pi\)
0.498554 + 0.866859i \(0.333864\pi\)
\(810\) −1.00000 −0.0351364
\(811\) 50.2492 1.76449 0.882244 0.470792i \(-0.156032\pi\)
0.882244 + 0.470792i \(0.156032\pi\)
\(812\) −0.583592 −0.0204801
\(813\) −20.0000 −0.701431
\(814\) −6.00000 −0.210300
\(815\) −2.47214 −0.0865951
\(816\) 1.00000 0.0350070
\(817\) 7.05573 0.246849
\(818\) −6.94427 −0.242801
\(819\) 4.00000 0.139771
\(820\) −8.94427 −0.312348
\(821\) 34.3607 1.19920 0.599598 0.800301i \(-0.295327\pi\)
0.599598 + 0.800301i \(0.295327\pi\)
\(822\) −19.8885 −0.693693
\(823\) 10.5836 0.368921 0.184460 0.982840i \(-0.440946\pi\)
0.184460 + 0.982840i \(0.440946\pi\)
\(824\) 4.00000 0.139347
\(825\) −1.00000 −0.0348155
\(826\) −1.52786 −0.0531612
\(827\) −15.0557 −0.523539 −0.261769 0.965130i \(-0.584306\pi\)
−0.261769 + 0.965130i \(0.584306\pi\)
\(828\) −0.763932 −0.0265485
\(829\) 21.7771 0.756350 0.378175 0.925734i \(-0.376552\pi\)
0.378175 + 0.925734i \(0.376552\pi\)
\(830\) 12.9443 0.449302
\(831\) −14.0000 −0.485655
\(832\) −3.23607 −0.112190
\(833\) 5.47214 0.189598
\(834\) −8.00000 −0.277017
\(835\) 12.0000 0.415277
\(836\) 5.70820 0.197422
\(837\) 4.00000 0.138260
\(838\) 1.52786 0.0527792
\(839\) 27.7082 0.956593 0.478297 0.878198i \(-0.341254\pi\)
0.478297 + 0.878198i \(0.341254\pi\)
\(840\) −1.23607 −0.0426484
\(841\) −28.7771 −0.992313
\(842\) 10.9443 0.377165
\(843\) 7.52786 0.259273
\(844\) −24.3607 −0.838529
\(845\) 2.52786 0.0869612
\(846\) −6.47214 −0.222517
\(847\) −1.23607 −0.0424718
\(848\) −1.23607 −0.0424467
\(849\) −23.4164 −0.803649
\(850\) −1.00000 −0.0342997
\(851\) 4.58359 0.157124
\(852\) 5.23607 0.179385
\(853\) 30.3607 1.03953 0.519765 0.854309i \(-0.326020\pi\)
0.519765 + 0.854309i \(0.326020\pi\)
\(854\) −7.41641 −0.253784
\(855\) −5.70820 −0.195216
\(856\) −16.9443 −0.579143
\(857\) 15.8885 0.542742 0.271371 0.962475i \(-0.412523\pi\)
0.271371 + 0.962475i \(0.412523\pi\)
\(858\) 3.23607 0.110478
\(859\) −4.94427 −0.168696 −0.0843482 0.996436i \(-0.526881\pi\)
−0.0843482 + 0.996436i \(0.526881\pi\)
\(860\) −1.23607 −0.0421496
\(861\) 11.0557 0.376778
\(862\) −22.9443 −0.781485
\(863\) −35.0557 −1.19331 −0.596655 0.802498i \(-0.703504\pi\)
−0.596655 + 0.802498i \(0.703504\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 13.4164 0.456172
\(866\) −6.00000 −0.203888
\(867\) −1.00000 −0.0339618
\(868\) 4.94427 0.167820
\(869\) −9.70820 −0.329328
\(870\) 0.472136 0.0160069
\(871\) −19.4164 −0.657900
\(872\) −6.00000 −0.203186
\(873\) 0 0
\(874\) −4.36068 −0.147502
\(875\) 1.23607 0.0417867
\(876\) 3.23607 0.109337
\(877\) −2.36068 −0.0797145 −0.0398572 0.999205i \(-0.512690\pi\)
−0.0398572 + 0.999205i \(0.512690\pi\)
\(878\) −17.7082 −0.597623
\(879\) 18.0000 0.607125
\(880\) −1.00000 −0.0337100
\(881\) −8.18034 −0.275603 −0.137801 0.990460i \(-0.544004\pi\)
−0.137801 + 0.990460i \(0.544004\pi\)
\(882\) −5.47214 −0.184256
\(883\) 6.58359 0.221556 0.110778 0.993845i \(-0.464666\pi\)
0.110778 + 0.993845i \(0.464666\pi\)
\(884\) 3.23607 0.108841
\(885\) 1.23607 0.0415500
\(886\) −34.6525 −1.16417
\(887\) 32.7214 1.09868 0.549338 0.835600i \(-0.314880\pi\)
0.549338 + 0.835600i \(0.314880\pi\)
\(888\) 6.00000 0.201347
\(889\) 14.8328 0.497477
\(890\) −10.9443 −0.366853
\(891\) 1.00000 0.0335013
\(892\) 3.41641 0.114390
\(893\) −36.9443 −1.23629
\(894\) 18.4721 0.617801
\(895\) 17.2361 0.576138
\(896\) −1.23607 −0.0412941
\(897\) −2.47214 −0.0825422
\(898\) −16.1803 −0.539945
\(899\) −1.88854 −0.0629865
\(900\) 1.00000 0.0333333
\(901\) 1.23607 0.0411794
\(902\) 8.94427 0.297812
\(903\) 1.52786 0.0508441
\(904\) −10.7639 −0.358003
\(905\) 0.472136 0.0156943
