Properties

Label 5610.2.a.bm.1.2
Level $5610$
Weight $2$
Character 5610.1
Self dual yes
Analytic conductor $44.796$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5610,2,Mod(1,5610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 5610.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} +3.12311 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} +3.12311 q^{7} -1.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} -1.00000 q^{11} -1.00000 q^{12} +5.12311 q^{13} -3.12311 q^{14} +1.00000 q^{15} +1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{18} +3.12311 q^{19} -1.00000 q^{20} -3.12311 q^{21} +1.00000 q^{22} -3.12311 q^{23} +1.00000 q^{24} +1.00000 q^{25} -5.12311 q^{26} -1.00000 q^{27} +3.12311 q^{28} -8.24621 q^{29} -1.00000 q^{30} -10.2462 q^{31} -1.00000 q^{32} +1.00000 q^{33} +1.00000 q^{34} -3.12311 q^{35} +1.00000 q^{36} +2.00000 q^{37} -3.12311 q^{38} -5.12311 q^{39} +1.00000 q^{40} +10.0000 q^{41} +3.12311 q^{42} -7.12311 q^{43} -1.00000 q^{44} -1.00000 q^{45} +3.12311 q^{46} -4.00000 q^{47} -1.00000 q^{48} +2.75379 q^{49} -1.00000 q^{50} +1.00000 q^{51} +5.12311 q^{52} -9.12311 q^{53} +1.00000 q^{54} +1.00000 q^{55} -3.12311 q^{56} -3.12311 q^{57} +8.24621 q^{58} -7.12311 q^{59} +1.00000 q^{60} -2.00000 q^{61} +10.2462 q^{62} +3.12311 q^{63} +1.00000 q^{64} -5.12311 q^{65} -1.00000 q^{66} -4.00000 q^{67} -1.00000 q^{68} +3.12311 q^{69} +3.12311 q^{70} -4.87689 q^{71} -1.00000 q^{72} -1.12311 q^{73} -2.00000 q^{74} -1.00000 q^{75} +3.12311 q^{76} -3.12311 q^{77} +5.12311 q^{78} +11.1231 q^{79} -1.00000 q^{80} +1.00000 q^{81} -10.0000 q^{82} +4.00000 q^{83} -3.12311 q^{84} +1.00000 q^{85} +7.12311 q^{86} +8.24621 q^{87} +1.00000 q^{88} -12.2462 q^{89} +1.00000 q^{90} +16.0000 q^{91} -3.12311 q^{92} +10.2462 q^{93} +4.00000 q^{94} -3.12311 q^{95} +1.00000 q^{96} -8.24621 q^{97} -2.75379 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} - 2 q^{7} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} - 2 q^{7} - 2 q^{8} + 2 q^{9} + 2 q^{10} - 2 q^{11} - 2 q^{12} + 2 q^{13} + 2 q^{14} + 2 q^{15} + 2 q^{16} - 2 q^{17} - 2 q^{18} - 2 q^{19} - 2 q^{20} + 2 q^{21} + 2 q^{22} + 2 q^{23} + 2 q^{24} + 2 q^{25} - 2 q^{26} - 2 q^{27} - 2 q^{28} - 2 q^{30} - 4 q^{31} - 2 q^{32} + 2 q^{33} + 2 q^{34} + 2 q^{35} + 2 q^{36} + 4 q^{37} + 2 q^{38} - 2 q^{39} + 2 q^{40} + 20 q^{41} - 2 q^{42} - 6 q^{43} - 2 q^{44} - 2 q^{45} - 2 q^{46} - 8 q^{47} - 2 q^{48} + 22 q^{49} - 2 q^{50} + 2 q^{51} + 2 q^{52} - 10 q^{53} + 2 q^{54} + 2 q^{55} + 2 q^{56} + 2 q^{57} - 6 q^{59} + 2 q^{60} - 4 q^{61} + 4 q^{62} - 2 q^{63} + 2 q^{64} - 2 q^{65} - 2 q^{66} - 8 q^{67} - 2 q^{68} - 2 q^{69} - 2 q^{70} - 18 q^{71} - 2 q^{72} + 6 q^{73} - 4 q^{74} - 2 q^{75} - 2 q^{76} + 2 q^{77} + 2 q^{78} + 14 q^{79} - 2 q^{80} + 2 q^{81} - 20 q^{82} + 8 q^{83} + 2 q^{84} + 2 q^{85} + 6 q^{86} + 2 q^{88} - 8 q^{89} + 2 q^{90} + 32 q^{91} + 2 q^{92} + 4 q^{93} + 8 q^{94} + 2 q^{95} + 2 q^{96} - 22 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.00000 0.408248
\(7\) 3.12311 1.18042 0.590211 0.807249i \(-0.299044\pi\)
0.590211 + 0.807249i \(0.299044\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) −1.00000 −0.301511
\(12\) −1.00000 −0.288675
\(13\) 5.12311 1.42089 0.710447 0.703751i \(-0.248493\pi\)
0.710447 + 0.703751i \(0.248493\pi\)
\(14\) −3.12311 −0.834685
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −1.00000 −0.235702
\(19\) 3.12311 0.716490 0.358245 0.933628i \(-0.383375\pi\)
0.358245 + 0.933628i \(0.383375\pi\)
\(20\) −1.00000 −0.223607
\(21\) −3.12311 −0.681518
\(22\) 1.00000 0.213201
\(23\) −3.12311 −0.651213 −0.325606 0.945505i \(-0.605568\pi\)
−0.325606 + 0.945505i \(0.605568\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.00000 0.200000
\(26\) −5.12311 −1.00472
\(27\) −1.00000 −0.192450
\(28\) 3.12311 0.590211
\(29\) −8.24621 −1.53128 −0.765641 0.643268i \(-0.777578\pi\)
−0.765641 + 0.643268i \(0.777578\pi\)
\(30\) −1.00000 −0.182574
\(31\) −10.2462 −1.84027 −0.920137 0.391597i \(-0.871923\pi\)
−0.920137 + 0.391597i \(0.871923\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.00000 0.174078
\(34\) 1.00000 0.171499
\(35\) −3.12311 −0.527901
\(36\) 1.00000 0.166667
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −3.12311 −0.506635
\(39\) −5.12311 −0.820353
\(40\) 1.00000 0.158114
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 3.12311 0.481906
\(43\) −7.12311 −1.08626 −0.543132 0.839648i \(-0.682762\pi\)
−0.543132 + 0.839648i \(0.682762\pi\)
\(44\) −1.00000 −0.150756
\(45\) −1.00000 −0.149071
\(46\) 3.12311 0.460477
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) −1.00000 −0.144338
\(49\) 2.75379 0.393398
\(50\) −1.00000 −0.141421
\(51\) 1.00000 0.140028
\(52\) 5.12311 0.710447
\(53\) −9.12311 −1.25315 −0.626577 0.779359i \(-0.715545\pi\)
−0.626577 + 0.779359i \(0.715545\pi\)
\(54\) 1.00000 0.136083
\(55\) 1.00000 0.134840
\(56\) −3.12311 −0.417343
\(57\) −3.12311 −0.413665
\(58\) 8.24621 1.08278
\(59\) −7.12311 −0.927349 −0.463675 0.886006i \(-0.653469\pi\)
