Properties

Label 5610.2.a.a.1.1
Level $5610$
Weight $2$
Character 5610.1
Self dual yes
Analytic conductor $44.796$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5610,2,Mod(1,5610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 5610.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} -2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} -2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} -1.00000 q^{11} -1.00000 q^{12} +2.00000 q^{14} +1.00000 q^{15} +1.00000 q^{16} +1.00000 q^{17} -1.00000 q^{18} -8.00000 q^{19} -1.00000 q^{20} +2.00000 q^{21} +1.00000 q^{22} -4.00000 q^{23} +1.00000 q^{24} +1.00000 q^{25} -1.00000 q^{27} -2.00000 q^{28} -6.00000 q^{29} -1.00000 q^{30} -4.00000 q^{31} -1.00000 q^{32} +1.00000 q^{33} -1.00000 q^{34} +2.00000 q^{35} +1.00000 q^{36} -2.00000 q^{37} +8.00000 q^{38} +1.00000 q^{40} -2.00000 q^{42} +10.0000 q^{43} -1.00000 q^{44} -1.00000 q^{45} +4.00000 q^{46} +8.00000 q^{47} -1.00000 q^{48} -3.00000 q^{49} -1.00000 q^{50} -1.00000 q^{51} -6.00000 q^{53} +1.00000 q^{54} +1.00000 q^{55} +2.00000 q^{56} +8.00000 q^{57} +6.00000 q^{58} +6.00000 q^{59} +1.00000 q^{60} -2.00000 q^{61} +4.00000 q^{62} -2.00000 q^{63} +1.00000 q^{64} -1.00000 q^{66} -10.0000 q^{67} +1.00000 q^{68} +4.00000 q^{69} -2.00000 q^{70} +6.00000 q^{71} -1.00000 q^{72} -8.00000 q^{73} +2.00000 q^{74} -1.00000 q^{75} -8.00000 q^{76} +2.00000 q^{77} -4.00000 q^{79} -1.00000 q^{80} +1.00000 q^{81} +16.0000 q^{83} +2.00000 q^{84} -1.00000 q^{85} -10.0000 q^{86} +6.00000 q^{87} +1.00000 q^{88} -18.0000 q^{89} +1.00000 q^{90} -4.00000 q^{92} +4.00000 q^{93} -8.00000 q^{94} +8.00000 q^{95} +1.00000 q^{96} -8.00000 q^{97} +3.00000 q^{98} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.00000 0.408248
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) −1.00000 −0.301511
\(12\) −1.00000 −0.288675
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 2.00000 0.534522
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −1.00000 −0.235702
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) −1.00000 −0.223607
\(21\) 2.00000 0.436436
\(22\) 1.00000 0.213201
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) −2.00000 −0.377964
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) −1.00000 −0.182574
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.00000 0.174078
\(34\) −1.00000 −0.171499
\(35\) 2.00000 0.338062
\(36\) 1.00000 0.166667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 8.00000 1.29777
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) −2.00000 −0.308607
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) −1.00000 −0.150756
\(45\) −1.00000 −0.149071
\(46\) 4.00000 0.589768
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) −1.00000 −0.144338
\(49\) −3.00000 −0.428571
\(50\) −1.00000 −0.141421
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 1.00000 0.136083
\(55\) 1.00000 0.134840
\(56\) 2.00000 0.267261
\(57\) 8.00000 1.05963
\(58\) 6.00000 0.787839
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 1.00000 0.129099
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 4.00000 0.508001
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −1.00000 −0.123091
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) 1.00000 0.121268
\(69\) 4.00000 0.481543
\(70\) −2.00000 −0.239046
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) −1.00000 −0.117851
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) 2.00000 0.232495
\(75\) −1.00000 −0.115470
\(76\) −8.00000 −0.917663
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 2.00000 0.218218
\(85\) −1.00000 −0.108465
\(86\) −10.0000 −1.07833
\(87\) 6.00000 0.643268
\(88\) 1.00000 0.106600
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) 4.00000 0.414781
\(94\) −8.00000 −0.825137
\(95\) 8.00000 0.820783
\(96\) 1.00000 0.102062
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 3.00000 0.303046
\(99\) −1.00000 −0.100504
