Properties

Label 560.6.a.h.1.1
Level $560$
Weight $6$
Character 560.1
Self dual yes
Analytic conductor $89.815$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,6,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 560.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+17.0000 q^{3} +25.0000 q^{5} +49.0000 q^{7} +46.0000 q^{9} +O(q^{10})\) \(q+17.0000 q^{3} +25.0000 q^{5} +49.0000 q^{7} +46.0000 q^{9} +715.000 q^{11} +331.000 q^{13} +425.000 q^{15} -1699.00 q^{17} +1718.00 q^{19} +833.000 q^{21} +3950.00 q^{23} +625.000 q^{25} -3349.00 q^{27} +4579.00 q^{29} -6756.00 q^{31} +12155.0 q^{33} +1225.00 q^{35} -16518.0 q^{37} +5627.00 q^{39} +18876.0 q^{41} -2258.00 q^{43} +1150.00 q^{45} +537.000 q^{47} +2401.00 q^{49} -28883.0 q^{51} -10984.0 q^{53} +17875.0 q^{55} +29206.0 q^{57} +25956.0 q^{59} +39188.0 q^{61} +2254.00 q^{63} +8275.00 q^{65} -4416.00 q^{67} +67150.0 q^{69} +31880.0 q^{71} -5018.00 q^{73} +10625.0 q^{75} +35035.0 q^{77} +27977.0 q^{79} -68111.0 q^{81} -37644.0 q^{83} -42475.0 q^{85} +77843.0 q^{87} -17216.0 q^{89} +16219.0 q^{91} -114852. q^{93} +42950.0 q^{95} -63175.0 q^{97} +32890.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 17.0000 1.09055 0.545275 0.838257i \(-0.316425\pi\)
0.545275 + 0.838257i \(0.316425\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) 46.0000 0.189300
\(10\) 0 0
\(11\) 715.000 1.78166 0.890829 0.454339i \(-0.150124\pi\)
0.890829 + 0.454339i \(0.150124\pi\)
\(12\) 0 0
\(13\) 331.000 0.543212 0.271606 0.962408i \(-0.412445\pi\)
0.271606 + 0.962408i \(0.412445\pi\)
\(14\) 0 0
\(15\) 425.000 0.487709
\(16\) 0 0
\(17\) −1699.00 −1.42584 −0.712920 0.701245i \(-0.752628\pi\)
−0.712920 + 0.701245i \(0.752628\pi\)
\(18\) 0 0
\(19\) 1718.00 1.09179 0.545895 0.837854i \(-0.316190\pi\)
0.545895 + 0.837854i \(0.316190\pi\)
\(20\) 0 0
\(21\) 833.000 0.412189
\(22\) 0 0
\(23\) 3950.00 1.55696 0.778480 0.627669i \(-0.215991\pi\)
0.778480 + 0.627669i \(0.215991\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −3349.00 −0.884109
\(28\) 0 0
\(29\) 4579.00 1.01106 0.505529 0.862810i \(-0.331298\pi\)
0.505529 + 0.862810i \(0.331298\pi\)
\(30\) 0 0
\(31\) −6756.00 −1.26266 −0.631329 0.775516i \(-0.717490\pi\)
−0.631329 + 0.775516i \(0.717490\pi\)
\(32\) 0 0
\(33\) 12155.0 1.94299
\(34\) 0 0
\(35\) 1225.00 0.169031
\(36\) 0 0
\(37\) −16518.0 −1.98360 −0.991798 0.127816i \(-0.959203\pi\)
−0.991798 + 0.127816i \(0.959203\pi\)
\(38\) 0 0
\(39\) 5627.00 0.592400
\(40\) 0 0
\(41\) 18876.0 1.75368 0.876840 0.480782i \(-0.159647\pi\)
0.876840 + 0.480782i \(0.159647\pi\)
\(42\) 0 0
\(43\) −2258.00 −0.186231 −0.0931157 0.995655i \(-0.529683\pi\)
−0.0931157 + 0.995655i \(0.529683\pi\)
\(44\) 0 0
\(45\) 1150.00 0.0846577
\(46\) 0 0
\(47\) 537.000 0.0354593 0.0177296 0.999843i \(-0.494356\pi\)
0.0177296 + 0.999843i \(0.494356\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −28883.0 −1.55495