−0.463675 + 0.886006i \(0.653469\pi\)
\(60\) 1.00000 0.129099
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 10.2462 1.30127
\(63\) 3.12311 0.393474
\(64\) 1.00000 0.125000
\(65\) −5.12311 −0.635443
\(66\) −1.00000 −0.123091
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −1.00000 −0.121268
\(69\) 3.12311 0.375978
\(70\) 3.12311 0.373283
\(71\) −4.87689 −0.578781 −0.289390 0.957211i \(-0.593453\pi\)
−0.289390 + 0.957211i \(0.593453\pi\)
\(72\) −1.00000 −0.117851
\(73\) −1.12311 −0.131450 −0.0657248 0.997838i \(-0.520936\pi\)
−0.0657248 + 0.997838i \(0.520936\pi\)
\(74\) −2.00000 −0.232495
\(75\) −1.00000 −0.115470
\(76\) 3.12311 0.358245
\(77\) −3.12311 −0.355911
\(78\) 5.12311 0.580077
\(79\) 11.1231 1.25145 0.625724 0.780045i \(-0.284804\pi\)
0.625724 + 0.780045i \(0.284804\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) −10.0000 −1.10432
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) −3.12311 −0.340759
\(85\) 1.00000 0.108465
\(86\) 7.12311 0.768104
\(87\) 8.24621 0.884087
\(88\) 1.00000 0.106600
\(89\) −12.2462 −1.29810 −0.649048 0.760748i \(-0.724833\pi\)
−0.649048 + 0.760748i \(0.724833\pi\)
\(90\) 1.00000 0.105409
\(91\) 16.0000 1.67726
\(92\) −3.12311 −0.325606
\(93\) 10.2462 1.06248
\(94\) 4.00000 0.412568
\(95\) −3.12311 −0.320424
\(96\) 1.00000 0.102062
\(97\) −8.24621 −0.837276 −0.418638 0.908153i \(-0.637492\pi\)
−0.418638 + 0.908153i \(0.637492\pi\)
\(98\) −2.75379 −0.278175
\(99\) −1.00000 −0.100504
\(100\) 1.00000 0.100000
\(101\) 8.24621 0.820529 0.410264 0.911967i \(-0.365436\pi\)
0.410264 + 0.911967i \(0.365436\pi\)
\(102\) −1.00000 −0.0990148
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) −5.12311 −0.502362
\(105\) 3.12311 0.304784
\(106\) 9.12311 0.886114
\(107\) −1.75379 −0.169545 −0.0847726 0.996400i \(-0.527016\pi\)
−0.0847726 + 0.996400i \(0.527016\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 4.24621 0.406713 0.203357 0.979105i \(-0.434815\pi\)
0.203357 + 0.979105i \(0.434815\pi\)
\(110\) −1.00000 −0.0953463
\(111\) −2.00000 −0.189832
\(112\) 3.12311 0.295106
\(113\) −6.87689 −0.646924 −0.323462 0.946241i \(-0.604847\pi\)
−0.323462 + 0.946241i \(0.604847\pi\)
\(114\) 3.12311 0.292506
\(115\) 3.12311 0.291231
\(116\) −8.24621 −0.765641
\(117\) 5.12311 0.473631
\(118\) 7.12311 0.655735
\(119\) −3.12311 −0.286295
\(120\) −1.00000 −0.0912871
\(121\) 1.00000 0.0909091
\(122\) 2.00000 0.181071
\(123\) −10.0000 −0.901670
\(124\) −10.2462 −0.920137
\(125\) −1.00000 −0.0894427
\(126\) −3.12311 −0.278228
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 7.12311 0.627154
\(130\) 5.12311 0.449326
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 1.00000 0.0870388
\(133\) 9.75379 0.845761
\(134\) 4.00000 0.345547
\(135\) 1.00000 0.0860663
\(136\) 1.00000 0.0857493
\(137\) 20.2462 1.72975 0.864875 0.501987i \(-0.167397\pi\)
0.864875 + 0.501987i \(0.167397\pi\)
\(138\) −3.12311 −0.265856
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) −3.12311 −0.263951
\(141\) 4.00000 0.336861
\(142\) 4.87689 0.409260
\(143\) −5.12311 −0.428416
\(144\) 1.00000 0.0833333
\(145\) 8.24621 0.684811
\(146\) 1.12311 0.0929489
\(147\) −2.75379 −0.227129
\(148\) 2.00000 0.164399
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 1.00000 0.0816497
\(151\) −24.4924 −1.99317 −0.996583 0.0826029i \(-0.973677\pi\)
−0.996583 + 0.0826029i \(0.973677\pi\)
\(152\) −3.12311 −0.253317
\(153\) −1.00000 −0.0808452
\(154\) 3.12311 0.251667
\(155\) 10.2462 0.822995
\(156\) −5.12311 −0.410177
\(157\) −16.2462 −1.29659 −0.648294 0.761390i \(-0.724517\pi\)
−0.648294 + 0.761390i \(0.724517\pi\)
\(158\) −11.1231 −0.884907
\(159\) 9.12311 0.723509
\(160\) 1.00000 0.0790569
\(161\) −9.75379 −0.768706
\(162\) −1.00000 −0.0785674
\(163\) −16.4924 −1.29179 −0.645893 0.763428i \(-0.723515\pi\)
−0.645893 + 0.763428i \(0.723515\pi\)
\(164\) 10.0000 0.780869
\(165\) −1.00000 −0.0778499
\(166\) −4.00000 −0.310460
\(167\) −18.2462 −1.41193 −0.705967 0.708245i \(-0.749487\pi\)
−0.705967 + 0.708245i \(0.749487\pi\)
\(168\) 3.12311 0.240953
\(169\) 13.2462 1.01894
\(170\) −1.00000 −0.0766965
\(171\) 3.12311 0.238830
\(172\) −7.12311 −0.543132
\(173\) 8.24621 0.626948 0.313474 0.949597i \(-0.398507\pi\)
0.313474 + 0.949597i \(0.398507\pi\)
\(174\) −8.24621 −0.625144
\(175\) 3.12311 0.236085
\(176\) −1.00000 −0.0753778
\(177\) 7.12311 0.535405
\(178\) 12.2462 0.917892
\(179\) −0.876894 −0.0655422 −0.0327711 0.999463i \(-0.510433\pi\)
−0.0327711 + 0.999463i \(0.510433\pi\)
\(180\) −1.00000 −0.0745356
\(181\) −16.2462 −1.20757 −0.603786 0.797147i \(-0.706342\pi\)
−0.603786 + 0.797147i \(0.706342\pi\)
\(182\) −16.0000 −1.18600
\(183\) 2.00000 0.147844
\(184\) 3.12311 0.230238
\(185\) −2.00000 −0.147043
\(186\) −10.2462 −0.751289
\(187\) 1.00000 0.0731272
\(188\) −4.00000 −0.291730
\(189\) −3.12311 −0.227173
\(190\) 3.12311 0.226574
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −18.8769 −1.35879 −0.679394 0.733773i \(-0.737757\pi\)
−0.679394 + 0.733773i \(0.737757\pi\)
