Properties

Label 5610.2.a.bp.1.1
Level $5610$
Weight $2$
Character 5610.1
Self dual yes
Analytic conductor $44.796$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5610,2,Mod(1,5610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 5610.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} -2.37228 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} -2.37228 q^{7} -1.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} -1.00000 q^{11} -1.00000 q^{12} +4.37228 q^{13} +2.37228 q^{14} +1.00000 q^{15} +1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{18} +2.37228 q^{19} -1.00000 q^{20} +2.37228 q^{21} +1.00000 q^{22} -2.37228 q^{23} +1.00000 q^{24} +1.00000 q^{25} -4.37228 q^{26} -1.00000 q^{27} -2.37228 q^{28} -2.00000 q^{29} -1.00000 q^{30} +1.62772 q^{31} -1.00000 q^{32} +1.00000 q^{33} +1.00000 q^{34} +2.37228 q^{35} +1.00000 q^{36} -8.37228 q^{37} -2.37228 q^{38} -4.37228 q^{39} +1.00000 q^{40} -6.00000 q^{41} -2.37228 q^{42} +4.00000 q^{43} -1.00000 q^{44} -1.00000 q^{45} +2.37228 q^{46} -8.74456 q^{47} -1.00000 q^{48} -1.37228 q^{49} -1.00000 q^{50} +1.00000 q^{51} +4.37228 q^{52} +11.4891 q^{53} +1.00000 q^{54} +1.00000 q^{55} +2.37228 q^{56} -2.37228 q^{57} +2.00000 q^{58} +4.00000 q^{59} +1.00000 q^{60} +13.1168 q^{61} -1.62772 q^{62} -2.37228 q^{63} +1.00000 q^{64} -4.37228 q^{65} -1.00000 q^{66} +6.37228 q^{67} -1.00000 q^{68} +2.37228 q^{69} -2.37228 q^{70} +4.74456 q^{71} -1.00000 q^{72} -1.25544 q^{73} +8.37228 q^{74} -1.00000 q^{75} +2.37228 q^{76} +2.37228 q^{77} +4.37228 q^{78} +4.74456 q^{79} -1.00000 q^{80} +1.00000 q^{81} +6.00000 q^{82} -1.62772 q^{83} +2.37228 q^{84} +1.00000 q^{85} -4.00000 q^{86} +2.00000 q^{87} +1.00000 q^{88} +10.0000 q^{89} +1.00000 q^{90} -10.3723 q^{91} -2.37228 q^{92} -1.62772 q^{93} +8.74456 q^{94} -2.37228 q^{95} +1.00000 q^{96} +3.62772 q^{97} +1.37228 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + q^{7} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} + q^{7} - 2 q^{8} + 2 q^{9} + 2 q^{10} - 2 q^{11} - 2 q^{12} + 3 q^{13} - q^{14} + 2 q^{15} + 2 q^{16} - 2 q^{17} - 2 q^{18} - q^{19} - 2 q^{20} - q^{21} + 2 q^{22} + q^{23} + 2 q^{24} + 2 q^{25} - 3 q^{26} - 2 q^{27} + q^{28} - 4 q^{29} - 2 q^{30} + 9 q^{31} - 2 q^{32} + 2 q^{33} + 2 q^{34} - q^{35} + 2 q^{36} - 11 q^{37} + q^{38} - 3 q^{39} + 2 q^{40} - 12 q^{41} + q^{42} + 8 q^{43} - 2 q^{44} - 2 q^{45} - q^{46} - 6 q^{47} - 2 q^{48} + 3 q^{49} - 2 q^{50} + 2 q^{51} + 3 q^{52} + 2 q^{54} + 2 q^{55} - q^{56} + q^{57} + 4 q^{58} + 8 q^{59} + 2 q^{60} + 9 q^{61} - 9 q^{62} + q^{63} + 2 q^{64} - 3 q^{65} - 2 q^{66} + 7 q^{67} - 2 q^{68} - q^{69} + q^{70} - 2 q^{71} - 2 q^{72} - 14 q^{73} + 11 q^{74} - 2 q^{75} - q^{76} - q^{77} + 3 q^{78} - 2 q^{79} - 2 q^{80} + 2 q^{81} + 12 q^{82} - 9 q^{83} - q^{84} + 2 q^{85} - 8 q^{86} + 4 q^{87} + 2 q^{88} + 20 q^{89} + 2 q^{90} - 15 q^{91} + q^{92} - 9 q^{93} + 6 q^{94} + q^{95} + 2 q^{96} + 13 q^{97} - 3 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.00000 0.408248
\(7\) −2.37228 −0.896638 −0.448319 0.893874i \(-0.647977\pi\)
−0.448319 + 0.893874i \(0.647977\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) −1.00000 −0.301511
\(12\) −1.00000 −0.288675
\(13\) 4.37228 1.21265 0.606326 0.795216i \(-0.292643\pi\)
0.606326 + 0.795216i \(0.292643\pi\)
\(14\) 2.37228 0.634019
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −1.00000 −0.235702
\(19\) 2.37228 0.544239 0.272119 0.962264i \(-0.412275\pi\)
0.272119 + 0.962264i \(0.412275\pi\)
\(20\) −1.00000 −0.223607
\(21\) 2.37228 0.517674
\(22\) 1.00000 0.213201
\(23\) −2.37228 −0.494655 −0.247327 0.968932i \(-0.579552\pi\)
−0.247327 + 0.968932i \(0.579552\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.00000 0.200000
\(26\) −4.37228 −0.857475
\(27\) −1.00000 −0.192450
\(28\) −2.37228 −0.448319
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) −1.00000 −0.182574
\(31\) 1.62772 0.292347 0.146173 0.989259i \(-0.453304\pi\)
0.146173 + 0.989259i \(0.453304\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.00000 0.174078
\(34\) 1.00000 0.171499
\(35\) 2.37228 0.400989
\(36\) 1.00000 0.166667
\(37\) −8.37228 −1.37639 −0.688197 0.725524i \(-0.741598\pi\)
−0.688197 + 0.725524i \(0.741598\pi\)
\(38\) −2.37228 −0.384835
\(39\) −4.37228 −0.700125
\(40\) 1.00000 0.158114
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) −2.37228 −0.366051
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −1.00000 −0.150756
\(45\) −1.00000 −0.149071
\(46\) 2.37228 0.349774
\(47\) −8.74456 −1.27553 −0.637763 0.770233i \(-0.720140\pi\)
−0.637763 + 0.770233i \(0.720140\pi\)
\(48\) −1.00000 −0.144338
\(49\) −1.37228 −0.196040
\(50\) −1.00000 −0.141421
\(51\) 1.00000 0.140028
\(52\) 4.37228 0.606326
\(53\) 11.4891 1.57815 0.789076 0.614295i \(-0.210560\pi\)
0.789076 + 0.614295i \(0.210560\pi\)
\(54\) 1.00000 0.136083
\(55\) 1.00000 0.134840
\(56\) 2.37228 0.317009
\(57\) −2.37228 −0.314216
\(58\) 2.00000 0.262613
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 1.00000 0.129099