\(100\) 1.00000 0.100000
\(101\) −8.00000 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(102\) 1.00000 0.0990148
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 6.00000 0.582772
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) −1.00000 −0.0953463
\(111\) 2.00000 0.189832
\(112\) −2.00000 −0.188982
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) −8.00000 −0.749269
\(115\) 4.00000 0.373002
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) −2.00000 −0.183340
\(120\) −1.00000 −0.0912871
\(121\) 1.00000 0.0909091
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) −1.00000 −0.0894427
\(126\) 2.00000 0.178174
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 1.00000 0.0870388
\(133\) 16.0000 1.38738
\(134\) 10.0000 0.863868
\(135\) 1.00000 0.0860663
\(136\) −1.00000 −0.0857493
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) −4.00000 −0.340503
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 2.00000 0.169031
\(141\) −8.00000 −0.673722
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 6.00000 0.498273
\(146\) 8.00000 0.662085
\(147\) 3.00000 0.247436
\(148\) −2.00000 −0.164399
\(149\) −8.00000 −0.655386 −0.327693 0.944784i \(-0.606271\pi\)
−0.327693 + 0.944784i \(0.606271\pi\)
\(150\) 1.00000 0.0816497
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 8.00000 0.648886
\(153\) 1.00000 0.0808452
\(154\) −2.00000 −0.161165
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) 4.00000 0.318223
\(159\) 6.00000 0.475831
\(160\) 1.00000 0.0790569
\(161\) 8.00000 0.630488
\(162\) −1.00000 −0.0785674
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 0 0
\(165\) −1.00000 −0.0778499
\(166\) −16.0000 −1.24184
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) −2.00000 −0.154303
\(169\) −13.0000 −1.00000
\(170\) 1.00000 0.0766965
\(171\) −8.00000 −0.611775
\(172\) 10.0000 0.762493
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) −6.00000 −0.454859
\(175\) −2.00000 −0.151186
\(176\) −1.00000 −0.0753778
\(177\) −6.00000 −0.450988
\(178\) 18.0000 1.34916
\(179\) 26.0000 1.94333 0.971666 0.236360i \(-0.0759544\pi\)
0.971666 + 0.236360i \(0.0759544\pi\)
\(180\) −1.00000 −0.0745356
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 4.00000 0.294884
\(185\) 2.00000 0.147043
\(186\) −4.00000 −0.293294
\(187\) −1.00000 −0.0731272
\(188\) 8.00000 0.583460
\(189\) 2.00000 0.145479
\(190\) −8.00000 −0.580381
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 8.00000 0.574367
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 1.00000 0.0710669
\(199\) −12.0000 −0.850657 −0.425329 0.905039i \(-0.639842\pi\)
−0.425329 + 0.905039i \(0.639842\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 10.0000 0.705346
\(202\) 8.00000 0.562878
\(203\) 12.0000 0.842235
\(204\) −1.00000 −0.0700140
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 2.00000 0.138013
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) −6.00000 −0.412082
\(213\) −6.00000 −0.411113
\(214\) −4.00000 −0.273434
\(215\) −10.0000 −0.681994
\(216\) 1.00000 0.0680414
\(217\) 8.00000 0.543075
\(218\) −2.00000 −0.135457
\(219\) 8.00000 0.540590
\(220\) 1.00000 0.0674200
\(221\) 0 0
\(222\) −2.00000 −0.134231
\(223\) −12.0000 −0.803579 −0.401790 0.915732i \(-0.631612\pi\)
−0.401790 + 0.915732i \(0.631612\pi\)
\(224\) 2.00000 0.133631
\(225\) 1.00000 0.0666667
\(226\) 6.00000 0.399114
\(227\) 28.0000 1.85843 0.929213 0.369546i \(-0.120487\pi\)
0.929213 + 0.369546i \(0.120487\pi\)
\(228\) 8.00000 0.529813
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) −4.00000 −0.263752
\(231\) −2.00000 −0.131590
\(232\) 6.00000 0.393919
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 6.00000 0.390567
\(237\) 4.00000 0.259828
\(238\) 2.00000 0.129641
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 1.00000 0.0645497
\(241\) −26.0000 −1.67481 −0.837404 0.546585i \(-0.815928\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −1.00000 −0.0641500