\(52\) 0 0
\(53\) −10984.0 −0.537119 −0.268560 0.963263i \(-0.586548\pi\)
−0.268560 + 0.963263i \(0.586548\pi\)
\(54\) 0 0
\(55\) 17875.0 0.796782
\(56\) 0 0
\(57\) 29206.0 1.19065
\(58\) 0 0
\(59\) 25956.0 0.970751 0.485375 0.874306i \(-0.338683\pi\)
0.485375 + 0.874306i \(0.338683\pi\)
\(60\) 0 0
\(61\) 39188.0 1.34843 0.674215 0.738535i \(-0.264482\pi\)
0.674215 + 0.738535i \(0.264482\pi\)
\(62\) 0 0
\(63\) 2254.00 0.0715488
\(64\) 0 0
\(65\) 8275.00 0.242932
\(66\) 0 0
\(67\) −4416.00 −0.120183 −0.0600914 0.998193i \(-0.519139\pi\)
−0.0600914 + 0.998193i \(0.519139\pi\)
\(68\) 0 0
\(69\) 67150.0 1.69794
\(70\) 0 0
\(71\) 31880.0 0.750538 0.375269 0.926916i \(-0.377550\pi\)
0.375269 + 0.926916i \(0.377550\pi\)
\(72\) 0 0
\(73\) −5018.00 −0.110211 −0.0551053 0.998481i \(-0.517549\pi\)
−0.0551053 + 0.998481i \(0.517549\pi\)
\(74\) 0 0
\(75\) 10625.0 0.218110
\(76\) 0 0
\(77\) 35035.0 0.673403
\(78\) 0 0
\(79\) 27977.0 0.504352 0.252176 0.967681i \(-0.418854\pi\)
0.252176 + 0.967681i \(0.418854\pi\)
\(80\) 0 0
\(81\) −68111.0 −1.15347
\(82\) 0 0
\(83\) −37644.0 −0.599792 −0.299896 0.953972i \(-0.596952\pi\)
−0.299896 + 0.953972i \(0.596952\pi\)
\(84\) 0 0
\(85\) −42475.0 −0.637655
\(86\) 0 0
\(87\) 77843.0 1.10261
\(88\) 0 0
\(89\) −17216.0 −0.230387 −0.115193 0.993343i \(-0.536749\pi\)
−0.115193 + 0.993343i \(0.536749\pi\)
\(90\) 0 0
\(91\) 16219.0 0.205315
\(92\) 0 0
\(93\) −114852. −1.37699
\(94\) 0 0
\(95\) 42950.0 0.488263
\(96\) 0 0
\(97\) −63175.0 −0.681736 −0.340868 0.940111i \(-0.610721\pi\)
−0.340868 + 0.940111i \(0.610721\pi\)
\(98\) 0 0
\(99\) 32890.0 0.337269
\(100\) 0 0
\(101\) −29250.0 −0.285314 −0.142657 0.989772i \(-0.545565\pi\)
−0.142657 + 0.989772i \(0.545565\pi\)
\(102\) 0 0
\(103\) 149189. 1.38562 0.692809 0.721121i \(-0.256373\pi\)
0.692809 + 0.721121i \(0.256373\pi\)
\(104\) 0 0
\(105\) 20825.0 0.184337
\(106\) 0 0
\(107\) −83742.0 −0.707105 −0.353552 0.935415i \(-0.615026\pi\)
−0.353552 + 0.935415i \(0.615026\pi\)
\(108\) 0 0
\(109\) 105377. 0.849532 0.424766 0.905303i \(-0.360356\pi\)
0.424766 + 0.905303i \(0.360356\pi\)
\(110\) 0 0
\(111\) −280806. −2.16321
\(112\) 0 0
\(113\) −122754. −0.904356 −0.452178 0.891928i \(-0.649353\pi\)
−0.452178 + 0.891928i \(0.649353\pi\)
\(114\) 0 0
\(115\) 98750.0 0.696294
\(116\) 0 0
\(117\) 15226.0 0.102830
\(118\) 0 0
\(119\) −83251.0 −0.538917
\(120\) 0 0
\(121\) 350174. 2.17431
\(122\) 0 0
\(123\) 320892. 1.91248
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 219196. 1.20593 0.602967 0.797766i \(-0.293985\pi\)
0.602967 + 0.797766i \(0.293985\pi\)
\(128\) 0 0
\(129\) −38386.0 −0.203095
\(130\) 0 0
\(131\) 96682.0 0.492229 0.246115 0.969241i \(-0.420846\pi\)
0.246115 + 0.969241i \(0.420846\pi\)
\(132\) 0 0
\(133\) 84182.0 0.412658
\(134\) 0 0
\(135\) −83725.0 −0.395385
\(136\) 0 0