\(61\) 13.1168 1.67944 0.839720 0.543020i \(-0.182719\pi\)
0.839720 + 0.543020i \(0.182719\pi\)
\(62\) −1.62772 −0.206720
\(63\) −2.37228 −0.298879
\(64\) 1.00000 0.125000
\(65\) −4.37228 −0.542315
\(66\) −1.00000 −0.123091
\(67\) 6.37228 0.778498 0.389249 0.921133i \(-0.372735\pi\)
0.389249 + 0.921133i \(0.372735\pi\)
\(68\) −1.00000 −0.121268
\(69\) 2.37228 0.285589
\(70\) −2.37228 −0.283542
\(71\) 4.74456 0.563076 0.281538 0.959550i \(-0.409155\pi\)
0.281538 + 0.959550i \(0.409155\pi\)
\(72\) −1.00000 −0.117851
\(73\) −1.25544 −0.146938 −0.0734689 0.997298i \(-0.523407\pi\)
−0.0734689 + 0.997298i \(0.523407\pi\)
\(74\) 8.37228 0.973258
\(75\) −1.00000 −0.115470
\(76\) 2.37228 0.272119
\(77\) 2.37228 0.270347
\(78\) 4.37228 0.495063
\(79\) 4.74456 0.533805 0.266903 0.963724i \(-0.414000\pi\)
0.266903 + 0.963724i \(0.414000\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) 6.00000 0.662589
\(83\) −1.62772 −0.178665 −0.0893327 0.996002i \(-0.528473\pi\)
−0.0893327 + 0.996002i \(0.528473\pi\)
\(84\) 2.37228 0.258837
\(85\) 1.00000 0.108465
\(86\) −4.00000 −0.431331
\(87\) 2.00000 0.214423
\(88\) 1.00000 0.106600
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 1.00000 0.105409
\(91\) −10.3723 −1.08731
\(92\) −2.37228 −0.247327
\(93\) −1.62772 −0.168787
\(94\) 8.74456 0.901933
\(95\) −2.37228 −0.243391
\(96\) 1.00000 0.102062
\(97\) 3.62772 0.368339 0.184170 0.982894i \(-0.441040\pi\)
0.184170 + 0.982894i \(0.441040\pi\)
\(98\) 1.37228 0.138621
\(99\) −1.00000 −0.100504
\(100\) 1.00000 0.100000
\(101\) 11.4891 1.14321 0.571605 0.820529i \(-0.306321\pi\)
0.571605 + 0.820529i \(0.306321\pi\)
\(102\) −1.00000 −0.0990148
\(103\) −7.11684 −0.701243 −0.350622 0.936517i \(-0.614030\pi\)
−0.350622 + 0.936517i \(0.614030\pi\)
\(104\) −4.37228 −0.428737
\(105\) −2.37228 −0.231511
\(106\) −11.4891 −1.11592
\(107\) −3.25544 −0.314715 −0.157358 0.987542i \(-0.550297\pi\)
−0.157358 + 0.987542i \(0.550297\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −1.11684 −0.106974 −0.0534871 0.998569i \(-0.517034\pi\)
−0.0534871 + 0.998569i \(0.517034\pi\)
\(110\) −1.00000 −0.0953463
\(111\) 8.37228 0.794662
\(112\) −2.37228 −0.224160
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 2.37228 0.222185
\(115\) 2.37228 0.221216
\(116\) −2.00000 −0.185695
\(117\) 4.37228 0.404218
\(118\) −4.00000 −0.368230
\(119\) 2.37228 0.217467
\(120\) −1.00000 −0.0912871
\(121\) 1.00000 0.0909091
\(122\) −13.1168 −1.18754
\(123\) 6.00000 0.541002
\(124\) 1.62772 0.146173
\(125\) −1.00000 −0.0894427
\(126\) 2.37228 0.211340
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −4.00000 −0.352180
\(130\) 4.37228 0.383474
\(131\) 1.62772 0.142214 0.0711072 0.997469i \(-0.477347\pi\)
0.0711072 + 0.997469i \(0.477347\pi\)
\(132\) 1.00000 0.0870388
\(133\) −5.62772 −0.487985
\(134\) −6.37228 −0.550481
\(135\) 1.00000 0.0860663
\(136\) 1.00000 0.0857493
\(137\) −17.1168 −1.46239 −0.731195 0.682168i \(-0.761037\pi\)
−0.731195 + 0.682168i \(0.761037\pi\)
\(138\) −2.37228 −0.201942
\(139\) −0.744563 −0.0631530 −0.0315765 0.999501i \(-0.510053\pi\)
−0.0315765 + 0.999501i \(0.510053\pi\)
\(140\) 2.37228 0.200494
\(141\) 8.74456 0.736425
\(142\) −4.74456 −0.398155
\(143\) −4.37228 −0.365629
\(144\) 1.00000 0.0833333
\(145\) 2.00000 0.166091
\(146\) 1.25544 0.103901
\(147\) 1.37228 0.113184
\(148\) −8.37228 −0.688197
\(149\) −13.1168 −1.07457 −0.537287 0.843400i \(-0.680551\pi\)
−0.537287 + 0.843400i \(0.680551\pi\)
\(150\) 1.00000 0.0816497
\(151\) 9.62772 0.783493 0.391746 0.920073i \(-0.371871\pi\)
0.391746 + 0.920073i \(0.371871\pi\)
\(152\) −2.37228 −0.192417
\(153\) −1.00000 −0.0808452
\(154\) −2.37228 −0.191164
\(155\) −1.62772 −0.130742
\(156\) −4.37228 −0.350063
\(157\) 10.7446 0.857509 0.428755 0.903421i \(-0.358952\pi\)
0.428755 + 0.903421i \(0.358952\pi\)
\(158\) −4.74456 −0.377457
\(159\) −11.4891 −0.911147
\(160\) 1.00000 0.0790569
\(161\) 5.62772 0.443526
\(162\) −1.00000 −0.0785674
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −6.00000 −0.468521
\(165\) −1.00000 −0.0778499
\(166\) 1.62772 0.126335
\(167\) −21.4891 −1.66288 −0.831439 0.555616i \(-0.812483\pi\)
−0.831439 + 0.555616i \(0.812483\pi\)
\(168\) −2.37228 −0.183025
\(169\) 6.11684 0.470526
\(170\) −1.00000 −0.0766965
\(171\) 2.37228 0.181413
\(172\) 4.00000 0.304997
\(173\) 5.86141 0.445634 0.222817 0.974860i \(-0.428475\pi\)
0.222817 + 0.974860i \(0.428475\pi\)
\(174\) −2.00000 −0.151620
\(175\) −2.37228 −0.179328
\(176\) −1.00000 −0.0753778
\(177\) −4.00000 −0.300658
\(178\) −10.0000 −0.749532
\(179\) 3.11684 0.232964 0.116482 0.993193i \(-0.462838\pi\)
0.116482 + 0.993193i \(0.462838\pi\)
\(180\) −1.00000 −0.0745356
\(181\) 1.25544 0.0933159 0.0466580 0.998911i \(-0.485143\pi\)
0.0466580 + 0.998911i \(0.485143\pi\)
\(182\) 10.3723 0.768845
\(183\) −13.1168 −0.969625
\(184\) 2.37228 0.174887
\(185\) 8.37228 0.615542
\(186\) 1.62772 0.119350
\(187\) 1.00000 0.0731272
\(188\) −8.74456 −0.637763
\(189\) 2.37228 0.172558
\(190\) 2.37228 0.172103