\(244\) −2.00000 −0.128037
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) 0 0
\(248\) 4.00000 0.254000
\(249\) −16.0000 −1.01396
\(250\) 1.00000 0.0632456
\(251\) −2.00000 −0.126239 −0.0631194 0.998006i \(-0.520105\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(252\) −2.00000 −0.125988
\(253\) 4.00000 0.251478
\(254\) −12.0000 −0.752947
\(255\) 1.00000 0.0626224
\(256\) 1.00000 0.0625000
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) 10.0000 0.622573
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 8.00000 0.494242
\(263\) −32.0000 −1.97320 −0.986602 0.163144i \(-0.947836\pi\)
−0.986602 + 0.163144i \(0.947836\pi\)
\(264\) −1.00000 −0.0615457
\(265\) 6.00000 0.368577
\(266\) −16.0000 −0.981023
\(267\) 18.0000 1.10158
\(268\) −10.0000 −0.610847
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) −1.00000 −0.0608581
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) −1.00000 −0.0603023
\(276\) 4.00000 0.240772
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 4.00000 0.239904
\(279\) −4.00000 −0.239474
\(280\) −2.00000 −0.119523
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 8.00000 0.476393
\(283\) 28.0000 1.66443 0.832214 0.554455i \(-0.187073\pi\)
0.832214 + 0.554455i \(0.187073\pi\)
\(284\) 6.00000 0.356034
\(285\) −8.00000 −0.473879
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) −6.00000 −0.352332
\(291\) 8.00000 0.468968
\(292\) −8.00000 −0.468165
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) −3.00000 −0.174964
\(295\) −6.00000 −0.349334
\(296\) 2.00000 0.116248
\(297\) 1.00000 0.0580259
\(298\) 8.00000 0.463428
\(299\) 0 0
\(300\) −1.00000 −0.0577350
\(301\) −20.0000 −1.15278
\(302\) −8.00000 −0.460348
\(303\) 8.00000 0.459588
\(304\) −8.00000 −0.458831
\(305\) 2.00000 0.114520
\(306\) −1.00000 −0.0571662
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 2.00000 0.113961
\(309\) 4.00000 0.227552
\(310\) −4.00000 −0.227185
\(311\) 2.00000 0.113410 0.0567048 0.998391i \(-0.481941\pi\)
0.0567048 + 0.998391i \(0.481941\pi\)
\(312\) 0 0
\(313\) −8.00000 −0.452187 −0.226093 0.974106i \(-0.572595\pi\)
−0.226093 + 0.974106i \(0.572595\pi\)
\(314\) −4.00000 −0.225733
\(315\) 2.00000 0.112687
\(316\) −4.00000 −0.225018
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) −6.00000 −0.336463
\(319\) 6.00000 0.335936
\(320\) −1.00000 −0.0559017
\(321\) −4.00000 −0.223258
\(322\) −8.00000 −0.445823
\(323\) −8.00000 −0.445132
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −8.00000 −0.443079
\(327\) −2.00000 −0.110600
\(328\) 0 0
\(329\) −16.0000 −0.882109
\(330\) 1.00000 0.0550482
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 16.0000 0.878114
\(333\) −2.00000 −0.109599
\(334\) −12.0000 −0.656611
\(335\) 10.0000 0.546358
\(336\) 2.00000 0.109109
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) 13.0000 0.707107
\(339\) 6.00000 0.325875
\(340\) −1.00000 −0.0542326
\(341\) 4.00000 0.216612
\(342\) 8.00000 0.432590
\(343\) 20.0000 1.07990
\(344\) −10.0000 −0.539164
\(345\) −4.00000 −0.215353
\(346\) −6.00000 −0.322562
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 6.00000 0.321634
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 2.00000 0.106904
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 6.00000 0.318896
\(355\) −6.00000 −0.318447
\(356\) −18.0000 −0.953998
\(357\) 2.00000 0.105851
\(358\) −26.0000 −1.37414
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 1.00000 0.0527046
\(361\) 45.0000 2.36842
\(362\) 22.0000 1.15629
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 8.00000 0.418739
\(366\) −2.00000 −0.104542
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) −2.00000 −0.103975
\(371\) 12.0000 0.623009
\(372\) 4.00000 0.207390
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 1.00000 0.0517088
\(375\) 1.00000 0.0516398
\(376\) −8.00000 −0.412568
\(377\) 0 0
\(378\) −2.00000 −0.102869