\(194\) 8.24621 0.592043
\(195\) 5.12311 0.366873
\(196\) 2.75379 0.196699
\(197\) 6.49242 0.462566 0.231283 0.972887i \(-0.425708\pi\)
0.231283 + 0.972887i \(0.425708\pi\)
\(198\) 1.00000 0.0710669
\(199\) 18.2462 1.29344 0.646720 0.762728i \(-0.276140\pi\)
0.646720 + 0.762728i \(0.276140\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 4.00000 0.282138
\(202\) −8.24621 −0.580201
\(203\) −25.7538 −1.80756
\(204\) 1.00000 0.0700140
\(205\) −10.0000 −0.698430
\(206\) −8.00000 −0.557386
\(207\) −3.12311 −0.217071
\(208\) 5.12311 0.355223
\(209\) −3.12311 −0.216030
\(210\) −3.12311 −0.215515
\(211\) 24.4924 1.68613 0.843064 0.537813i \(-0.180749\pi\)
0.843064 + 0.537813i \(0.180749\pi\)
\(212\) −9.12311 −0.626577
\(213\) 4.87689 0.334159
\(214\) 1.75379 0.119887
\(215\) 7.12311 0.485792
\(216\) 1.00000 0.0680414
\(217\) −32.0000 −2.17230
\(218\) −4.24621 −0.287590
\(219\) 1.12311 0.0758924
\(220\) 1.00000 0.0674200
\(221\) −5.12311 −0.344617
\(222\) 2.00000 0.134231
\(223\) −28.4924 −1.90799 −0.953997 0.299817i \(-0.903075\pi\)
−0.953997 + 0.299817i \(0.903075\pi\)
\(224\) −3.12311 −0.208671
\(225\) 1.00000 0.0666667
\(226\) 6.87689 0.457444
\(227\) −1.75379 −0.116403 −0.0582015 0.998305i \(-0.518537\pi\)
−0.0582015 + 0.998305i \(0.518537\pi\)
\(228\) −3.12311 −0.206833
\(229\) −0.246211 −0.0162701 −0.00813505 0.999967i \(-0.502589\pi\)
−0.00813505 + 0.999967i \(0.502589\pi\)
\(230\) −3.12311 −0.205931
\(231\) 3.12311 0.205485
\(232\) 8.24621 0.541390
\(233\) −0.246211 −0.0161298 −0.00806492 0.999967i \(-0.502567\pi\)
−0.00806492 + 0.999967i \(0.502567\pi\)
\(234\) −5.12311 −0.334908
\(235\) 4.00000 0.260931
\(236\) −7.12311 −0.463675
\(237\) −11.1231 −0.722523
\(238\) 3.12311 0.202441
\(239\) 4.49242 0.290591 0.145295 0.989388i \(-0.453587\pi\)
0.145295 + 0.989388i \(0.453587\pi\)
\(240\) 1.00000 0.0645497
\(241\) 29.1231 1.87598 0.937992 0.346657i \(-0.112683\pi\)
0.937992 + 0.346657i \(0.112683\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −1.00000 −0.0641500
\(244\) −2.00000 −0.128037
\(245\) −2.75379 −0.175933
\(246\) 10.0000 0.637577
\(247\) 16.0000 1.01806
\(248\) 10.2462 0.650635
\(249\) −4.00000 −0.253490
\(250\) 1.00000 0.0632456
\(251\) 2.63068 0.166047 0.0830236 0.996548i \(-0.473542\pi\)
0.0830236 + 0.996548i \(0.473542\pi\)
\(252\) 3.12311 0.196737
\(253\) 3.12311 0.196348
\(254\) −8.00000 −0.501965
\(255\) −1.00000 −0.0626224
\(256\) 1.00000 0.0625000
\(257\) −0.246211 −0.0153582 −0.00767912 0.999971i \(-0.502444\pi\)
−0.00767912 + 0.999971i \(0.502444\pi\)
\(258\) −7.12311 −0.443465
\(259\) 6.24621 0.388121
\(260\) −5.12311 −0.317722
\(261\) −8.24621 −0.510428
\(262\) 4.00000 0.247121
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) −1.00000 −0.0615457
\(265\) 9.12311 0.560428
\(266\) −9.75379 −0.598043
\(267\) 12.2462 0.749456
\(268\) −4.00000 −0.244339
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) −1.00000 −0.0608581
\(271\) 18.2462 1.10838 0.554189 0.832391i \(-0.313028\pi\)
0.554189 + 0.832391i \(0.313028\pi\)
\(272\) −1.00000 −0.0606339
\(273\) −16.0000 −0.968364
\(274\) −20.2462 −1.22312
\(275\) −1.00000 −0.0603023
\(276\) 3.12311 0.187989
\(277\) −28.7386 −1.72674 −0.863369 0.504574i \(-0.831650\pi\)
−0.863369 + 0.504574i \(0.831650\pi\)
\(278\) 12.0000 0.719712
\(279\) −10.2462 −0.613425
\(280\) 3.12311 0.186641
\(281\) 4.24621 0.253308 0.126654 0.991947i \(-0.459576\pi\)
0.126654 + 0.991947i \(0.459576\pi\)
\(282\) −4.00000 −0.238197
\(283\) −8.49242 −0.504822 −0.252411 0.967620i \(-0.581224\pi\)
−0.252411 + 0.967620i \(0.581224\pi\)
\(284\) −4.87689 −0.289390
\(285\) 3.12311 0.184997
\(286\) 5.12311 0.302936
\(287\) 31.2311 1.84351
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) −8.24621 −0.484234
\(291\) 8.24621 0.483401
\(292\) −1.12311 −0.0657248
\(293\) −18.4924 −1.08034 −0.540169 0.841556i \(-0.681640\pi\)
−0.540169 + 0.841556i \(0.681640\pi\)
\(294\) 2.75379 0.160604
\(295\) 7.12311 0.414723
\(296\) −2.00000 −0.116248
\(297\) 1.00000 0.0580259
\(298\) −18.0000 −1.04271
\(299\) −16.0000 −0.925304
\(300\) −1.00000 −0.0577350
\(301\) −22.2462 −1.28225
\(302\) 24.4924 1.40938
\(303\) −8.24621 −0.473732
\(304\) 3.12311 0.179122
\(305\) 2.00000 0.114520
\(306\) 1.00000 0.0571662
\(307\) 11.6155 0.662933 0.331467 0.943467i \(-0.392457\pi\)
0.331467 + 0.943467i \(0.392457\pi\)
\(308\) −3.12311 −0.177955
\(309\) −8.00000 −0.455104
\(310\) −10.2462 −0.581946
\(311\) −20.8769 −1.18382 −0.591910 0.806004i \(-0.701626\pi\)
−0.591910 + 0.806004i \(0.701626\pi\)
\(312\) 5.12311 0.290039
\(313\) −32.2462 −1.82266 −0.911332 0.411673i \(-0.864945\pi\)
−0.911332 + 0.411673i \(0.864945\pi\)
\(314\) 16.2462 0.916827
\(315\) −3.12311 −0.175967
\(316\) 11.1231 0.625724
\(317\) −7.75379 −0.435496 −0.217748 0.976005i \(-0.569871\pi\)
−0.217748 + 0.976005i \(0.569871\pi\)
\(318\) −9.12311 −0.511598
\(319\) 8.24621 0.461699
\(320\) −1.00000 −0.0559017
\(321\) 1.75379 0.0978869
\(322\) 9.75379 0.543557
\(323\) −3.12311 −0.173774
