Properties

Label 560.6.a.k
Level $560$
Weight $6$
Character orbit 560.a
Self dual yes
Analytic conductor $89.815$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,6,Mod(1,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-5,0,50,0,-98,0,91] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1129}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 282 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1129})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 2) q^{3} + 25 q^{5} - 49 q^{7} + (5 \beta + 43) q^{9} + (13 \beta - 214) q^{11} + ( - 11 \beta + 220) q^{13} + ( - 25 \beta - 50) q^{15} + ( - 65 \beta + 692) q^{17} + (114 \beta - 1016) q^{19}+ \cdots + ( - 446 \beta + 9128) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{3} + 50 q^{5} - 98 q^{7} + 91 q^{9} - 415 q^{11} + 429 q^{13} - 125 q^{15} + 1319 q^{17} - 1918 q^{19} + 245 q^{21} + 1334 q^{23} + 1250 q^{25} - 1835 q^{27} - 1131 q^{29} + 5472 q^{31} - 6301 q^{33}+ \cdots + 17810 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
17.3003
−16.3003
0 −19.3003 0 25.0000 0 −49.0000 0 129.501 0
1.2 0 14.3003 0 25.0000 0 −49.0000 0 −38.5015 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.6.a.k 2
4.b odd 2 1 70.6.a.h 2
12.b even 2 1 630.6.a.s 2
20.d odd 2 1 350.6.a.p 2
20.e even 4 2 350.6.c.k 4
28.d even 2 1 490.6.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.h 2 4.b odd 2 1
350.6.a.p 2 20.d odd 2 1
350.6.c.k 4 20.e even 4 2
490.6.a.u 2 28.d even 2 1
560.6.a.k 2 1.a even 1 1 trivial
630.6.a.s 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 5T_{3} - 276 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(560))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 5T - 276 \) Copy content Toggle raw display
$5$ \( (T - 25)^{2} \) Copy content Toggle raw display
$7$ \( (T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 415T - 4644 \) Copy content Toggle raw display
$13$ \( T^{2} - 429T + 11858 \) Copy content Toggle raw display
$17$ \( T^{2} - 1319 T - 757566 \) Copy content Toggle raw display
$19$ \( T^{2} + 1918 T - 2748440 \) Copy content Toggle raw display
$23$ \( T^{2} - 1334 T - 2265840 \) Copy content Toggle raw display
$29$ \( T^{2} + 1131 T - 2121390 \) Copy content Toggle raw display
$31$ \( T^{2} - 5472 T - 49163008 \) Copy content Toggle raw display
$37$ \( T^{2} + 9156 T + 13732484 \) Copy content Toggle raw display
$41$ \( T^{2} + 7822 T + 11365872 \) Copy content Toggle raw display
$43$ \( T^{2} + 2078 T - 364446648 \) Copy content Toggle raw display
$47$ \( T^{2} - 8507 T - 572885328 \) Copy content Toggle raw display
$53$ \( T^{2} + 34242 T + 9748512 \) Copy content Toggle raw display
$59$ \( T^{2} + 6952 T - 48684720 \) Copy content Toggle raw display
$61$ \( T^{2} + 45138 T + 402952640 \) Copy content Toggle raw display
$67$ \( T^{2} - 54556 T + 649140384 \) Copy content Toggle raw display
$71$ \( T^{2} - 62272 T - 106007808 \) Copy content Toggle raw display
$73$ \( T^{2} - 40896 T - 405277060 \) Copy content Toggle raw display
$79$ \( T^{2} + 62069 T - 653150040 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 8986877424 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 1135587000 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 5804074010 \) Copy content Toggle raw display
show more
show less