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 8.00000 0.410391
\(381\) −12.0000 −0.614779
\(382\) −12.0000 −0.613973
\(383\) 8.00000 0.408781 0.204390 0.978889i \(-0.434479\pi\)
0.204390 + 0.978889i \(0.434479\pi\)
\(384\) 1.00000 0.0510310
\(385\) −2.00000 −0.101929
\(386\) −4.00000 −0.203595
\(387\) 10.0000 0.508329
\(388\) −8.00000 −0.406138
\(389\) −28.0000 −1.41966 −0.709828 0.704375i \(-0.751227\pi\)
−0.709828 + 0.704375i \(0.751227\pi\)
\(390\) 0 0
\(391\) −4.00000 −0.202289
\(392\) 3.00000 0.151523
\(393\) 8.00000 0.403547
\(394\) −22.0000 −1.10834
\(395\) 4.00000 0.201262
\(396\) −1.00000 −0.0502519
\(397\) 22.0000 1.10415 0.552074 0.833795i \(-0.313837\pi\)
0.552074 + 0.833795i \(0.313837\pi\)
\(398\) 12.0000 0.601506
\(399\) −16.0000 −0.801002
\(400\) 1.00000 0.0500000
\(401\) 24.0000 1.19850 0.599251 0.800561i \(-0.295465\pi\)
0.599251 + 0.800561i \(0.295465\pi\)
\(402\) −10.0000 −0.498755
\(403\) 0 0
\(404\) −8.00000 −0.398015
\(405\) −1.00000 −0.0496904
\(406\) −12.0000 −0.595550
\(407\) 2.00000 0.0991363
\(408\) 1.00000 0.0495074
\(409\) 6.00000 0.296681 0.148340 0.988936i \(-0.452607\pi\)
0.148340 + 0.988936i \(0.452607\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) −4.00000 −0.197066
\(413\) −12.0000 −0.590481
\(414\) 4.00000 0.196589
\(415\) −16.0000 −0.785409
\(416\) 0 0
\(417\) 4.00000 0.195881
\(418\) −8.00000 −0.391293
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) −2.00000 −0.0975900
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 4.00000 0.194717
\(423\) 8.00000 0.388973
\(424\) 6.00000 0.291386
\(425\) 1.00000 0.0485071
\(426\) 6.00000 0.290701
\(427\) 4.00000 0.193574
\(428\) 4.00000 0.193347
\(429\) 0 0
\(430\) 10.0000 0.482243
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) −8.00000 −0.384012
\(435\) −6.00000 −0.287678
\(436\) 2.00000 0.0957826
\(437\) 32.0000 1.53077
\(438\) −8.00000 −0.382255
\(439\) 4.00000 0.190910 0.0954548 0.995434i \(-0.469569\pi\)
0.0954548 + 0.995434i \(0.469569\pi\)
\(440\) −1.00000 −0.0476731
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 2.00000 0.0949158
\(445\) 18.0000 0.853282
\(446\) 12.0000 0.568216
\(447\) 8.00000 0.378387
\(448\) −2.00000 −0.0944911
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 0 0
\(452\) −6.00000 −0.282216
\(453\) −8.00000 −0.375873
\(454\) −28.0000 −1.31411
\(455\) 0 0
\(456\) −8.00000 −0.374634
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 2.00000 0.0934539
\(459\) −1.00000 −0.0466760
\(460\) 4.00000 0.186501
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 2.00000 0.0930484
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) −6.00000 −0.278543
\(465\) −4.00000 −0.185496
\(466\) 6.00000 0.277945
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 20.0000 0.923514
\(470\) 8.00000 0.369012
\(471\) −4.00000 −0.184310
\(472\) −6.00000 −0.276172
\(473\) −10.0000 −0.459800
\(474\) −4.00000 −0.183726
\(475\) −8.00000 −0.367065
\(476\) −2.00000 −0.0916698
\(477\) −6.00000 −0.274721
\(478\) −16.0000 −0.731823
\(479\) −6.00000 −0.274147 −0.137073 0.990561i \(-0.543770\pi\)
−0.137073 + 0.990561i \(0.543770\pi\)
\(480\) −1.00000 −0.0456435
\(481\) 0 0
\(482\) 26.0000 1.18427
\(483\) −8.00000 −0.364013
\(484\) 1.00000 0.0454545
\(485\) 8.00000 0.363261
\(486\) 1.00000 0.0453609
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 2.00000 0.0905357
\(489\) −8.00000 −0.361773
\(490\) −3.00000 −0.135526
\(491\) 22.0000 0.992846 0.496423 0.868081i \(-0.334646\pi\)
0.496423 + 0.868081i \(0.334646\pi\)
\(492\) 0 0
\(493\) −6.00000 −0.270226
\(494\) 0 0
\(495\) 1.00000 0.0449467
\(496\) −4.00000 −0.179605
\(497\) −12.0000 −0.538274
\(498\) 16.0000 0.716977
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −12.0000 −0.536120
\(502\) 2.00000 0.0892644
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 2.00000 0.0890871
\(505\) 8.00000 0.355995
\(506\) −4.00000 −0.177822
\(507\) 13.0000 0.577350
\(508\) 12.0000 0.532414