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 22.7446 1.63719 0.818595 0.574372i \(-0.194754\pi\)
0.818595 + 0.574372i \(0.194754\pi\)
\(194\) −3.62772 −0.260455
\(195\) 4.37228 0.313106
\(196\) −1.37228 −0.0980201
\(197\) −14.6060 −1.04063 −0.520316 0.853974i \(-0.674186\pi\)
−0.520316 + 0.853974i \(0.674186\pi\)
\(198\) 1.00000 0.0710669
\(199\) −14.3723 −1.01882 −0.509412 0.860523i \(-0.670137\pi\)
−0.509412 + 0.860523i \(0.670137\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −6.37228 −0.449466
\(202\) −11.4891 −0.808372
\(203\) 4.74456 0.333003
\(204\) 1.00000 0.0700140
\(205\) 6.00000 0.419058
\(206\) 7.11684 0.495854
\(207\) −2.37228 −0.164885
\(208\) 4.37228 0.303163
\(209\) −2.37228 −0.164094
\(210\) 2.37228 0.163703
\(211\) −8.74456 −0.602001 −0.301000 0.953624i \(-0.597321\pi\)
−0.301000 + 0.953624i \(0.597321\pi\)
\(212\) 11.4891 0.789076
\(213\) −4.74456 −0.325092
\(214\) 3.25544 0.222537
\(215\) −4.00000 −0.272798
\(216\) 1.00000 0.0680414
\(217\) −3.86141 −0.262129
\(218\) 1.11684 0.0756422
\(219\) 1.25544 0.0848346
\(220\) 1.00000 0.0674200
\(221\) −4.37228 −0.294111
\(222\) −8.37228 −0.561911
\(223\) −19.8614 −1.33002 −0.665009 0.746835i \(-0.731572\pi\)
−0.665009 + 0.746835i \(0.731572\pi\)
\(224\) 2.37228 0.158505
\(225\) 1.00000 0.0666667
\(226\) 2.00000 0.133038
\(227\) −12.7446 −0.845886 −0.422943 0.906156i \(-0.639003\pi\)
−0.422943 + 0.906156i \(0.639003\pi\)
\(228\) −2.37228 −0.157108
\(229\) 5.11684 0.338131 0.169065 0.985605i \(-0.445925\pi\)
0.169065 + 0.985605i \(0.445925\pi\)
\(230\) −2.37228 −0.156424
\(231\) −2.37228 −0.156085
\(232\) 2.00000 0.131306
\(233\) −0.510875 −0.0334685 −0.0167343 0.999860i \(-0.505327\pi\)
−0.0167343 + 0.999860i \(0.505327\pi\)
\(234\) −4.37228 −0.285825
\(235\) 8.74456 0.570432
\(236\) 4.00000 0.260378
\(237\) −4.74456 −0.308192
\(238\) −2.37228 −0.153772
\(239\) 12.7446 0.824377 0.412189 0.911099i \(-0.364764\pi\)
0.412189 + 0.911099i \(0.364764\pi\)
\(240\) 1.00000 0.0645497
\(241\) −22.6060 −1.45618 −0.728089 0.685482i \(-0.759591\pi\)
−0.728089 + 0.685482i \(0.759591\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −1.00000 −0.0641500
\(244\) 13.1168 0.839720
\(245\) 1.37228 0.0876718
\(246\) −6.00000 −0.382546
\(247\) 10.3723 0.659972
\(248\) −1.62772 −0.103360
\(249\) 1.62772 0.103152
\(250\) 1.00000 0.0632456
\(251\) −22.3723 −1.41213 −0.706063 0.708149i \(-0.749530\pi\)
−0.706063 + 0.708149i \(0.749530\pi\)
\(252\) −2.37228 −0.149440
\(253\) 2.37228 0.149144
\(254\) 8.00000 0.501965
\(255\) −1.00000 −0.0626224
\(256\) 1.00000 0.0625000
\(257\) −0.510875 −0.0318675 −0.0159337 0.999873i \(-0.505072\pi\)
−0.0159337 + 0.999873i \(0.505072\pi\)
\(258\) 4.00000 0.249029
\(259\) 19.8614 1.23413
\(260\) −4.37228 −0.271157
\(261\) −2.00000 −0.123797
\(262\) −1.62772 −0.100561
\(263\) −13.6277 −0.840321 −0.420161 0.907450i \(-0.638026\pi\)
−0.420161 + 0.907450i \(0.638026\pi\)
\(264\) −1.00000 −0.0615457
\(265\) −11.4891 −0.705771
\(266\) 5.62772 0.345058
\(267\) −10.0000 −0.611990
\(268\) 6.37228 0.389249
\(269\) 7.62772 0.465070 0.232535 0.972588i \(-0.425298\pi\)
0.232535 + 0.972588i \(0.425298\pi\)
\(270\) −1.00000 −0.0608581
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 10.3723 0.627759
\(274\) 17.1168 1.03407
\(275\) −1.00000 −0.0603023
\(276\) 2.37228 0.142795
\(277\) 4.23369 0.254378 0.127189 0.991879i \(-0.459405\pi\)
0.127189 + 0.991879i \(0.459405\pi\)
\(278\) 0.744563 0.0446559
\(279\) 1.62772 0.0974490
\(280\) −2.37228 −0.141771
\(281\) 14.0000 0.835170 0.417585 0.908638i \(-0.362877\pi\)
0.417585 + 0.908638i \(0.362877\pi\)
\(282\) −8.74456 −0.520731
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) 4.74456 0.281538
\(285\) 2.37228 0.140522
\(286\) 4.37228 0.258538
\(287\) 14.2337 0.840188
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) −2.00000 −0.117444
\(291\) −3.62772 −0.212661
\(292\) −1.25544 −0.0734689
\(293\) −26.7446 −1.56243 −0.781217 0.624260i \(-0.785401\pi\)
−0.781217 + 0.624260i \(0.785401\pi\)
\(294\) −1.37228 −0.0800331
\(295\) −4.00000 −0.232889
\(296\) 8.37228 0.486629
\(297\) 1.00000 0.0580259
\(298\) 13.1168 0.759838
\(299\) −10.3723 −0.599845
\(300\) −1.00000 −0.0577350
\(301\) −9.48913 −0.546944
\(302\) −9.62772 −0.554013
\(303\) −11.4891 −0.660033
\(304\) 2.37228 0.136060
\(305\) −13.1168 −0.751068
\(306\) 1.00000 0.0571662
\(307\) −21.4891 −1.22645 −0.613225 0.789909i \(-0.710128\pi\)
−0.613225 + 0.789909i \(0.710128\pi\)
\(308\) 2.37228 0.135173
\(309\) 7.11684 0.404863
\(310\) 1.62772 0.0924482
\(311\) −30.2337 −1.71440 −0.857198 0.514988i \(-0.827796\pi\)
−0.857198 + 0.514988i \(0.827796\pi\)
\(312\) 4.37228 0.247532
\(313\) −9.11684 −0.515314 −0.257657 0.966236i \(-0.582951\pi\)
−0.257657 + 0.966236i \(0.582951\pi\)
\(314\) −10.7446 −0.606351
\(315\) 2.37228 0.133663
\(316\) 4.74456 0.266903
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 11.4891 0.644278
\(319\) 2.00000 0.111979
\(320\) −1.00000 −0.0559017
\(321\) 3.25544 0.181701
\(322\) −5.62772 −0.313621
\(323\) −2.37228 −0.131997
\(324\) 1.00000 0.0555556