\(324\) 1.00000 0.0555556
\(325\) 5.12311 0.284179
\(326\) 16.4924 0.913431
\(327\) −4.24621 −0.234816
\(328\) −10.0000 −0.552158
\(329\) −12.4924 −0.688730
\(330\) 1.00000 0.0550482
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 4.00000 0.219529
\(333\) 2.00000 0.109599
\(334\) 18.2462 0.998388
\(335\) 4.00000 0.218543
\(336\) −3.12311 −0.170379
\(337\) 3.36932 0.183538 0.0917692 0.995780i \(-0.470748\pi\)
0.0917692 + 0.995780i \(0.470748\pi\)
\(338\) −13.2462 −0.720499
\(339\) 6.87689 0.373502
\(340\) 1.00000 0.0542326
\(341\) 10.2462 0.554863
\(342\) −3.12311 −0.168878
\(343\) −13.2614 −0.716046
\(344\) 7.12311 0.384052
\(345\) −3.12311 −0.168142
\(346\) −8.24621 −0.443319
\(347\) −14.2462 −0.764777 −0.382388 0.924002i \(-0.624898\pi\)
−0.382388 + 0.924002i \(0.624898\pi\)
\(348\) 8.24621 0.442043
\(349\) 18.8769 1.01046 0.505228 0.862986i \(-0.331408\pi\)
0.505228 + 0.862986i \(0.331408\pi\)
\(350\) −3.12311 −0.166937
\(351\) −5.12311 −0.273451
\(352\) 1.00000 0.0533002
\(353\) −24.2462 −1.29050 −0.645248 0.763973i \(-0.723246\pi\)
−0.645248 + 0.763973i \(0.723246\pi\)
\(354\) −7.12311 −0.378589
\(355\) 4.87689 0.258839
\(356\) −12.2462 −0.649048
\(357\) 3.12311 0.165292
\(358\) 0.876894 0.0463453
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 1.00000 0.0527046
\(361\) −9.24621 −0.486643
\(362\) 16.2462 0.853882
\(363\) −1.00000 −0.0524864
\(364\) 16.0000 0.838628
\(365\) 1.12311 0.0587860
\(366\) −2.00000 −0.104542
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) −3.12311 −0.162803
\(369\) 10.0000 0.520579
\(370\) 2.00000 0.103975
\(371\) −28.4924 −1.47925
\(372\) 10.2462 0.531241
\(373\) 33.6155 1.74055 0.870273 0.492570i \(-0.163942\pi\)
0.870273 + 0.492570i \(0.163942\pi\)
\(374\) −1.00000 −0.0517088
\(375\) 1.00000 0.0516398
\(376\) 4.00000 0.206284
\(377\) −42.2462 −2.17579
\(378\) 3.12311 0.160635
\(379\) −6.24621 −0.320846 −0.160423 0.987048i \(-0.551286\pi\)
−0.160423 + 0.987048i \(0.551286\pi\)
\(380\) −3.12311 −0.160212
\(381\) −8.00000 −0.409852
\(382\) −16.0000 −0.818631
\(383\) −2.24621 −0.114776 −0.0573880 0.998352i \(-0.518277\pi\)
−0.0573880 + 0.998352i \(0.518277\pi\)
\(384\) 1.00000 0.0510310
\(385\) 3.12311 0.159168
\(386\) 18.8769 0.960809
\(387\) −7.12311 −0.362088
\(388\) −8.24621 −0.418638
\(389\) −9.61553 −0.487527 −0.243763 0.969835i \(-0.578382\pi\)
−0.243763 + 0.969835i \(0.578382\pi\)
\(390\) −5.12311 −0.259419
\(391\) 3.12311 0.157942
\(392\) −2.75379 −0.139087
\(393\) 4.00000 0.201773
\(394\) −6.49242 −0.327084
\(395\) −11.1231 −0.559664
\(396\) −1.00000 −0.0502519
\(397\) −16.7386 −0.840088 −0.420044 0.907504i \(-0.637985\pi\)
−0.420044 + 0.907504i \(0.637985\pi\)
\(398\) −18.2462 −0.914600
\(399\) −9.75379 −0.488300
\(400\) 1.00000 0.0500000
\(401\) 17.1231 0.855087 0.427544 0.903995i \(-0.359379\pi\)
0.427544 + 0.903995i \(0.359379\pi\)
\(402\) −4.00000 −0.199502
\(403\) −52.4924 −2.61483
\(404\) 8.24621 0.410264
\(405\) −1.00000 −0.0496904
\(406\) 25.7538 1.27814
\(407\) −2.00000 −0.0991363
\(408\) −1.00000 −0.0495074
\(409\) −20.2462 −1.00111 −0.500555 0.865705i \(-0.666871\pi\)
−0.500555 + 0.865705i \(0.666871\pi\)
\(410\) 10.0000 0.493865
\(411\) −20.2462 −0.998672
\(412\) 8.00000 0.394132
\(413\) −22.2462 −1.09466
\(414\) 3.12311 0.153492
\(415\) −4.00000 −0.196352
\(416\) −5.12311 −0.251181
\(417\) 12.0000 0.587643
\(418\) 3.12311 0.152756
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) 3.12311 0.152392
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −24.4924 −1.19227
\(423\) −4.00000 −0.194487
\(424\) 9.12311 0.443057
\(425\) −1.00000 −0.0485071
\(426\) −4.87689 −0.236286
\(427\) −6.24621 −0.302275
\(428\) −1.75379 −0.0847726
\(429\) 5.12311 0.247346
\(430\) −7.12311 −0.343507
\(431\) −30.2462 −1.45691 −0.728454 0.685094i \(-0.759761\pi\)
−0.728454 + 0.685094i \(0.759761\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −12.2462 −0.588515 −0.294258 0.955726i \(-0.595072\pi\)
−0.294258 + 0.955726i \(0.595072\pi\)
\(434\) 32.0000 1.53605
\(435\) −8.24621 −0.395376
\(436\) 4.24621 0.203357
\(437\) −9.75379 −0.466587
\(438\) −1.12311 −0.0536641
\(439\) 3.12311 0.149058 0.0745288 0.997219i \(-0.476255\pi\)
0.0745288 + 0.997219i \(0.476255\pi\)
\(440\) −1.00000 −0.0476731
\(441\) 2.75379 0.131133
\(442\) 5.12311 0.243681
\(443\) −28.8769 −1.37198 −0.685991 0.727610i \(-0.740631\pi\)
−0.685991 + 0.727610i \(0.740631\pi\)
\(444\) −2.00000 −0.0949158
\(445\) 12.2462 0.580526
\(446\) 28.4924 1.34916
\(447\) −18.0000 −0.851371
\(448\) 3.12311 0.147553
\(449\) 2.87689 0.135769 0.0678845 0.997693i \(-0.478375\pi\)
0.0678845 + 0.997693i \(0.478375\pi\)
\(450\) −1.00000 −0.0471405
\(451\) −10.0000 −0.470882
\(452\) −6.87689 −0.323462
\(453\) 24.4924 1.15075
\(454\) 1.75379 0.0823094
\(455\) −16.0000 −0.750092
\(456\) 3.12311 0.146253
\(457\) 34.4924 1.61349 0.806744 0.590901i \(-0.201228\pi\)
0.806744 + 0.590901i \(0.201228\pi\)
\(458\) 0.246211 0.0115047
\(459\) 1.00000 0.0466760
\(460\) 3.12311 0.145616