\(509\) 36.0000 1.59567 0.797836 0.602875i \(-0.205978\pi\)
0.797836 + 0.602875i \(0.205978\pi\)
\(510\) −1.00000 −0.0442807
\(511\) 16.0000 0.707798
\(512\) −1.00000 −0.0441942
\(513\) 8.00000 0.353209
\(514\) −22.0000 −0.970378
\(515\) 4.00000 0.176261
\(516\) −10.0000 −0.440225
\(517\) −8.00000 −0.351840
\(518\) −4.00000 −0.175750
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 6.00000 0.262613
\(523\) −2.00000 −0.0874539 −0.0437269 0.999044i \(-0.513923\pi\)
−0.0437269 + 0.999044i \(0.513923\pi\)
\(524\) −8.00000 −0.349482
\(525\) 2.00000 0.0872872
\(526\) 32.0000 1.39527
\(527\) −4.00000 −0.174243
\(528\) 1.00000 0.0435194
\(529\) −7.00000 −0.304348
\(530\) −6.00000 −0.260623
\(531\) 6.00000 0.260378
\(532\) 16.0000 0.693688
\(533\) 0 0
\(534\) −18.0000 −0.778936
\(535\) −4.00000 −0.172935
\(536\) 10.0000 0.431934
\(537\) −26.0000 −1.12198
\(538\) 6.00000 0.258678
\(539\) 3.00000 0.129219
\(540\) 1.00000 0.0430331
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 0 0
\(543\) 22.0000 0.944110
\(544\) −1.00000 −0.0428746
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) −6.00000 −0.256307
\(549\) −2.00000 −0.0853579
\(550\) 1.00000 0.0426401
\(551\) 48.0000 2.04487
\(552\) −4.00000 −0.170251
\(553\) 8.00000 0.340195
\(554\) −2.00000 −0.0849719
\(555\) −2.00000 −0.0848953
\(556\) −4.00000 −0.169638
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) 4.00000 0.169334
\(559\) 0 0
\(560\) 2.00000 0.0845154
\(561\) 1.00000 0.0422200
\(562\) −30.0000 −1.26547
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) −8.00000 −0.336861
\(565\) 6.00000 0.252422
\(566\) −28.0000 −1.17693
\(567\) −2.00000 −0.0839921
\(568\) −6.00000 −0.251754
\(569\) −14.0000 −0.586911 −0.293455 0.955973i \(-0.594805\pi\)
−0.293455 + 0.955973i \(0.594805\pi\)
\(570\) 8.00000 0.335083
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 1.00000 0.0416667
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −4.00000 −0.166234
\(580\) 6.00000 0.249136
\(581\) −32.0000 −1.32758
\(582\) −8.00000 −0.331611
\(583\) 6.00000 0.248495
\(584\) 8.00000 0.331042
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) −28.0000 −1.15568 −0.577842 0.816149i \(-0.696105\pi\)
−0.577842 + 0.816149i \(0.696105\pi\)
\(588\) 3.00000 0.123718
\(589\) 32.0000 1.31854
\(590\) 6.00000 0.247016
\(591\) −22.0000 −0.904959
\(592\) −2.00000 −0.0821995
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) −1.00000 −0.0410305
\(595\) 2.00000 0.0819920
\(596\) −8.00000 −0.327693
\(597\) 12.0000 0.491127
\(598\) 0 0
\(599\) −28.0000 −1.14405 −0.572024 0.820237i \(-0.693842\pi\)
−0.572024 + 0.820237i \(0.693842\pi\)
\(600\) 1.00000 0.0408248
\(601\) 42.0000 1.71322 0.856608 0.515968i \(-0.172568\pi\)
0.856608 + 0.515968i \(0.172568\pi\)
\(602\) 20.0000 0.815139
\(603\) −10.0000 −0.407231
\(604\) 8.00000 0.325515
\(605\) −1.00000 −0.0406558
\(606\) −8.00000 −0.324978
\(607\) 14.0000 0.568242 0.284121 0.958788i \(-0.408298\pi\)
0.284121 + 0.958788i \(0.408298\pi\)
\(608\) 8.00000 0.324443
\(609\) −12.0000 −0.486265
\(610\) −2.00000 −0.0809776
\(611\) 0 0
\(612\) 1.00000 0.0404226
\(613\) 12.0000 0.484675 0.242338 0.970192i \(-0.422086\pi\)
0.242338 + 0.970192i \(0.422086\pi\)
\(614\) −2.00000 −0.0807134
\(615\) 0 0
\(616\) −2.00000 −0.0805823
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) −4.00000 −0.160904
\(619\) −36.0000 −1.44696 −0.723481 0.690344i \(-0.757459\pi\)
−0.723481 + 0.690344i \(0.757459\pi\)
\(620\) 4.00000 0.160644
\(621\) 4.00000 0.160514
\(622\) −2.00000 −0.0801927
\(623\) 36.0000 1.44231
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 8.00000 0.319744
\(627\) −8.00000 −0.319489
\(628\) 4.00000 0.159617
\(629\) −2.00000 −0.0797452
\(630\) −2.00000 −0.0796819
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 4.00000 0.159111
\(633\) 4.00000 0.158986
\(634\) 18.0000 0.714871
\(635\) −12.0000 −0.476205
\(636\) 6.00000 0.237915
\(637\) 0 0
\(638\) −6.00000 −0.237542