\(325\) 4.37228 0.242531
\(326\) 4.00000 0.221540
\(327\) 1.11684 0.0617616
\(328\) 6.00000 0.331295
\(329\) 20.7446 1.14368
\(330\) 1.00000 0.0550482
\(331\) 21.4891 1.18115 0.590575 0.806983i \(-0.298901\pi\)
0.590575 + 0.806983i \(0.298901\pi\)
\(332\) −1.62772 −0.0893327
\(333\) −8.37228 −0.458798
\(334\) 21.4891 1.17583
\(335\) −6.37228 −0.348155
\(336\) 2.37228 0.129419
\(337\) 0.233688 0.0127298 0.00636490 0.999980i \(-0.497974\pi\)
0.00636490 + 0.999980i \(0.497974\pi\)
\(338\) −6.11684 −0.332712
\(339\) 2.00000 0.108625
\(340\) 1.00000 0.0542326
\(341\) −1.62772 −0.0881459
\(342\) −2.37228 −0.128278
\(343\) 19.8614 1.07242
\(344\) −4.00000 −0.215666
\(345\) −2.37228 −0.127719
\(346\) −5.86141 −0.315111
\(347\) −31.7228 −1.70297 −0.851485 0.524379i \(-0.824297\pi\)
−0.851485 + 0.524379i \(0.824297\pi\)
\(348\) 2.00000 0.107211
\(349\) 16.9783 0.908825 0.454412 0.890791i \(-0.349849\pi\)
0.454412 + 0.890791i \(0.349849\pi\)
\(350\) 2.37228 0.126804
\(351\) −4.37228 −0.233375
\(352\) 1.00000 0.0533002
\(353\) 22.6060 1.20319 0.601597 0.798800i \(-0.294531\pi\)
0.601597 + 0.798800i \(0.294531\pi\)
\(354\) 4.00000 0.212598
\(355\) −4.74456 −0.251815
\(356\) 10.0000 0.529999
\(357\) −2.37228 −0.125554
\(358\) −3.11684 −0.164730
\(359\) −14.2337 −0.751225 −0.375613 0.926777i \(-0.622568\pi\)
−0.375613 + 0.926777i \(0.622568\pi\)
\(360\) 1.00000 0.0527046
\(361\) −13.3723 −0.703804
\(362\) −1.25544 −0.0659843
\(363\) −1.00000 −0.0524864
\(364\) −10.3723 −0.543655
\(365\) 1.25544 0.0657126
\(366\) 13.1168 0.685628
\(367\) 25.4891 1.33052 0.665261 0.746611i \(-0.268320\pi\)
0.665261 + 0.746611i \(0.268320\pi\)
\(368\) −2.37228 −0.123664
\(369\) −6.00000 −0.312348
\(370\) −8.37228 −0.435254
\(371\) −27.2554 −1.41503
\(372\) −1.62772 −0.0843933
\(373\) 3.48913 0.180660 0.0903300 0.995912i \(-0.471208\pi\)
0.0903300 + 0.995912i \(0.471208\pi\)
\(374\) −1.00000 −0.0517088
\(375\) 1.00000 0.0516398
\(376\) 8.74456 0.450966
\(377\) −8.74456 −0.450368
\(378\) −2.37228 −0.122017
\(379\) −0.883156 −0.0453647 −0.0226823 0.999743i \(-0.507221\pi\)
−0.0226823 + 0.999743i \(0.507221\pi\)
\(380\) −2.37228 −0.121695
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) 2.23369 0.114136 0.0570681 0.998370i \(-0.481825\pi\)
0.0570681 + 0.998370i \(0.481825\pi\)
\(384\) 1.00000 0.0510310
\(385\) −2.37228 −0.120903
\(386\) −22.7446 −1.15767
\(387\) 4.00000 0.203331
\(388\) 3.62772 0.184170
\(389\) 28.2337 1.43150 0.715752 0.698354i \(-0.246084\pi\)
0.715752 + 0.698354i \(0.246084\pi\)
\(390\) −4.37228 −0.221399
\(391\) 2.37228 0.119971
\(392\) 1.37228 0.0693107
\(393\) −1.62772 −0.0821075
\(394\) 14.6060 0.735838
\(395\) −4.74456 −0.238725
\(396\) −1.00000 −0.0502519
\(397\) 11.4891 0.576623 0.288311 0.957537i \(-0.406906\pi\)
0.288311 + 0.957537i \(0.406906\pi\)
\(398\) 14.3723 0.720417
\(399\) 5.62772 0.281738
\(400\) 1.00000 0.0500000
\(401\) 9.86141 0.492455 0.246228 0.969212i \(-0.420809\pi\)
0.246228 + 0.969212i \(0.420809\pi\)
\(402\) 6.37228 0.317821
\(403\) 7.11684 0.354515
\(404\) 11.4891 0.571605
\(405\) −1.00000 −0.0496904
\(406\) −4.74456 −0.235469
\(407\) 8.37228 0.414999
\(408\) −1.00000 −0.0495074
\(409\) −16.9783 −0.839520 −0.419760 0.907635i \(-0.637886\pi\)
−0.419760 + 0.907635i \(0.637886\pi\)
\(410\) −6.00000 −0.296319
\(411\) 17.1168 0.844312
\(412\) −7.11684 −0.350622
\(413\) −9.48913 −0.466929
\(414\) 2.37228 0.116591
\(415\) 1.62772 0.0799016
\(416\) −4.37228 −0.214369
\(417\) 0.744563 0.0364614
\(418\) 2.37228 0.116032
\(419\) −13.4891 −0.658987 −0.329493 0.944158i \(-0.606878\pi\)
−0.329493 + 0.944158i \(0.606878\pi\)
\(420\) −2.37228 −0.115755
\(421\) 24.0951 1.17432 0.587162 0.809470i \(-0.300245\pi\)
0.587162 + 0.809470i \(0.300245\pi\)
\(422\) 8.74456 0.425679
\(423\) −8.74456 −0.425175
\(424\) −11.4891 −0.557961
\(425\) −1.00000 −0.0485071
\(426\) 4.74456 0.229875
\(427\) −31.1168 −1.50585
\(428\) −3.25544 −0.157358
\(429\) 4.37228 0.211096
\(430\) 4.00000 0.192897
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 10.0000 0.480569 0.240285 0.970702i \(-0.422759\pi\)
0.240285 + 0.970702i \(0.422759\pi\)
\(434\) 3.86141 0.185353
\(435\) −2.00000 −0.0958927
\(436\) −1.11684 −0.0534871
\(437\) −5.62772 −0.269210
\(438\) −1.25544 −0.0599871
\(439\) 28.7446 1.37190 0.685952 0.727647i \(-0.259386\pi\)
0.685952 + 0.727647i \(0.259386\pi\)
\(440\) −1.00000 −0.0476731
\(441\) −1.37228 −0.0653467
\(442\) 4.37228 0.207968
\(443\) −22.2337 −1.05635 −0.528177 0.849134i \(-0.677124\pi\)
−0.528177 + 0.849134i \(0.677124\pi\)
\(444\) 8.37228 0.397331
\(445\) −10.0000 −0.474045
\(446\) 19.8614 0.940465
\(447\) 13.1168 0.620405
\(448\) −2.37228 −0.112080
\(449\) −40.8397 −1.92734 −0.963671 0.267091i \(-0.913938\pi\)
−0.963671 + 0.267091i \(0.913938\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 6.00000 0.282529
\(452\) −2.00000 −0.0940721
\(453\) −9.62772 −0.452350
\(454\) 12.7446 0.598132
\(455\) 10.3723 0.486260
\(456\) 2.37228 0.111092
\(457\) −4.37228 −0.204527 −0.102263 0.994757i \(-0.532608\pi\)