\(461\) −26.4924 −1.23388 −0.616938 0.787012i \(-0.711627\pi\)
−0.616938 + 0.787012i \(0.711627\pi\)
\(462\) −3.12311 −0.145300
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) −8.24621 −0.382821
\(465\) −10.2462 −0.475157
\(466\) 0.246211 0.0114055
\(467\) −28.8769 −1.33626 −0.668132 0.744043i \(-0.732906\pi\)
−0.668132 + 0.744043i \(0.732906\pi\)
\(468\) 5.12311 0.236816
\(469\) −12.4924 −0.576846
\(470\) −4.00000 −0.184506
\(471\) 16.2462 0.748586
\(472\) 7.12311 0.327868
\(473\) 7.12311 0.327521
\(474\) 11.1231 0.510901
\(475\) 3.12311 0.143298
\(476\) −3.12311 −0.143147
\(477\) −9.12311 −0.417718
\(478\) −4.49242 −0.205479
\(479\) 12.4924 0.570793 0.285397 0.958409i \(-0.407875\pi\)
0.285397 + 0.958409i \(0.407875\pi\)
\(480\) −1.00000 −0.0456435
\(481\) 10.2462 0.467187
\(482\) −29.1231 −1.32652
\(483\) 9.75379 0.443813
\(484\) 1.00000 0.0454545
\(485\) 8.24621 0.374441
\(486\) 1.00000 0.0453609
\(487\) 3.50758 0.158944 0.0794718 0.996837i \(-0.474677\pi\)
0.0794718 + 0.996837i \(0.474677\pi\)
\(488\) 2.00000 0.0905357
\(489\) 16.4924 0.745813
\(490\) 2.75379 0.124403
\(491\) 14.7386 0.665145 0.332573 0.943078i \(-0.392083\pi\)
0.332573 + 0.943078i \(0.392083\pi\)
\(492\) −10.0000 −0.450835
\(493\) 8.24621 0.371391
\(494\) −16.0000 −0.719874
\(495\) 1.00000 0.0449467
\(496\) −10.2462 −0.460068
\(497\) −15.2311 −0.683206
\(498\) 4.00000 0.179244
\(499\) 14.2462 0.637748 0.318874 0.947797i \(-0.396695\pi\)
0.318874 + 0.947797i \(0.396695\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 18.2462 0.815181
\(502\) −2.63068 −0.117413
\(503\) −40.4924 −1.80547 −0.902734 0.430199i \(-0.858443\pi\)
−0.902734 + 0.430199i \(0.858443\pi\)
\(504\) −3.12311 −0.139114
\(505\) −8.24621 −0.366952
\(506\) −3.12311 −0.138839
\(507\) −13.2462 −0.588285
\(508\) 8.00000 0.354943
\(509\) 23.3693 1.03583 0.517913 0.855433i \(-0.326709\pi\)
0.517913 + 0.855433i \(0.326709\pi\)
\(510\) 1.00000 0.0442807
\(511\) −3.50758 −0.155166
\(512\) −1.00000 −0.0441942
\(513\) −3.12311 −0.137888
\(514\) 0.246211 0.0108599
\(515\) −8.00000 −0.352522
\(516\) 7.12311 0.313577
\(517\) 4.00000 0.175920
\(518\) −6.24621 −0.274443
\(519\) −8.24621 −0.361968
\(520\) 5.12311 0.224663
\(521\) −15.8617 −0.694915 −0.347458 0.937696i \(-0.612955\pi\)
−0.347458 + 0.937696i \(0.612955\pi\)
\(522\) 8.24621 0.360927
\(523\) 2.63068 0.115032 0.0575159 0.998345i \(-0.481682\pi\)
0.0575159 + 0.998345i \(0.481682\pi\)
\(524\) −4.00000 −0.174741
\(525\) −3.12311 −0.136304
\(526\) −24.0000 −1.04645
\(527\) 10.2462 0.446332
\(528\) 1.00000 0.0435194
\(529\) −13.2462 −0.575922
\(530\) −9.12311 −0.396282
\(531\) −7.12311 −0.309116
\(532\) 9.75379 0.422880
\(533\) 51.2311 2.21906
\(534\) −12.2462 −0.529945
\(535\) 1.75379 0.0758229
\(536\) 4.00000 0.172774
\(537\) 0.876894 0.0378408
\(538\) −2.00000 −0.0862261
\(539\) −2.75379 −0.118614
\(540\) 1.00000 0.0430331
\(541\) 10.4924 0.451104 0.225552 0.974231i \(-0.427581\pi\)
0.225552 + 0.974231i \(0.427581\pi\)
\(542\) −18.2462 −0.783742
\(543\) 16.2462 0.697192
\(544\) 1.00000 0.0428746
\(545\) −4.24621 −0.181888
\(546\) 16.0000 0.684737
\(547\) −22.7386 −0.972234 −0.486117 0.873894i \(-0.661587\pi\)
−0.486117 + 0.873894i \(0.661587\pi\)
\(548\) 20.2462 0.864875
\(549\) −2.00000 −0.0853579
\(550\) 1.00000 0.0426401
\(551\) −25.7538 −1.09715
\(552\) −3.12311 −0.132928
\(553\) 34.7386 1.47724
\(554\) 28.7386 1.22099
\(555\) 2.00000 0.0848953
\(556\) −12.0000 −0.508913
\(557\) 30.4924 1.29201 0.646003 0.763335i \(-0.276439\pi\)
0.646003 + 0.763335i \(0.276439\pi\)
\(558\) 10.2462 0.433757
\(559\) −36.4924 −1.54347
\(560\) −3.12311 −0.131975
\(561\) −1.00000 −0.0422200
\(562\) −4.24621 −0.179116
\(563\) −0.492423 −0.0207531 −0.0103766 0.999946i \(-0.503303\pi\)
−0.0103766 + 0.999946i \(0.503303\pi\)
\(564\) 4.00000 0.168430
\(565\) 6.87689 0.289313
\(566\) 8.49242 0.356963
\(567\) 3.12311 0.131158
\(568\) 4.87689 0.204630
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) −3.12311 −0.130812
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) −5.12311 −0.214208
\(573\) −16.0000 −0.668410
\(574\) −31.2311 −1.30356
\(575\) −3.12311 −0.130243
\(576\) 1.00000 0.0416667
\(577\) 8.24621 0.343294 0.171647 0.985158i \(-0.445091\pi\)
0.171647 + 0.985158i \(0.445091\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 18.8769 0.784497
\(580\) 8.24621 0.342405
\(581\) 12.4924 0.518273
\(582\) −8.24621 −0.341816
\(583\) 9.12311 0.377840
\(584\) 1.12311 0.0464744
\(585\) −5.12311 −0.211814
\(586\) 18.4924 0.763915
\(587\) −12.8769 −0.531486 −0.265743 0.964044i \(-0.585617\pi\)
−0.265743 + 0.964044i \(0.585617\pi\)
\(588\) −2.75379 −0.113564
\(589\) −32.0000 −1.31854
\(590\) −7.12311 −0.293254
\(591\) −6.49242 −0.267063
\(592\) 2.00000 0.0821995
\(593\) 32.7386 1.34441 0.672207 0.740363i \(-0.265346\pi\)
0.672207 + 0.740363i \(0.265346\pi\)
\(594\) −1.00000 −0.0410305
\(595\) 3.12311 0.128035
\(596\) 18.0000 0.737309
\(597\) −18.2462 −0.746768
\(598\) 16.0000 0.654289
\(599\) 24.9848 1.02085 0.510427 0.859921i \(-0.329488\pi\)