\(639\) 6.00000 0.237356
\(640\) 1.00000 0.0395285
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 4.00000 0.157867
\(643\) 32.0000 1.26196 0.630978 0.775800i \(-0.282654\pi\)
0.630978 + 0.775800i \(0.282654\pi\)
\(644\) 8.00000 0.315244
\(645\) 10.0000 0.393750
\(646\) 8.00000 0.314756
\(647\) −8.00000 −0.314512 −0.157256 0.987558i \(-0.550265\pi\)
−0.157256 + 0.987558i \(0.550265\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) 8.00000 0.313304
\(653\) 50.0000 1.95665 0.978326 0.207072i \(-0.0663936\pi\)
0.978326 + 0.207072i \(0.0663936\pi\)
\(654\) 2.00000 0.0782062
\(655\) 8.00000 0.312586
\(656\) 0 0
\(657\) −8.00000 −0.312110
\(658\) 16.0000 0.623745
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) −1.00000 −0.0389249
\(661\) 42.0000 1.63361 0.816805 0.576913i \(-0.195743\pi\)
0.816805 + 0.576913i \(0.195743\pi\)
\(662\) −8.00000 −0.310929
\(663\) 0 0
\(664\) −16.0000 −0.620920
\(665\) −16.0000 −0.620453
\(666\) 2.00000 0.0774984
\(667\) 24.0000 0.929284
\(668\) 12.0000 0.464294
\(669\) 12.0000 0.463947
\(670\) −10.0000 −0.386334
\(671\) 2.00000 0.0772091
\(672\) −2.00000 −0.0771517
\(673\) 4.00000 0.154189 0.0770943 0.997024i \(-0.475436\pi\)
0.0770943 + 0.997024i \(0.475436\pi\)
\(674\) 8.00000 0.308148
\(675\) −1.00000 −0.0384900
\(676\) −13.0000 −0.500000
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) −6.00000 −0.230429
\(679\) 16.0000 0.614024
\(680\) 1.00000 0.0383482
\(681\) −28.0000 −1.07296
\(682\) −4.00000 −0.153168
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) −8.00000 −0.305888
\(685\) 6.00000 0.229248
\(686\) −20.0000 −0.763604
\(687\) 2.00000 0.0763048
\(688\) 10.0000 0.381246
\(689\) 0 0
\(690\) 4.00000 0.152277
\(691\) 36.0000 1.36950 0.684752 0.728776i \(-0.259910\pi\)
0.684752 + 0.728776i \(0.259910\pi\)
\(692\) 6.00000 0.228086
\(693\) 2.00000 0.0759737
\(694\) −4.00000 −0.151838
\(695\) 4.00000 0.151729
\(696\) −6.00000 −0.227429
\(697\) 0 0
\(698\) −14.0000 −0.529908
\(699\) 6.00000 0.226941
\(700\) −2.00000 −0.0755929
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) −1.00000 −0.0376889
\(705\) 8.00000 0.301297
\(706\) −14.0000 −0.526897
\(707\) 16.0000 0.601742
\(708\) −6.00000 −0.225494
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 6.00000 0.225176
\(711\) −4.00000 −0.150012
\(712\) 18.0000 0.674579
\(713\) 16.0000 0.599205
\(714\) −2.00000 −0.0748481
\(715\) 0 0
\(716\) 26.0000 0.971666
\(717\) −16.0000 −0.597531
\(718\) 12.0000 0.447836
\(719\) −26.0000 −0.969636 −0.484818 0.874615i \(-0.661114\pi\)
−0.484818 + 0.874615i \(0.661114\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 8.00000 0.297936
\(722\) −45.0000 −1.67473
\(723\) 26.0000 0.966950
\(724\) −22.0000 −0.817624
\(725\) −6.00000 −0.222834
\(726\) 1.00000 0.0371135
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −8.00000 −0.296093
\(731\) 10.0000 0.369863
\(732\) 2.00000 0.0739221
\(733\) 12.0000 0.443230 0.221615 0.975134i \(-0.428867\pi\)
0.221615 + 0.975134i \(0.428867\pi\)
\(734\) 18.0000 0.664392
\(735\) −3.00000 −0.110657
\(736\) 4.00000 0.147442
\(737\) 10.0000 0.368355
\(738\) 0 0
\(739\) −4.00000 −0.147142 −0.0735712 0.997290i \(-0.523440\pi\)
−0.0735712 + 0.997290i \(0.523440\pi\)
\(740\) 2.00000 0.0735215
\(741\) 0 0
\(742\) −12.0000 −0.440534
\(743\) −4.00000 −0.146746 −0.0733729 0.997305i \(-0.523376\pi\)
−0.0733729 + 0.997305i \(0.523376\pi\)
\(744\) −4.00000 −0.146647
\(745\) 8.00000 0.293097
\(746\) 4.00000 0.146450
\(747\) 16.0000 0.585409
\(748\) −1.00000 −0.0365636
\(749\) −8.00000 −0.292314
\(750\) −1.00000 −0.0365148
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) 8.00000 0.291730
\(753\) 2.00000 0.0728841
\(754\) 0 0
\(755\) −8.00000 −0.291150
\(756\) 2.00000 0.0727393
\(757\) 36.0000 1.30844 0.654221 0.756303i \(-0.272997\pi\)
0.654221 + 0.756303i \(0.272997\pi\)
\(758\) −20.0000 −0.726433
\(759\) −4.00000 −0.145191
\(760\) −8.00000 −0.290191