−0.102263 + 0.994757i \(0.532608\pi\)
\(458\) −5.11684 −0.239094
\(459\) 1.00000 0.0466760
\(460\) 2.37228 0.110608
\(461\) 11.4891 0.535102 0.267551 0.963544i \(-0.413786\pi\)
0.267551 + 0.963544i \(0.413786\pi\)
\(462\) 2.37228 0.110369
\(463\) −26.3723 −1.22562 −0.612812 0.790229i \(-0.709962\pi\)
−0.612812 + 0.790229i \(0.709962\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 1.62772 0.0754836
\(466\) 0.510875 0.0236658
\(467\) −10.9783 −0.508013 −0.254006 0.967203i \(-0.581748\pi\)
−0.254006 + 0.967203i \(0.581748\pi\)
\(468\) 4.37228 0.202109
\(469\) −15.1168 −0.698031
\(470\) −8.74456 −0.403357
\(471\) −10.7446 −0.495083
\(472\) −4.00000 −0.184115
\(473\) −4.00000 −0.183920
\(474\) 4.74456 0.217925
\(475\) 2.37228 0.108848
\(476\) 2.37228 0.108733
\(477\) 11.4891 0.526051
\(478\) −12.7446 −0.582923
\(479\) −24.6060 −1.12428 −0.562138 0.827044i \(-0.690021\pi\)
−0.562138 + 0.827044i \(0.690021\pi\)
\(480\) −1.00000 −0.0456435
\(481\) −36.6060 −1.66909
\(482\) 22.6060 1.02967
\(483\) −5.62772 −0.256070
\(484\) 1.00000 0.0454545
\(485\) −3.62772 −0.164726
\(486\) 1.00000 0.0453609
\(487\) −6.51087 −0.295036 −0.147518 0.989059i \(-0.547128\pi\)
−0.147518 + 0.989059i \(0.547128\pi\)
\(488\) −13.1168 −0.593772
\(489\) 4.00000 0.180886
\(490\) −1.37228 −0.0619934
\(491\) −15.2554 −0.688468 −0.344234 0.938884i \(-0.611861\pi\)
−0.344234 + 0.938884i \(0.611861\pi\)
\(492\) 6.00000 0.270501
\(493\) 2.00000 0.0900755
\(494\) −10.3723 −0.466671
\(495\) 1.00000 0.0449467
\(496\) 1.62772 0.0730867
\(497\) −11.2554 −0.504875
\(498\) −1.62772 −0.0729398
\(499\) 33.4891 1.49918 0.749590 0.661903i \(-0.230251\pi\)
0.749590 + 0.661903i \(0.230251\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 21.4891 0.960063
\(502\) 22.3723 0.998524
\(503\) −21.4891 −0.958153 −0.479076 0.877773i \(-0.659028\pi\)
−0.479076 + 0.877773i \(0.659028\pi\)
\(504\) 2.37228 0.105670
\(505\) −11.4891 −0.511259
\(506\) −2.37228 −0.105461
\(507\) −6.11684 −0.271659
\(508\) −8.00000 −0.354943
\(509\) −35.4891 −1.57303 −0.786514 0.617573i \(-0.788116\pi\)
−0.786514 + 0.617573i \(0.788116\pi\)
\(510\) 1.00000 0.0442807
\(511\) 2.97825 0.131750
\(512\) −1.00000 −0.0441942
\(513\) −2.37228 −0.104739
\(514\) 0.510875 0.0225337
\(515\) 7.11684 0.313606
\(516\) −4.00000 −0.176090
\(517\) 8.74456 0.384585
\(518\) −19.8614 −0.872660
\(519\) −5.86141 −0.257287
\(520\) 4.37228 0.191737
\(521\) 1.86141 0.0815497 0.0407749 0.999168i \(-0.487017\pi\)
0.0407749 + 0.999168i \(0.487017\pi\)
\(522\) 2.00000 0.0875376
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) 1.62772 0.0711072
\(525\) 2.37228 0.103535
\(526\) 13.6277 0.594197
\(527\) −1.62772 −0.0709045
\(528\) 1.00000 0.0435194
\(529\) −17.3723 −0.755317
\(530\) 11.4891 0.499056
\(531\) 4.00000 0.173585
\(532\) −5.62772 −0.243993
\(533\) −26.2337 −1.13631
\(534\) 10.0000 0.432742
\(535\) 3.25544 0.140745
\(536\) −6.37228 −0.275241
\(537\) −3.11684 −0.134502
\(538\) −7.62772 −0.328854
\(539\) 1.37228 0.0591083
\(540\) 1.00000 0.0430331
\(541\) −11.4891 −0.493956 −0.246978 0.969021i \(-0.579438\pi\)
−0.246978 + 0.969021i \(0.579438\pi\)
\(542\) 20.0000 0.859074
\(543\) −1.25544 −0.0538760
\(544\) 1.00000 0.0428746
\(545\) 1.11684 0.0478403
\(546\) −10.3723 −0.443893
\(547\) −25.6277 −1.09576 −0.547881 0.836556i \(-0.684565\pi\)
−0.547881 + 0.836556i \(0.684565\pi\)
\(548\) −17.1168 −0.731195
\(549\) 13.1168 0.559813
\(550\) 1.00000 0.0426401
\(551\) −4.74456 −0.202125
\(552\) −2.37228 −0.100971
\(553\) −11.2554 −0.478630
\(554\) −4.23369 −0.179872
\(555\) −8.37228 −0.355384
\(556\) −0.744563 −0.0315765
\(557\) −44.2337 −1.87424 −0.937121 0.349005i \(-0.886520\pi\)
−0.937121 + 0.349005i \(0.886520\pi\)
\(558\) −1.62772 −0.0689068
\(559\) 17.4891 0.739711
\(560\) 2.37228 0.100247
\(561\) −1.00000 −0.0422200
\(562\) −14.0000 −0.590554
\(563\) −4.88316 −0.205800 −0.102900 0.994692i \(-0.532812\pi\)
−0.102900 + 0.994692i \(0.532812\pi\)
\(564\) 8.74456 0.368213
\(565\) 2.00000 0.0841406
\(566\) 28.0000 1.17693
\(567\) −2.37228 −0.0996265
\(568\) −4.74456 −0.199077
\(569\) −32.8397 −1.37671 −0.688355 0.725374i \(-0.741667\pi\)
−0.688355 + 0.725374i \(0.741667\pi\)
\(570\) −2.37228 −0.0993639
\(571\) 15.2554 0.638420 0.319210 0.947684i \(-0.396582\pi\)
0.319210 + 0.947684i \(0.396582\pi\)
\(572\) −4.37228 −0.182814
\(573\) 0 0
\(574\) −14.2337 −0.594103
\(575\) −2.37228 −0.0989310
\(576\) 1.00000 0.0416667
\(577\) 27.4891 1.14439 0.572194 0.820119i \(-0.306093\pi\)
0.572194 + 0.820119i \(0.306093\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −22.7446 −0.945232
\(580\) 2.00000 0.0830455
\(581\) 3.86141 0.160198
\(582\) 3.62772 0.150374
\(583\) −11.4891 −0.475831
\(584\) 1.25544 0.0519504
\(585\) −4.37228 −0.180772
\(586\) 26.7446 1.10481
\(587\) 12.7446 0.526024 0.263012 0.964793i \(-0.415284\pi\)
0.263012 + 0.964793i \(0.415284\pi\)
\(588\) 1.37228 0.0565919
\(589\) 3.86141 0.159106
\(590\) 4.00000 0.164677
\(591\) 14.6060 0.600809
\(592\) −8.37228 −0.344099
\(593\) 39.4891 1.62162 0.810812 0.585307i \(-0.199026\pi\)