0.510427 + 0.859921i \(0.329488\pi\)
\(600\) 1.00000 0.0408248
\(601\) 39.8617 1.62599 0.812997 0.582268i \(-0.197834\pi\)
0.812997 + 0.582268i \(0.197834\pi\)
\(602\) 22.2462 0.906688
\(603\) −4.00000 −0.162893
\(604\) −24.4924 −0.996583
\(605\) −1.00000 −0.0406558
\(606\) 8.24621 0.334979
\(607\) −41.3693 −1.67913 −0.839564 0.543260i \(-0.817190\pi\)
−0.839564 + 0.543260i \(0.817190\pi\)
\(608\) −3.12311 −0.126659
\(609\) 25.7538 1.04360
\(610\) −2.00000 −0.0809776
\(611\) −20.4924 −0.829035
\(612\) −1.00000 −0.0404226
\(613\) −47.3693 −1.91323 −0.956614 0.291357i \(-0.905893\pi\)
−0.956614 + 0.291357i \(0.905893\pi\)
\(614\) −11.6155 −0.468765
\(615\) 10.0000 0.403239
\(616\) 3.12311 0.125834
\(617\) −17.6155 −0.709174 −0.354587 0.935023i \(-0.615379\pi\)
−0.354587 + 0.935023i \(0.615379\pi\)
\(618\) 8.00000 0.321807
\(619\) 42.7386 1.71781 0.858905 0.512134i \(-0.171145\pi\)
0.858905 + 0.512134i \(0.171145\pi\)
\(620\) 10.2462 0.411498
\(621\) 3.12311 0.125326
\(622\) 20.8769 0.837087
\(623\) −38.2462 −1.53230
\(624\) −5.12311 −0.205088
\(625\) 1.00000 0.0400000
\(626\) 32.2462 1.28882
\(627\) 3.12311 0.124725
\(628\) −16.2462 −0.648294
\(629\) −2.00000 −0.0797452
\(630\) 3.12311 0.124428
\(631\) −3.50758 −0.139634 −0.0698172 0.997560i \(-0.522242\pi\)
−0.0698172 + 0.997560i \(0.522242\pi\)
\(632\) −11.1231 −0.442453
\(633\) −24.4924 −0.973486
\(634\) 7.75379 0.307942
\(635\) −8.00000 −0.317470
\(636\) 9.12311 0.361755
\(637\) 14.1080 0.558977
\(638\) −8.24621 −0.326471
\(639\) −4.87689 −0.192927
\(640\) 1.00000 0.0395285
\(641\) −2.38447 −0.0941810 −0.0470905 0.998891i \(-0.514995\pi\)
−0.0470905 + 0.998891i \(0.514995\pi\)
\(642\) −1.75379 −0.0692165
\(643\) −8.49242 −0.334908 −0.167454 0.985880i \(-0.553555\pi\)
−0.167454 + 0.985880i \(0.553555\pi\)
\(644\) −9.75379 −0.384353
\(645\) −7.12311 −0.280472
\(646\) 3.12311 0.122877
\(647\) 8.49242 0.333872 0.166936 0.985968i \(-0.446613\pi\)
0.166936 + 0.985968i \(0.446613\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 7.12311 0.279606
\(650\) −5.12311 −0.200945
\(651\) 32.0000 1.25418
\(652\) −16.4924 −0.645893
\(653\) 14.4924 0.567132 0.283566 0.958953i \(-0.408482\pi\)
0.283566 + 0.958953i \(0.408482\pi\)
\(654\) 4.24621 0.166040
\(655\) 4.00000 0.156293
\(656\) 10.0000 0.390434
\(657\) −1.12311 −0.0438165
\(658\) 12.4924 0.487005
\(659\) −22.7386 −0.885771 −0.442886 0.896578i \(-0.646045\pi\)
−0.442886 + 0.896578i \(0.646045\pi\)
\(660\) −1.00000 −0.0389249
\(661\) −12.7386 −0.495475 −0.247738 0.968827i \(-0.579687\pi\)
−0.247738 + 0.968827i \(0.579687\pi\)
\(662\) 20.0000 0.777322
\(663\) 5.12311 0.198965
\(664\) −4.00000 −0.155230
\(665\) −9.75379 −0.378236
\(666\) −2.00000 −0.0774984
\(667\) 25.7538 0.997191
\(668\) −18.2462 −0.705967
\(669\) 28.4924 1.10158
\(670\) −4.00000 −0.154533
\(671\) 2.00000 0.0772091
\(672\) 3.12311 0.120476
\(673\) 29.1231 1.12261 0.561307 0.827608i \(-0.310299\pi\)
0.561307 + 0.827608i \(0.310299\pi\)
\(674\) −3.36932 −0.129781
\(675\) −1.00000 −0.0384900
\(676\) 13.2462 0.509470
\(677\) −14.0000 −0.538064 −0.269032 0.963131i \(-0.586704\pi\)
−0.269032 + 0.963131i \(0.586704\pi\)
\(678\) −6.87689 −0.264106
\(679\) −25.7538 −0.988340
\(680\) −1.00000 −0.0383482
\(681\) 1.75379 0.0672053
\(682\) −10.2462 −0.392348
\(683\) 28.9848 1.10907 0.554537 0.832159i \(-0.312895\pi\)
0.554537 + 0.832159i \(0.312895\pi\)
\(684\) 3.12311 0.119415
\(685\) −20.2462 −0.773568
\(686\) 13.2614 0.506321
\(687\) 0.246211 0.00939355
\(688\) −7.12311 −0.271566
\(689\) −46.7386 −1.78060
\(690\) 3.12311 0.118895
\(691\) −46.2462 −1.75929 −0.879644 0.475632i \(-0.842219\pi\)
−0.879644 + 0.475632i \(0.842219\pi\)
\(692\) 8.24621 0.313474
\(693\) −3.12311 −0.118637
\(694\) 14.2462 0.540779
\(695\) 12.0000 0.455186
\(696\) −8.24621 −0.312572
\(697\) −10.0000 −0.378777
\(698\) −18.8769 −0.714501
\(699\) 0.246211 0.00931256
\(700\) 3.12311 0.118042
\(701\) −46.0000 −1.73740 −0.868698 0.495342i \(-0.835043\pi\)
−0.868698 + 0.495342i \(0.835043\pi\)
\(702\) 5.12311 0.193359
\(703\) 6.24621 0.235580
\(704\) −1.00000 −0.0376889
\(705\) −4.00000 −0.150649
\(706\) 24.2462 0.912518
\(707\) 25.7538 0.968571
\(708\) 7.12311 0.267703
\(709\) −34.0000 −1.27690 −0.638448 0.769665i \(-0.720423\pi\)
−0.638448 + 0.769665i \(0.720423\pi\)
\(710\) −4.87689 −0.183027
\(711\) 11.1231 0.417149
\(712\) 12.2462 0.458946
\(713\) 32.0000 1.19841
\(714\) −3.12311 −0.116879
\(715\) 5.12311 0.191593
\(716\) −0.876894 −0.0327711
\(717\) −4.49242 −0.167773
\(718\) −16.0000 −0.597115
\(719\) 49.3693 1.84116 0.920582 0.390548i \(-0.127715\pi\)
0.920582 + 0.390548i \(0.127715\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 24.9848 0.930484
\(722\) 9.24621 0.344108
\(723\) −29.1231 −1.08310
\(724\) −16.2462 −0.603786
\(725\) −8.24621 −0.306257
\(726\) 1.00000 0.0371135
\(727\) −24.9848 −0.926637 −0.463318 0.886192i \(-0.653341\pi\)
−0.463318 + 0.886192i \(0.653341\pi\)
\(728\) −16.0000 −0.592999
\(729\) 1.00000 0.0370370