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) 12.0000 0.434714
\(763\) −4.00000 −0.144810
\(764\) 12.0000 0.434145
\(765\) −1.00000 −0.0361551
\(766\) −8.00000 −0.289052
\(767\) 0 0
\(768\) −1.00000 −0.0360844
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 2.00000 0.0720750
\(771\) −22.0000 −0.792311
\(772\) 4.00000 0.143963
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) −10.0000 −0.359443
\(775\) −4.00000 −0.143684
\(776\) 8.00000 0.287183
\(777\) −4.00000 −0.143499
\(778\) 28.0000 1.00385
\(779\) 0 0
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 4.00000 0.143040
\(783\) 6.00000 0.214423
\(784\) −3.00000 −0.107143
\(785\) −4.00000 −0.142766
\(786\) −8.00000 −0.285351
\(787\) −16.0000 −0.570338 −0.285169 0.958477i \(-0.592050\pi\)
−0.285169 + 0.958477i \(0.592050\pi\)
\(788\) 22.0000 0.783718
\(789\) 32.0000 1.13923
\(790\) −4.00000 −0.142314
\(791\) 12.0000 0.426671
\(792\) 1.00000 0.0355335
\(793\) 0 0
\(794\) −22.0000 −0.780751
\(795\) −6.00000 −0.212798
\(796\) −12.0000 −0.425329
\(797\) −34.0000 −1.20434 −0.602171 0.798367i \(-0.705697\pi\)
−0.602171 + 0.798367i \(0.705697\pi\)
\(798\) 16.0000 0.566394
\(799\) 8.00000 0.283020
\(800\) −1.00000 −0.0353553
\(801\) −18.0000 −0.635999
\(802\) −24.0000 −0.847469
\(803\) 8.00000 0.282314
\(804\) 10.0000 0.352673
\(805\) −8.00000 −0.281963
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 8.00000 0.281439
\(809\) −16.0000 −0.562530 −0.281265 0.959630i \(-0.590754\pi\)
−0.281265 + 0.959630i \(0.590754\pi\)
\(810\) 1.00000 0.0351364
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 12.0000 0.421117
\(813\) 0 0
\(814\) −2.00000 −0.0701000
\(815\) −8.00000 −0.280228
\(816\) −1.00000 −0.0350070
\(817\) −80.0000 −2.79885
\(818\) −6.00000 −0.209785
\(819\) 0 0
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) −6.00000 −0.209274
\(823\) −34.0000 −1.18517 −0.592583 0.805510i \(-0.701892\pi\)
−0.592583 + 0.805510i \(0.701892\pi\)
\(824\) 4.00000 0.139347
\(825\) 1.00000 0.0348155
\(826\) 12.0000 0.417533
\(827\) −44.0000 −1.53003 −0.765015 0.644013i \(-0.777268\pi\)
−0.765015 + 0.644013i \(0.777268\pi\)
\(828\) −4.00000 −0.139010
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 16.0000 0.555368
\(831\) −2.00000 −0.0693792
\(832\) 0 0
\(833\) −3.00000 −0.103944
\(834\) −4.00000 −0.138509
\(835\) −12.0000 −0.415277
\(836\) 8.00000 0.276686
\(837\) 4.00000 0.138260
\(838\) −16.0000 −0.552711
\(839\) 42.0000 1.45000 0.725001 0.688748i \(-0.241839\pi\)
0.725001 + 0.688748i \(0.241839\pi\)
\(840\) 2.00000 0.0690066
\(841\) 7.00000 0.241379
\(842\) −30.0000 −1.03387
\(843\) −30.0000 −1.03325
\(844\) −4.00000 −0.137686
\(845\) 13.0000 0.447214
\(846\) −8.00000 −0.275046
\(847\) −2.00000 −0.0687208
\(848\) −6.00000 −0.206041
\(849\) −28.0000 −0.960958
\(850\) −1.00000 −0.0342997
\(851\) 8.00000 0.274236
\(852\) −6.00000 −0.205557
\(853\) −38.0000 −1.30110 −0.650548 0.759465i \(-0.725461\pi\)
−0.650548 + 0.759465i \(0.725461\pi\)
\(854\) −4.00000 −0.136877
\(855\) 8.00000 0.273594
\(856\) −4.00000 −0.136717
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) −48.0000 −1.63774 −0.818869 0.573980i \(-0.805399\pi\)
−0.818869 + 0.573980i \(0.805399\pi\)
\(860\) −10.0000 −0.340997
\(861\) 0 0
\(862\) −6.00000 −0.204361
\(863\) 40.0000 1.36162 0.680808 0.732462i \(-0.261629\pi\)
0.680808 + 0.732462i \(0.261629\pi\)
\(864\) 1.00000 0.0340207
\(865\) −6.00000 −0.204006
\(866\) −14.0000 −0.475739
\(867\) −1.00000 −0.0339618
\(868\) 8.00000 0.271538
\(869\) 4.00000 0.135691
\(870\) 6.00000 0.203419
\(871\) 0 0
\(872\) −2.00000 −0.0677285
\(873\) −8.00000 −0.270759
\(874\) −32.0000 −1.08242
\(875\) 2.00000 0.0676123
\(876\) 8.00000 0.270295
\(877\) 42.0000 1.41824 0.709120 0.705088i \(-0.249093\pi\)
0.709120 + 0.705088i \(0.249093\pi\)
\(878\) −4.00000 −0.134993
\(879\) −18.0000 −0.607125
\(880\) 1.00000 0.0337100
\(881\) 16.0000 0.539054 0.269527 0.962993i \(-0.413133\pi\)