0.810812 + 0.585307i \(0.199026\pi\)
\(594\) −1.00000 −0.0410305
\(595\) −2.37228 −0.0972541
\(596\) −13.1168 −0.537287
\(597\) 14.3723 0.588218
\(598\) 10.3723 0.424154
\(599\) 38.8397 1.58695 0.793473 0.608606i \(-0.208271\pi\)
0.793473 + 0.608606i \(0.208271\pi\)
\(600\) 1.00000 0.0408248
\(601\) 4.37228 0.178349 0.0891745 0.996016i \(-0.471577\pi\)
0.0891745 + 0.996016i \(0.471577\pi\)
\(602\) 9.48913 0.386748
\(603\) 6.37228 0.259499
\(604\) 9.62772 0.391746
\(605\) −1.00000 −0.0406558
\(606\) 11.4891 0.466714
\(607\) 16.6060 0.674016 0.337008 0.941502i \(-0.390585\pi\)
0.337008 + 0.941502i \(0.390585\pi\)
\(608\) −2.37228 −0.0962087
\(609\) −4.74456 −0.192259
\(610\) 13.1168 0.531085
\(611\) −38.2337 −1.54677
\(612\) −1.00000 −0.0404226
\(613\) −48.9783 −1.97821 −0.989106 0.147202i \(-0.952973\pi\)
−0.989106 + 0.147202i \(0.952973\pi\)
\(614\) 21.4891 0.867231
\(615\) −6.00000 −0.241943
\(616\) −2.37228 −0.0955819
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) −7.11684 −0.286281
\(619\) −7.11684 −0.286050 −0.143025 0.989719i \(-0.545683\pi\)
−0.143025 + 0.989719i \(0.545683\pi\)
\(620\) −1.62772 −0.0653708
\(621\) 2.37228 0.0951964
\(622\) 30.2337 1.21226
\(623\) −23.7228 −0.950434
\(624\) −4.37228 −0.175031
\(625\) 1.00000 0.0400000
\(626\) 9.11684 0.364382
\(627\) 2.37228 0.0947398
\(628\) 10.7446 0.428755
\(629\) 8.37228 0.333825
\(630\) −2.37228 −0.0945140
\(631\) 14.2337 0.566634 0.283317 0.959026i \(-0.408565\pi\)
0.283317 + 0.959026i \(0.408565\pi\)
\(632\) −4.74456 −0.188729
\(633\) 8.74456 0.347565
\(634\) −2.00000 −0.0794301
\(635\) 8.00000 0.317470
\(636\) −11.4891 −0.455573
\(637\) −6.00000 −0.237729
\(638\) −2.00000 −0.0791808
\(639\) 4.74456 0.187692
\(640\) 1.00000 0.0395285
\(641\) −44.9783 −1.77653 −0.888267 0.459327i \(-0.848090\pi\)
−0.888267 + 0.459327i \(0.848090\pi\)
\(642\) −3.25544 −0.128482
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) 5.62772 0.221763
\(645\) 4.00000 0.157500
\(646\) 2.37228 0.0933362
\(647\) −18.2337 −0.716840 −0.358420 0.933560i \(-0.616684\pi\)
−0.358420 + 0.933560i \(0.616684\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −4.00000 −0.157014
\(650\) −4.37228 −0.171495
\(651\) 3.86141 0.151340
\(652\) −4.00000 −0.156652
\(653\) 32.2337 1.26140 0.630701 0.776026i \(-0.282768\pi\)
0.630701 + 0.776026i \(0.282768\pi\)
\(654\) −1.11684 −0.0436721
\(655\) −1.62772 −0.0636002
\(656\) −6.00000 −0.234261
\(657\) −1.25544 −0.0489793
\(658\) −20.7446 −0.808707
\(659\) 26.2337 1.02192 0.510960 0.859605i \(-0.329290\pi\)
0.510960 + 0.859605i \(0.329290\pi\)
\(660\) −1.00000 −0.0389249
\(661\) −34.6060 −1.34602 −0.673008 0.739635i \(-0.734998\pi\)
−0.673008 + 0.739635i \(0.734998\pi\)
\(662\) −21.4891 −0.835199
\(663\) 4.37228 0.169805
\(664\) 1.62772 0.0631677
\(665\) 5.62772 0.218234
\(666\) 8.37228 0.324419
\(667\) 4.74456 0.183710
\(668\) −21.4891 −0.831439
\(669\) 19.8614 0.767886
\(670\) 6.37228 0.246183
\(671\) −13.1168 −0.506370
\(672\) −2.37228 −0.0915127
\(673\) 6.74456 0.259984 0.129992 0.991515i \(-0.458505\pi\)
0.129992 + 0.991515i \(0.458505\pi\)
\(674\) −0.233688 −0.00900132
\(675\) −1.00000 −0.0384900
\(676\) 6.11684 0.235263
\(677\) 11.4891 0.441563 0.220781 0.975323i \(-0.429139\pi\)
0.220781 + 0.975323i \(0.429139\pi\)
\(678\) −2.00000 −0.0768095
\(679\) −8.60597 −0.330267
\(680\) −1.00000 −0.0383482
\(681\) 12.7446 0.488373
\(682\) 1.62772 0.0623286
\(683\) −22.3723 −0.856052 −0.428026 0.903767i \(-0.640791\pi\)
−0.428026 + 0.903767i \(0.640791\pi\)
\(684\) 2.37228 0.0907064
\(685\) 17.1168 0.654001
\(686\) −19.8614 −0.758312
\(687\) −5.11684 −0.195220
\(688\) 4.00000 0.152499
\(689\) 50.2337 1.91375
\(690\) 2.37228 0.0903112
\(691\) 21.3505 0.812213 0.406106 0.913826i \(-0.366886\pi\)
0.406106 + 0.913826i \(0.366886\pi\)
\(692\) 5.86141 0.222817
\(693\) 2.37228 0.0901155
\(694\) 31.7228 1.20418
\(695\) 0.744563 0.0282429
\(696\) −2.00000 −0.0758098
\(697\) 6.00000 0.227266
\(698\) −16.9783 −0.642636
\(699\) 0.510875 0.0193231
\(700\) −2.37228 −0.0896638
\(701\) −7.48913 −0.282860 −0.141430 0.989948i \(-0.545170\pi\)
−0.141430 + 0.989948i \(0.545170\pi\)
\(702\) 4.37228 0.165021
\(703\) −19.8614 −0.749087
\(704\) −1.00000 −0.0376889
\(705\) −8.74456 −0.329339
\(706\) −22.6060 −0.850787
\(707\) −27.2554 −1.02505
\(708\) −4.00000 −0.150329
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 4.74456 0.178060
\(711\) 4.74456 0.177935
\(712\) −10.0000 −0.374766
\(713\) −3.86141 −0.144611
\(714\) 2.37228 0.0887804
\(715\) 4.37228 0.163514
\(716\) 3.11684 0.116482
\(717\) −12.7446 −0.475954
\(718\) 14.2337 0.531197
\(719\) 4.74456 0.176942 0.0884712 0.996079i \(-0.471802\pi\)
0.0884712 + 0.996079i \(0.471802\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 16.8832 0.628762
\(722\) 13.3723 0.497665
\(723\) 22.6060 0.840725
\(724\) 1.25544 0.0466580
\(725\) −2.00000 −0.0742781
\(726\) 1.00000 0.0371135
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 10.3723 0.384422
\(729\) 1.00000 0.0370370
\(730\) −1.25544 −0.0464658