\(730\) −1.12311 −0.0415680
\(731\) 7.12311 0.263458
\(732\) 2.00000 0.0739221
\(733\) 13.1231 0.484713 0.242356 0.970187i \(-0.422080\pi\)
0.242356 + 0.970187i \(0.422080\pi\)
\(734\) −16.0000 −0.590571
\(735\) 2.75379 0.101575
\(736\) 3.12311 0.115119
\(737\) 4.00000 0.147342
\(738\) −10.0000 −0.368105
\(739\) 43.1231 1.58631 0.793155 0.609020i \(-0.208437\pi\)
0.793155 + 0.609020i \(0.208437\pi\)
\(740\) −2.00000 −0.0735215
\(741\) −16.0000 −0.587775
\(742\) 28.4924 1.04599
\(743\) −44.0000 −1.61420 −0.807102 0.590412i \(-0.798965\pi\)
−0.807102 + 0.590412i \(0.798965\pi\)
\(744\) −10.2462 −0.375644
\(745\) −18.0000 −0.659469
\(746\) −33.6155 −1.23075
\(747\) 4.00000 0.146352
\(748\) 1.00000 0.0365636
\(749\) −5.47727 −0.200135
\(750\) −1.00000 −0.0365148
\(751\) −7.50758 −0.273955 −0.136978 0.990574i \(-0.543739\pi\)
−0.136978 + 0.990574i \(0.543739\pi\)
\(752\) −4.00000 −0.145865
\(753\) −2.63068 −0.0958674
\(754\) 42.2462 1.53852
\(755\) 24.4924 0.891371
\(756\) −3.12311 −0.113586
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 6.24621 0.226873
\(759\) −3.12311 −0.113362
\(760\) 3.12311 0.113287
\(761\) −48.2462 −1.74892 −0.874462 0.485094i \(-0.838785\pi\)
−0.874462 + 0.485094i \(0.838785\pi\)
\(762\) 8.00000 0.289809
\(763\) 13.2614 0.480094
\(764\) 16.0000 0.578860
\(765\) 1.00000 0.0361551
\(766\) 2.24621 0.0811589
\(767\) −36.4924 −1.31767
\(768\) −1.00000 −0.0360844
\(769\) 50.9848 1.83856 0.919280 0.393604i \(-0.128772\pi\)
0.919280 + 0.393604i \(0.128772\pi\)
\(770\) −3.12311 −0.112549
\(771\) 0.246211 0.00886708
\(772\) −18.8769 −0.679394
\(773\) 38.1080 1.37065 0.685324 0.728238i \(-0.259661\pi\)
0.685324 + 0.728238i \(0.259661\pi\)
\(774\) 7.12311 0.256035
\(775\) −10.2462 −0.368055
\(776\) 8.24621 0.296022
\(777\) −6.24621 −0.224082
\(778\) 9.61553 0.344733
\(779\) 31.2311 1.11897
\(780\) 5.12311 0.183437
\(781\) 4.87689 0.174509
\(782\) −3.12311 −0.111682
\(783\) 8.24621 0.294696
\(784\) 2.75379 0.0983496
\(785\) 16.2462 0.579852
\(786\) −4.00000 −0.142675
\(787\) −46.7386 −1.66605 −0.833026 0.553234i \(-0.813394\pi\)
−0.833026 + 0.553234i \(0.813394\pi\)
\(788\) 6.49242 0.231283
\(789\) −24.0000 −0.854423
\(790\) 11.1231 0.395742
\(791\) −21.4773 −0.763644
\(792\) 1.00000 0.0355335
\(793\) −10.2462 −0.363854
\(794\) 16.7386 0.594032
\(795\) −9.12311 −0.323563
\(796\) 18.2462 0.646720
\(797\) 22.8769 0.810341 0.405171 0.914241i \(-0.367212\pi\)
0.405171 + 0.914241i \(0.367212\pi\)
\(798\) 9.75379 0.345280
\(799\) 4.00000 0.141510
\(800\) −1.00000 −0.0353553
\(801\) −12.2462 −0.432699
\(802\) −17.1231 −0.604638
\(803\) 1.12311 0.0396335
\(804\) 4.00000 0.141069
\(805\) 9.75379 0.343776
\(806\) 52.4924 1.84897
\(807\) −2.00000 −0.0704033
\(808\) −8.24621 −0.290101
\(809\) 49.2311 1.73087 0.865436 0.501020i \(-0.167042\pi\)
0.865436 + 0.501020i \(0.167042\pi\)
\(810\) 1.00000 0.0351364
\(811\) 2.24621 0.0788751 0.0394376 0.999222i \(-0.487443\pi\)
0.0394376 + 0.999222i \(0.487443\pi\)
\(812\) −25.7538 −0.903781
\(813\) −18.2462 −0.639923
\(814\) 2.00000 0.0701000
\(815\) 16.4924 0.577704
\(816\) 1.00000 0.0350070
\(817\) −22.2462 −0.778296
\(818\) 20.2462 0.707892
\(819\) 16.0000 0.559085
\(820\) −10.0000 −0.349215
\(821\) 10.4924 0.366188 0.183094 0.983095i \(-0.441389\pi\)
0.183094 + 0.983095i \(0.441389\pi\)
\(822\) 20.2462 0.706168
\(823\) 18.7386 0.653188 0.326594 0.945165i \(-0.394099\pi\)
0.326594 + 0.945165i \(0.394099\pi\)
\(824\) −8.00000 −0.278693
\(825\) 1.00000 0.0348155
\(826\) 22.2462 0.774045
\(827\) −22.2462 −0.773577 −0.386788 0.922169i \(-0.626416\pi\)
−0.386788 + 0.922169i \(0.626416\pi\)
\(828\) −3.12311 −0.108535
\(829\) 17.5076 0.608063 0.304032 0.952662i \(-0.401667\pi\)
0.304032 + 0.952662i \(0.401667\pi\)
\(830\) 4.00000 0.138842
\(831\) 28.7386 0.996932
\(832\) 5.12311 0.177612
\(833\) −2.75379 −0.0954131
\(834\) −12.0000 −0.415526
\(835\) 18.2462 0.631436
\(836\) −3.12311 −0.108015
\(837\) 10.2462 0.354161
\(838\) 4.00000 0.138178
\(839\) −9.36932 −0.323465 −0.161732 0.986835i \(-0.551708\pi\)
−0.161732 + 0.986835i \(0.551708\pi\)
\(840\) −3.12311 −0.107757
\(841\) 39.0000 1.34483
\(842\) 10.0000 0.344623
\(843\) −4.24621 −0.146247
\(844\) 24.4924 0.843064
\(845\) −13.2462 −0.455684
\(846\) 4.00000 0.137523
\(847\) 3.12311 0.107311
\(848\) −9.12311 −0.313289
\(849\) 8.49242 0.291459
\(850\) 1.00000 0.0342997
\(851\) −6.24621 −0.214117
\(852\) 4.87689 0.167080
\(853\) 56.7386 1.94269 0.971347 0.237666i \(-0.0763824\pi\)
0.971347 + 0.237666i \(0.0763824\pi\)
\(854\) 6.24621 0.213741
\(855\) −3.12311 −0.106808
\(856\) 1.75379 0.0599433
\(857\) −6.49242 −0.221777 −0.110888 0.993833i \(-0.535370\pi\)
−0.110888 + 0.993833i \(0.535370\pi\)
\(858\) −5.12311 −0.174900
\(859\) 24.4924 0.835671 0.417835 0.908523i \(-0.362789\pi\)
0.417835 + 0.908523i \(0.362789\pi\)
\(860\) 7.12311 0.242896
\(861\) −31.2311 −1.06435
\(862\) 30.2462 1.03019
\(863\) 21.7538 0.740508 0.370254 0.928931i \(-0.379271\pi\)
0.370254 + 0.928931i \(0.379271\pi\)
\(864\) 1.00000 0.0340207