\(906\) 5.52786 0.183651
\(907\) 14.8328 0.492516 0.246258 0.969204i \(-0.420799\pi\)
0.246258 + 0.969204i \(0.420799\pi\)
\(908\) 0 0
\(909\) −8.94427 −0.296663
\(910\) −4.00000 −0.132599
\(911\) 26.7639 0.886729 0.443364 0.896342i \(-0.353785\pi\)
0.443364 + 0.896342i \(0.353785\pi\)
\(912\) −5.70820 −0.189018
\(913\) −12.9443 −0.428393
\(914\) 18.0000 0.595387
\(915\) 6.00000 0.198354
\(916\) 2.58359 0.0853643
\(917\) 0 0
\(918\) 1.00000 0.0330049
\(919\) 2.47214 0.0815482 0.0407741 0.999168i \(-0.487018\pi\)
0.0407741 + 0.999168i \(0.487018\pi\)
\(920\) 0.763932 0.0251861
\(921\) −23.7082 −0.781212
\(922\) −19.4164 −0.639445
\(923\) 16.9443 0.557728
\(924\) 1.23607 0.0406637
\(925\) −6.00000 −0.197279
\(926\) −24.3607 −0.800542
\(927\) 4.00000 0.131377
\(928\) 0.472136 0.0154986
\(929\) −43.0132 −1.41122 −0.705608 0.708602i \(-0.749326\pi\)
−0.705608 + 0.708602i \(0.749326\pi\)
\(930\) −4.00000 −0.131165
\(931\) −31.2361 −1.02372
\(932\) −16.4721 −0.539563
\(933\) −6.76393 −0.221441
\(934\) 19.2361 0.629423
\(935\) 1.00000 0.0327035
\(936\) −3.23607 −0.105774
\(937\) 20.2492 0.661513 0.330757 0.943716i \(-0.392696\pi\)
0.330757 + 0.943716i \(0.392696\pi\)
\(938\) −7.41641 −0.242154
\(939\) 0 0
\(940\) 6.47214 0.211098
\(941\) 3.52786 0.115005 0.0575025 0.998345i \(-0.481686\pi\)
0.0575025 + 0.998345i \(0.481686\pi\)
\(942\) 7.41641 0.241640
\(943\) −6.83282 −0.222507
\(944\) 1.23607 0.0402306
\(945\) −1.23607 −0.0402093
\(946\) 1.23607 0.0401880
\(947\) −44.7214 −1.45325 −0.726624 0.687035i \(-0.758912\pi\)
−0.726624 + 0.687035i \(0.758912\pi\)
\(948\) 9.70820 0.315308
\(949\) 10.4721 0.339940
\(950\) 5.70820 0.185199
\(951\) 30.9443 1.00344
\(952\) 1.23607 0.0400612
\(953\) −19.3050 −0.625349 −0.312674 0.949860i \(-0.601225\pi\)
−0.312674 + 0.949860i \(0.601225\pi\)
\(954\) −1.23607 −0.0400192
\(955\) −10.4721 −0.338870
\(956\) 28.3607 0.917250
\(957\) −0.472136 −0.0152620
\(958\) −36.4721 −1.17836
\(959\) −24.5836 −0.793846
\(960\) 1.00000 0.0322749
\(961\) −15.0000 −0.483871
\(962\) 19.4164 0.626010
\(963\) −16.9443 −0.546022
\(964\) −18.1803 −0.585549
\(965\) 5.70820 0.183754
\(966\) −0.944272 −0.0303815
\(967\) 19.4164 0.624390 0.312195 0.950018i \(-0.398936\pi\)
0.312195 + 0.950018i \(0.398936\pi\)
\(968\) 1.00000 0.0321412
\(969\) 5.70820 0.183374
\(970\) 0 0
\(971\) 53.2361 1.70843 0.854213 0.519923i \(-0.174039\pi\)
0.854213 + 0.519923i \(0.174039\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −9.88854 −0.317012
\(974\) 32.8328 1.05203
\(975\) 3.23607 0.103637
\(976\) 6.00000 0.192055
\(977\) −16.4721 −0.526990 −0.263495 0.964661i \(-0.584875\pi\)
−0.263495 + 0.964661i \(0.584875\pi\)
\(978\) −2.47214 −0.0790502
\(979\) 10.9443 0.349780
\(980\) 5.47214 0.174801
\(981\) −6.00000 −0.191565
\(982\) 18.9443 0.604536
\(983\) −30.6525 −0.977662 −0.488831 0.872378i \(-0.662577\pi\)
−0.488831 + 0.872378i \(0.662577\pi\)
\(984\) −8.94427 −0.285133
\(985\) 2.94427 0.0938123
\(986\) −0.472136 −0.0150359
\(987\) −8.00000 −0.254643
\(988\) −18.4721 −0.587677
\(989\) −0.944272 −0.0300261
\(990\) −1.00000 −0.0317821
\(991\) −46.2492 −1.46916 −0.734578 0.678525i \(-0.762620\pi\)
−0.734578 + 0.678525i \(0.762620\pi\)
\(992\) −4.00000 −0.127000
\(993\) 1.88854 0.0599311
\(994\) 6.47214 0.205284
\(995\) 12.0000 0.380426
\(996\) 12.9443 0.410155
\(997\) 50.3607 1.59494 0.797469 0.603359i \(-0.206172\pi\)
0.797469 + 0.603359i \(0.206172\pi\)
\(998\) 30.8328 0.975996
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5610.2.a.bu.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5610.2.a.bu.1.1 2 1.1 even 1 trivial