\(731\) −4.00000 −0.147945
\(732\) −13.1168 −0.484813
\(733\) −46.3288 −1.71119 −0.855596 0.517644i \(-0.826809\pi\)
−0.855596 + 0.517644i \(0.826809\pi\)
\(734\) −25.4891 −0.940821
\(735\) −1.37228 −0.0506174
\(736\) 2.37228 0.0874434
\(737\) −6.37228 −0.234726
\(738\) 6.00000 0.220863
\(739\) −29.3505 −1.07968 −0.539838 0.841769i \(-0.681515\pi\)
−0.539838 + 0.841769i \(0.681515\pi\)
\(740\) 8.37228 0.307771
\(741\) −10.3723 −0.381035
\(742\) 27.2554 1.00058
\(743\) −18.5109 −0.679098 −0.339549 0.940588i \(-0.610274\pi\)
−0.339549 + 0.940588i \(0.610274\pi\)
\(744\) 1.62772 0.0596751
\(745\) 13.1168 0.480564
\(746\) −3.48913 −0.127746
\(747\) −1.62772 −0.0595551
\(748\) 1.00000 0.0365636
\(749\) 7.72281 0.282185
\(750\) −1.00000 −0.0365148
\(751\) −13.4891 −0.492225 −0.246113 0.969241i \(-0.579153\pi\)
−0.246113 + 0.969241i \(0.579153\pi\)
\(752\) −8.74456 −0.318881
\(753\) 22.3723 0.815291
\(754\) 8.74456 0.318458
\(755\) −9.62772 −0.350389
\(756\) 2.37228 0.0862790
\(757\) −12.9783 −0.471703 −0.235851 0.971789i \(-0.575788\pi\)
−0.235851 + 0.971789i \(0.575788\pi\)
\(758\) 0.883156 0.0320777
\(759\) −2.37228 −0.0861084
\(760\) 2.37228 0.0860517
\(761\) 21.1168 0.765485 0.382742 0.923855i \(-0.374980\pi\)
0.382742 + 0.923855i \(0.374980\pi\)
\(762\) −8.00000 −0.289809
\(763\) 2.64947 0.0959172
\(764\) 0 0
\(765\) 1.00000 0.0361551
\(766\) −2.23369 −0.0807064
\(767\) 17.4891 0.631496
\(768\) −1.00000 −0.0360844
\(769\) −55.2119 −1.99099 −0.995497 0.0947961i \(-0.969780\pi\)
−0.995497 + 0.0947961i \(0.969780\pi\)
\(770\) 2.37228 0.0854911
\(771\) 0.510875 0.0183987
\(772\) 22.7446 0.818595
\(773\) −5.39403 −0.194010 −0.0970049 0.995284i \(-0.530926\pi\)
−0.0970049 + 0.995284i \(0.530926\pi\)
\(774\) −4.00000 −0.143777
\(775\) 1.62772 0.0584694
\(776\) −3.62772 −0.130228
\(777\) −19.8614 −0.712524
\(778\) −28.2337 −1.01223
\(779\) −14.2337 −0.509975
\(780\) 4.37228 0.156553
\(781\) −4.74456 −0.169774
\(782\) −2.37228 −0.0848326
\(783\) 2.00000 0.0714742
\(784\) −1.37228 −0.0490100
\(785\) −10.7446 −0.383490
\(786\) 1.62772 0.0580588
\(787\) 3.11684 0.111103 0.0555517 0.998456i \(-0.482308\pi\)
0.0555517 + 0.998456i \(0.482308\pi\)
\(788\) −14.6060 −0.520316
\(789\) 13.6277 0.485160
\(790\) 4.74456 0.168804
\(791\) 4.74456 0.168697
\(792\) 1.00000 0.0355335
\(793\) 57.3505 2.03658
\(794\) −11.4891 −0.407734
\(795\) 11.4891 0.407477
\(796\) −14.3723 −0.509412
\(797\) 28.3723 1.00500 0.502499 0.864578i \(-0.332414\pi\)
0.502499 + 0.864578i \(0.332414\pi\)
\(798\) −5.62772 −0.199219
\(799\) 8.74456 0.309360
\(800\) −1.00000 −0.0353553
\(801\) 10.0000 0.353333
\(802\) −9.86141 −0.348218
\(803\) 1.25544 0.0443034
\(804\) −6.37228 −0.224733
\(805\) −5.62772 −0.198351
\(806\) −7.11684 −0.250680
\(807\) −7.62772 −0.268508
\(808\) −11.4891 −0.404186
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 1.00000 0.0351364
\(811\) −40.7446 −1.43074 −0.715368 0.698748i \(-0.753741\pi\)
−0.715368 + 0.698748i \(0.753741\pi\)
\(812\) 4.74456 0.166502
\(813\) 20.0000 0.701431
\(814\) −8.37228 −0.293448
\(815\) 4.00000 0.140114
\(816\) 1.00000 0.0350070
\(817\) 9.48913 0.331982
\(818\) 16.9783 0.593631
\(819\) −10.3723 −0.362437
\(820\) 6.00000 0.209529
\(821\) 0.978251 0.0341412 0.0170706 0.999854i \(-0.494566\pi\)
0.0170706 + 0.999854i \(0.494566\pi\)
\(822\) −17.1168 −0.597018
\(823\) 4.74456 0.165385 0.0826925 0.996575i \(-0.473648\pi\)
0.0826925 + 0.996575i \(0.473648\pi\)
\(824\) 7.11684 0.247927
\(825\) 1.00000 0.0348155
\(826\) 9.48913 0.330169
\(827\) −1.76631 −0.0614207 −0.0307103 0.999528i \(-0.509777\pi\)
−0.0307103 + 0.999528i \(0.509777\pi\)
\(828\) −2.37228 −0.0824425
\(829\) −5.86141 −0.203575 −0.101788 0.994806i \(-0.532456\pi\)
−0.101788 + 0.994806i \(0.532456\pi\)
\(830\) −1.62772 −0.0564989
\(831\) −4.23369 −0.146865
\(832\) 4.37228 0.151582
\(833\) 1.37228 0.0475467
\(834\) −0.744563 −0.0257821
\(835\) 21.4891 0.743662
\(836\) −2.37228 −0.0820471
\(837\) −1.62772 −0.0562622
\(838\) 13.4891 0.465974
\(839\) −8.00000 −0.276191 −0.138095 0.990419i \(-0.544098\pi\)
−0.138095 + 0.990419i \(0.544098\pi\)
\(840\) 2.37228 0.0818515
\(841\) −25.0000 −0.862069
\(842\) −24.0951 −0.830372
\(843\) −14.0000 −0.482186
\(844\) −8.74456 −0.301000
\(845\) −6.11684 −0.210426
\(846\) 8.74456 0.300644
\(847\) −2.37228 −0.0815126
\(848\) 11.4891 0.394538
\(849\) 28.0000 0.960958
\(850\) 1.00000 0.0342997
\(851\) 19.8614 0.680840
\(852\) −4.74456 −0.162546
\(853\) −40.2337 −1.37758 −0.688788 0.724963i \(-0.741857\pi\)
−0.688788 + 0.724963i \(0.741857\pi\)
\(854\) 31.1168 1.06480
\(855\) −2.37228 −0.0811303
\(856\) 3.25544 0.111269
\(857\) 32.3723 1.10582 0.552908 0.833242i \(-0.313518\pi\)
0.552908 + 0.833242i \(0.313518\pi\)
\(858\) −4.37228 −0.149267
\(859\) 2.51087 0.0856699 0.0428350 0.999082i \(-0.486361\pi\)
0.0428350 + 0.999082i \(0.486361\pi\)
\(860\) −4.00000 −0.136399
\(861\) −14.2337 −0.485083
\(862\) 8.00000 0.272481
\(863\) 5.48913 0.186852 0.0934260 0.995626i \(-0.470218\pi\)
0.0934260 + 0.995626i \(0.470218\pi\)
