Properties

Label 560.6.a.q
Level $560$
Weight $6$
Character orbit 560.a
Self dual yes
Analytic conductor $89.815$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,6,Mod(1,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-26,0,-75,0,-147,0,489] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.577880.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 98x - 232 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 9) q^{3} - 25 q^{5} - 49 q^{7} + (9 \beta_{2} - 3 \beta_1 + 166) q^{9} + (7 \beta_{2} + \beta_1 + 67) q^{11} + ( - 5 \beta_{2} - 4 \beta_1 + 629) q^{13} + (25 \beta_{2} + 225) q^{15}+ \cdots + (1198 \beta_{2} - 416 \beta_1 + 20650) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 26 q^{3} - 75 q^{5} - 147 q^{7} + 489 q^{9} + 194 q^{11} + 1892 q^{13} + 650 q^{15} - 184 q^{17} - 1212 q^{19} + 1274 q^{21} - 3188 q^{23} + 1875 q^{25} - 7910 q^{27} - 11332 q^{29} - 9200 q^{31}+ \cdots + 60752 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 98x - 232 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 8\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 4\nu - 66 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{2} + \beta _1 + 132 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.38673
10.9200
−2.53323
0 −27.9421 0 −25.0000 0 −49.0000 0 537.760 0
1.2 0 −13.7828 0 −25.0000 0 −49.0000 0 −53.0335 0
1.3 0 15.7249 0 −25.0000 0 −49.0000 0 4.27317 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.6.a.q 3
4.b odd 2 1 35.6.a.c 3
12.b even 2 1 315.6.a.i 3
20.d odd 2 1 175.6.a.e 3
20.e even 4 2 175.6.b.e 6
28.d even 2 1 245.6.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.6.a.c 3 4.b odd 2 1
175.6.a.e 3 20.d odd 2 1
175.6.b.e 6 20.e even 4 2
245.6.a.d 3 28.d even 2 1
315.6.a.i 3 12.b even 2 1
560.6.a.q 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 26T_{3}^{2} - 271T_{3} - 6056 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(560))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 26 T^{2} + \cdots - 6056 \) Copy content Toggle raw display
$5$ \( (T + 25)^{3} \) Copy content Toggle raw display
$7$ \( (T + 49)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 194 T^{2} + \cdots + 3144468 \) Copy content Toggle raw display
$13$ \( T^{3} - 1892 T^{2} + \cdots - 171071930 \) Copy content Toggle raw display
$17$ \( T^{3} + 184 T^{2} + \cdots + 132716862 \) Copy content Toggle raw display
$19$ \( T^{3} + 1212 T^{2} + \cdots + 140259040 \) Copy content Toggle raw display
$23$ \( T^{3} + 3188 T^{2} + \cdots - 125424384 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 51669601050 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 8818293376 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 1043894647208 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 4748673370848 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 4763987701360 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 1072310433384 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 515502653472 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 7000620748800 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 1590789613952 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 26595134017984 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 77522711777280 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 11550435576632 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 40598762145400 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 529374252288 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 31660963259040 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 117394067785166 \) Copy content Toggle raw display
show more
show less