0.269527 + 0.962993i \(0.413133\pi\)
\(882\) 3.00000 0.101015
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) 0 0
\(885\) 6.00000 0.201688
\(886\) −4.00000 −0.134383
\(887\) −8.00000 −0.268614 −0.134307 0.990940i \(-0.542881\pi\)
−0.134307 + 0.990940i \(0.542881\pi\)
\(888\) −2.00000 −0.0671156
\(889\) −24.0000 −0.804934
\(890\) −18.0000 −0.603361
\(891\) −1.00000 −0.0335013
\(892\) −12.0000 −0.401790
\(893\) −64.0000 −2.14168
\(894\) −8.00000 −0.267560
\(895\) −26.0000 −0.869084
\(896\) 2.00000 0.0668153
\(897\) 0 0
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 1.00000 0.0333333
\(901\) −6.00000 −0.199889
\(902\) 0 0
\(903\) 20.0000 0.665558
\(904\) 6.00000 0.199557
\(905\) 22.0000 0.731305
\(906\) 8.00000 0.265782
\(907\) −32.0000 −1.06254 −0.531271 0.847202i \(-0.678286\pi\)
−0.531271 + 0.847202i \(0.678286\pi\)
\(908\) 28.0000 0.929213
\(909\) −8.00000 −0.265343
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 8.00000 0.264906
\(913\) −16.0000 −0.529523
\(914\) 2.00000 0.0661541
\(915\) −2.00000 −0.0661180
\(916\) −2.00000 −0.0660819
\(917\) 16.0000 0.528367
\(918\) 1.00000 0.0330049
\(919\) −56.0000 −1.84727 −0.923635 0.383274i \(-0.874797\pi\)
−0.923635 + 0.383274i \(0.874797\pi\)
\(920\) −4.00000 −0.131876
\(921\) −2.00000 −0.0659022
\(922\) −12.0000 −0.395199
\(923\) 0 0
\(924\) −2.00000 −0.0657952
\(925\) −2.00000 −0.0657596
\(926\) 20.0000 0.657241
\(927\) −4.00000 −0.131377
\(928\) 6.00000 0.196960
\(929\) −20.0000 −0.656179 −0.328089 0.944647i \(-0.606405\pi\)
−0.328089 + 0.944647i \(0.606405\pi\)
\(930\) 4.00000 0.131165
\(931\) 24.0000 0.786568
\(932\) −6.00000 −0.196537
\(933\) −2.00000 −0.0654771
\(934\) 0 0
\(935\) 1.00000 0.0327035
\(936\) 0 0
\(937\) 6.00000 0.196011 0.0980057 0.995186i \(-0.468754\pi\)
0.0980057 + 0.995186i \(0.468754\pi\)
\(938\) −20.0000 −0.653023
\(939\) 8.00000 0.261070
\(940\) −8.00000 −0.260931
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 4.00000 0.130327
\(943\) 0 0
\(944\) 6.00000 0.195283
\(945\) −2.00000 −0.0650600
\(946\) 10.0000 0.325128
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 4.00000 0.129914
\(949\) 0 0
\(950\) 8.00000 0.259554
\(951\) 18.0000 0.583690
\(952\) 2.00000 0.0648204
\(953\) −38.0000 −1.23094 −0.615470 0.788160i \(-0.711034\pi\)
−0.615470 + 0.788160i \(0.711034\pi\)
\(954\) 6.00000 0.194257
\(955\) −12.0000 −0.388311
\(956\) 16.0000 0.517477
\(957\) −6.00000 −0.193952
\(958\) 6.00000 0.193851
\(959\) 12.0000 0.387500
\(960\) 1.00000 0.0322749
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 4.00000 0.128898
\(964\) −26.0000 −0.837404
\(965\) −4.00000 −0.128765
\(966\) 8.00000 0.257396
\(967\) 48.0000 1.54358 0.771788 0.635880i \(-0.219363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 8.00000 0.256997
\(970\) −8.00000 −0.256865
\(971\) 58.0000 1.86131 0.930654 0.365900i \(-0.119239\pi\)
0.930654 + 0.365900i \(0.119239\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 8.00000 0.256468
\(974\) −2.00000 −0.0640841
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 8.00000 0.255812
\(979\) 18.0000 0.575282
\(980\) 3.00000 0.0958315
\(981\) 2.00000 0.0638551
\(982\) −22.0000 −0.702048
\(983\) −16.0000 −0.510321 −0.255160 0.966899i \(-0.582128\pi\)
−0.255160 + 0.966899i \(0.582128\pi\)
\(984\) 0 0
\(985\) −22.0000 −0.700978
\(986\) 6.00000 0.191079
\(987\) 16.0000 0.509286
\(988\) 0 0
\(989\) −40.0000 −1.27193
\(990\) −1.00000 −0.0317821
\(991\) 36.0000 1.14358 0.571789 0.820401i \(-0.306250\pi\)
0.571789 + 0.820401i \(0.306250\pi\)
\(992\) 4.00000 0.127000
\(993\) −8.00000 −0.253872
\(994\) 12.0000 0.380617
\(995\) 12.0000 0.380426
\(996\) −16.0000 −0.506979
\(997\) −42.0000 −1.33015 −0.665077 0.746775i \(-0.731601\pi\)
−0.665077 + 0.746775i \(0.731601\pi\)
\(998\) −4.00000 −0.126618
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5610.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5610.2.a.a.1.1 1 1.1 even 1 trivial