\(864\) 1.00000 0.0340207
\(865\) −5.86141 −0.199294
\(866\) −10.0000 −0.339814
\(867\) −1.00000 −0.0339618
\(868\) −3.86141 −0.131065
\(869\) −4.74456 −0.160948
\(870\) 2.00000 0.0678064
\(871\) 27.8614 0.944048
\(872\) 1.11684 0.0378211
\(873\) 3.62772 0.122780
\(874\) 5.62772 0.190360
\(875\) 2.37228 0.0801977
\(876\) 1.25544 0.0424173
\(877\) −11.7663 −0.397320 −0.198660 0.980068i \(-0.563659\pi\)
−0.198660 + 0.980068i \(0.563659\pi\)
\(878\) −28.7446 −0.970082
\(879\) 26.7446 0.902072
\(880\) 1.00000 0.0337100
\(881\) −22.4674 −0.756945 −0.378473 0.925613i \(-0.623551\pi\)
−0.378473 + 0.925613i \(0.623551\pi\)
\(882\) 1.37228 0.0462071
\(883\) 52.0000 1.74994 0.874970 0.484178i \(-0.160881\pi\)
0.874970 + 0.484178i \(0.160881\pi\)
\(884\) −4.37228 −0.147056
\(885\) 4.00000 0.134459
\(886\) 22.2337 0.746955
\(887\) −5.48913 −0.184307 −0.0921534 0.995745i \(-0.529375\pi\)
−0.0921534 + 0.995745i \(0.529375\pi\)
\(888\) −8.37228 −0.280955
\(889\) 18.9783 0.636510
\(890\) 10.0000 0.335201
\(891\) −1.00000 −0.0335013
\(892\) −19.8614 −0.665009
\(893\) −20.7446 −0.694190
\(894\) −13.1168 −0.438693
\(895\) −3.11684 −0.104185
\(896\) 2.37228 0.0792524
\(897\) 10.3723 0.346320
\(898\) 40.8397 1.36284
\(899\) −3.25544 −0.108575
\(900\) 1.00000 0.0333333
\(901\) −11.4891 −0.382758
\(902\) −6.00000 −0.199778
\(903\) 9.48913 0.315778
\(904\) 2.00000 0.0665190
\(905\) −1.25544 −0.0417321
\(906\) 9.62772 0.319860
\(907\) 2.51087 0.0833722 0.0416861 0.999131i \(-0.486727\pi\)
0.0416861 + 0.999131i \(0.486727\pi\)
\(908\) −12.7446 −0.422943
\(909\) 11.4891 0.381070
\(910\) −10.3723 −0.343838
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) −2.37228 −0.0785541
\(913\) 1.62772 0.0538696
\(914\) 4.37228 0.144622
\(915\) 13.1168 0.433629
\(916\) 5.11684 0.169065
\(917\) −3.86141 −0.127515
\(918\) −1.00000 −0.0330049
\(919\) 11.1168 0.366711 0.183355 0.983047i \(-0.441304\pi\)
0.183355 + 0.983047i \(0.441304\pi\)
\(920\) −2.37228 −0.0782118
\(921\) 21.4891 0.708091
\(922\) −11.4891 −0.378374
\(923\) 20.7446 0.682816
\(924\) −2.37228 −0.0780423
\(925\) −8.37228 −0.275279
\(926\) 26.3723 0.866647
\(927\) −7.11684 −0.233748
\(928\) 2.00000 0.0656532
\(929\) 38.6060 1.26662 0.633310 0.773898i \(-0.281696\pi\)
0.633310 + 0.773898i \(0.281696\pi\)
\(930\) −1.62772 −0.0533750
\(931\) −3.25544 −0.106693
\(932\) −0.510875 −0.0167343
\(933\) 30.2337 0.989807
\(934\) 10.9783 0.359219
\(935\) −1.00000 −0.0327035
\(936\) −4.37228 −0.142912
\(937\) 25.5842 0.835800 0.417900 0.908493i \(-0.362766\pi\)
0.417900 + 0.908493i \(0.362766\pi\)
\(938\) 15.1168 0.493582
\(939\) 9.11684 0.297517
\(940\) 8.74456 0.285216
\(941\) 13.7228 0.447351 0.223675 0.974664i \(-0.428194\pi\)
0.223675 + 0.974664i \(0.428194\pi\)
\(942\) 10.7446 0.350077
\(943\) 14.2337 0.463513
\(944\) 4.00000 0.130189
\(945\) −2.37228 −0.0771703
\(946\) 4.00000 0.130051
\(947\) −28.0000 −0.909878 −0.454939 0.890523i \(-0.650339\pi\)
−0.454939 + 0.890523i \(0.650339\pi\)
\(948\) −4.74456 −0.154096
\(949\) −5.48913 −0.178185
\(950\) −2.37228 −0.0769670
\(951\) −2.00000 −0.0648544
\(952\) −2.37228 −0.0768861
\(953\) 4.23369 0.137143 0.0685713 0.997646i \(-0.478156\pi\)
0.0685713 + 0.997646i \(0.478156\pi\)
\(954\) −11.4891 −0.371974
\(955\) 0 0
\(956\) 12.7446 0.412189
\(957\) −2.00000 −0.0646508
\(958\) 24.6060 0.794983
\(959\) 40.6060 1.31124
\(960\) 1.00000 0.0322749
\(961\) −28.3505 −0.914533
\(962\) 36.6060 1.18022
\(963\) −3.25544 −0.104905
\(964\) −22.6060 −0.728089
\(965\) −22.7446 −0.732173
\(966\) 5.62772 0.181069
\(967\) 54.2337 1.74404 0.872019 0.489472i \(-0.162811\pi\)
0.872019 + 0.489472i \(0.162811\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 2.37228 0.0762087
\(970\) 3.62772 0.116479
\(971\) −36.6060 −1.17474 −0.587371 0.809318i \(-0.699837\pi\)
−0.587371 + 0.809318i \(0.699837\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 1.76631 0.0566254
\(974\) 6.51087 0.208622
\(975\) −4.37228 −0.140025
\(976\) 13.1168 0.419860
\(977\) −5.86141 −0.187523 −0.0937615 0.995595i \(-0.529889\pi\)
−0.0937615 + 0.995595i \(0.529889\pi\)
\(978\) −4.00000 −0.127906
\(979\) −10.0000 −0.319601
\(980\) 1.37228 0.0438359
\(981\) −1.11684 −0.0356581
\(982\) 15.2554 0.486821
\(983\) 30.5109 0.973146 0.486573 0.873640i \(-0.338247\pi\)
0.486573 + 0.873640i \(0.338247\pi\)
\(984\) −6.00000 −0.191273
\(985\) 14.6060 0.465385
\(986\) −2.00000 −0.0636930
\(987\) −20.7446 −0.660307
\(988\) 10.3723 0.329986
\(989\) −9.48913 −0.301737
\(990\) −1.00000 −0.0317821
\(991\) −8.13859 −0.258531 −0.129265 0.991610i \(-0.541262\pi\)
−0.129265 + 0.991610i \(0.541262\pi\)
\(992\) −1.62772 −0.0516801
\(993\) −21.4891 −0.681937
\(994\) 11.2554 0.357001
\(995\) 14.3723 0.455632
\(996\) 1.62772 0.0515762
\(997\) 8.97825 0.284344 0.142172 0.989842i \(-0.454591\pi\)
0.142172 + 0.989842i \(0.454591\pi\)
\(998\) −33.4891 −1.06008
\(999\) 8.37228 0.264887
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5610.2.a.bp.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5610.2.a.bp.1.1 2 1.1 even 1 trivial