\(865\) −8.24621 −0.280380
\(866\) 12.2462 0.416143
\(867\) −1.00000 −0.0339618
\(868\) −32.0000 −1.08615
\(869\) −11.1231 −0.377326
\(870\) 8.24621 0.279573
\(871\) −20.4924 −0.694359
\(872\) −4.24621 −0.143795
\(873\) −8.24621 −0.279092
\(874\) 9.75379 0.329927
\(875\) −3.12311 −0.105580
\(876\) 1.12311 0.0379462
\(877\) −32.2462 −1.08888 −0.544439 0.838801i \(-0.683257\pi\)
−0.544439 + 0.838801i \(0.683257\pi\)
\(878\) −3.12311 −0.105400
\(879\) 18.4924 0.623734
\(880\) 1.00000 0.0337100
\(881\) −37.1231 −1.25071 −0.625355 0.780341i \(-0.715046\pi\)
−0.625355 + 0.780341i \(0.715046\pi\)
\(882\) −2.75379 −0.0927249
\(883\) −50.2462 −1.69092 −0.845460 0.534039i \(-0.820674\pi\)
−0.845460 + 0.534039i \(0.820674\pi\)
\(884\) −5.12311 −0.172309
\(885\) −7.12311 −0.239441
\(886\) 28.8769 0.970138
\(887\) −46.7386 −1.56933 −0.784665 0.619920i \(-0.787165\pi\)
−0.784665 + 0.619920i \(0.787165\pi\)
\(888\) 2.00000 0.0671156
\(889\) 24.9848 0.837965
\(890\) −12.2462 −0.410494
\(891\) −1.00000 −0.0335013
\(892\) −28.4924 −0.953997
\(893\) −12.4924 −0.418043
\(894\) 18.0000 0.602010
\(895\) 0.876894 0.0293113
\(896\) −3.12311 −0.104336
\(897\) 16.0000 0.534224
\(898\) −2.87689 −0.0960032
\(899\) 84.4924 2.81798
\(900\) 1.00000 0.0333333
\(901\) 9.12311 0.303935
\(902\) 10.0000 0.332964
\(903\) 22.2462 0.740308
\(904\) 6.87689 0.228722
\(905\) 16.2462 0.540042
\(906\) −24.4924 −0.813706
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) −1.75379 −0.0582015
\(909\) 8.24621 0.273510
\(910\) 16.0000 0.530395
\(911\) −45.8617 −1.51947 −0.759734 0.650234i \(-0.774671\pi\)
−0.759734 + 0.650234i \(0.774671\pi\)
\(912\) −3.12311 −0.103416
\(913\) −4.00000 −0.132381
\(914\) −34.4924 −1.14091
\(915\) −2.00000 −0.0661180
\(916\) −0.246211 −0.00813505
\(917\) −12.4924 −0.412536
\(918\) −1.00000 −0.0330049
\(919\) −57.4773 −1.89600 −0.948000 0.318270i \(-0.896898\pi\)
−0.948000 + 0.318270i \(0.896898\pi\)
\(920\) −3.12311 −0.102966
\(921\) −11.6155 −0.382745
\(922\) 26.4924 0.872481
\(923\) −24.9848 −0.822386
\(924\) 3.12311 0.102743
\(925\) 2.00000 0.0657596
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 8.24621 0.270695
\(929\) 34.8769 1.14427 0.572137 0.820158i \(-0.306115\pi\)
0.572137 + 0.820158i \(0.306115\pi\)
\(930\) 10.2462 0.335987
\(931\) 8.60037 0.281866
\(932\) −0.246211 −0.00806492
\(933\) 20.8769 0.683479
\(934\) 28.8769 0.944881
\(935\) −1.00000 −0.0327035
\(936\) −5.12311 −0.167454
\(937\) 14.0000 0.457360 0.228680 0.973502i \(-0.426559\pi\)
0.228680 + 0.973502i \(0.426559\pi\)
\(938\) 12.4924 0.407892
\(939\) 32.2462 1.05232
\(940\) 4.00000 0.130466
\(941\) 34.4924 1.12442 0.562210 0.826994i \(-0.309951\pi\)
0.562210 + 0.826994i \(0.309951\pi\)
\(942\) −16.2462 −0.529330
\(943\) −31.2311 −1.01702
\(944\) −7.12311 −0.231837
\(945\) 3.12311 0.101595
\(946\) −7.12311 −0.231592
\(947\) 6.73863 0.218976 0.109488 0.993988i \(-0.465079\pi\)
0.109488 + 0.993988i \(0.465079\pi\)
\(948\) −11.1231 −0.361262
\(949\) −5.75379 −0.186776
\(950\) −3.12311 −0.101327
\(951\) 7.75379 0.251434
\(952\) 3.12311 0.101220
\(953\) −41.2311 −1.33560 −0.667802 0.744339i \(-0.732765\pi\)
−0.667802 + 0.744339i \(0.732765\pi\)
\(954\) 9.12311 0.295371
\(955\) −16.0000 −0.517748
\(956\) 4.49242 0.145295
\(957\) −8.24621 −0.266562
\(958\) −12.4924 −0.403612
\(959\) 63.2311 2.04184
\(960\) 1.00000 0.0322749
\(961\) 73.9848 2.38661
\(962\) −10.2462 −0.330351
\(963\) −1.75379 −0.0565151
\(964\) 29.1231 0.937992
\(965\) 18.8769 0.607669
\(966\) −9.75379 −0.313823
\(967\) 45.4773 1.46245 0.731225 0.682136i \(-0.238949\pi\)
0.731225 + 0.682136i \(0.238949\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 3.12311 0.100329
\(970\) −8.24621 −0.264770
\(971\) −35.6155 −1.14296 −0.571478 0.820617i \(-0.693630\pi\)
−0.571478 + 0.820617i \(0.693630\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −37.4773 −1.20147
\(974\) −3.50758 −0.112390
\(975\) −5.12311 −0.164071
\(976\) −2.00000 −0.0640184
\(977\) 20.2462 0.647734 0.323867 0.946103i \(-0.395017\pi\)
0.323867 + 0.946103i \(0.395017\pi\)
\(978\) −16.4924 −0.527370
\(979\) 12.2462 0.391391
\(980\) −2.75379 −0.0879666
\(981\) 4.24621 0.135571
\(982\) −14.7386 −0.470329
\(983\) −6.63068 −0.211486 −0.105743 0.994393i \(-0.533722\pi\)
−0.105743 + 0.994393i \(0.533722\pi\)
\(984\) 10.0000 0.318788
\(985\) −6.49242 −0.206866
\(986\) −8.24621 −0.262613
\(987\) 12.4924 0.397638
\(988\) 16.0000 0.509028
\(989\) 22.2462 0.707388
\(990\) −1.00000 −0.0317821
\(991\) −8.49242 −0.269771 −0.134885 0.990861i \(-0.543067\pi\)
−0.134885 + 0.990861i \(0.543067\pi\)
\(992\) 10.2462 0.325318
\(993\) 20.0000 0.634681
\(994\) 15.2311 0.483100
\(995\) −18.2462 −0.578444
\(996\) −4.00000 −0.126745
\(997\) −34.9848 −1.10798 −0.553991 0.832523i \(-0.686896\pi\)
−0.553991 + 0.832523i \(0.686896\pi\)
\(998\) −14.2462 −0.450956
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5610.2.a.bm.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5610.2.a.bm.1.2 2 1.1 even 1 trivial