\(137\) 187288. 0.852528 0.426264 0.904599i \(-0.359830\pi\)
0.426264 + 0.904599i \(0.359830\pi\)
\(138\) 0 0
\(139\) −176894. −0.776562 −0.388281 0.921541i \(-0.626931\pi\)
−0.388281 + 0.921541i \(0.626931\pi\)
\(140\) 0 0
\(141\) 9129.00 0.0386701
\(142\) 0 0
\(143\) 236665. 0.967819
\(144\) 0 0
\(145\) 114475. 0.452158
\(146\) 0 0
\(147\) 40817.0 0.155793
\(148\) 0 0
\(149\) −199078. −0.734611 −0.367306 0.930100i \(-0.619720\pi\)
−0.367306 + 0.930100i \(0.619720\pi\)
\(150\) 0 0
\(151\) −471583. −1.68312 −0.841561 0.540162i \(-0.818363\pi\)
−0.841561 + 0.540162i \(0.818363\pi\)
\(152\) 0 0
\(153\) −78154.0 −0.269912
\(154\) 0 0
\(155\) −168900. −0.564677
\(156\) 0 0
\(157\) −72054.0 −0.233297 −0.116648 0.993173i \(-0.537215\pi\)
−0.116648 + 0.993173i \(0.537215\pi\)
\(158\) 0 0
\(159\) −186728. −0.585756
\(160\) 0 0
\(161\) 193550. 0.588476
\(162\) 0 0
\(163\) −385334. −1.13597 −0.567987 0.823038i \(-0.692278\pi\)
−0.567987 + 0.823038i \(0.692278\pi\)
\(164\) 0 0
\(165\) 303875. 0.868931
\(166\) 0 0
\(167\) 542957. 1.50652 0.753259 0.657724i \(-0.228481\pi\)
0.753259 + 0.657724i \(0.228481\pi\)
\(168\) 0 0
\(169\) −261732. −0.704920
\(170\) 0 0
\(171\) 79028.0 0.206676
\(172\) 0 0
\(173\) 370953. 0.942331 0.471166 0.882045i \(-0.343833\pi\)
0.471166 + 0.882045i \(0.343833\pi\)
\(174\) 0 0
\(175\) 30625.0 0.0755929
\(176\) 0 0
\(177\) 441252. 1.05865
\(178\) 0 0
\(179\) 754172. 1.75929 0.879646 0.475629i \(-0.157780\pi\)
0.879646 + 0.475629i \(0.157780\pi\)
\(180\) 0 0
\(181\) 303840. 0.689364 0.344682 0.938720i \(-0.387987\pi\)
0.344682 + 0.938720i \(0.387987\pi\)
\(182\) 0 0
\(183\) 666196. 1.47053
\(184\) 0 0
\(185\) −412950. −0.887091
\(186\) 0 0
\(187\) −1.21478e6 −2.54036
\(188\) 0 0
\(189\) −164101. −0.334162
\(190\) 0 0
\(191\) 186271. 0.369455 0.184728 0.982790i \(-0.440860\pi\)
0.184728 + 0.982790i \(0.440860\pi\)
\(192\) 0 0
\(193\) 92504.0 0.178759 0.0893794 0.995998i \(-0.471512\pi\)
0.0893794 + 0.995998i \(0.471512\pi\)
\(194\) 0 0
\(195\) 140675. 0.264930
\(196\) 0 0
\(197\) −736368. −1.35185 −0.675926 0.736969i \(-0.736256\pi\)
−0.675926 + 0.736969i \(0.736256\pi\)
\(198\) 0 0
\(199\) 481620. 0.862128 0.431064 0.902321i \(-0.358138\pi\)
0.431064 + 0.902321i \(0.358138\pi\)
\(200\) 0 0
\(201\) −75072.0 −0.131065
\(202\) 0 0
\(203\) 224371. 0.382144
\(204\) 0 0
\(205\) 471900. 0.784269
\(206\) 0 0
\(207\) 181700. 0.294733
\(208\) 0 0
\(209\) 1.22837e6 1.94520
\(210\) 0 0
\(211\) −189531. −0.293072 −0.146536 0.989205i \(-0.546812\pi\)
−0.146536 + 0.989205i \(0.546812\pi\)
\(212\) 0 0
\(213\) 541960. 0.818499
\(214\) 0 0
\(215\) −56450.0 −0.0832852
\(216\) 0 0
\(217\) −331044. −0.477240
\(218\) 0 0
\(219\) −85306.0 −0.120190
\(220\) 0 0
\(221\) −562369. −0.774534
\(222\) 0 0
\(223\) 22597.0 0.0304291 0.0152145 0.999884i \(-0.495157\pi\)
0.0152145 + 0.999884i \(0.495157\pi\)
\(224\) 0 0
\(225\) 28750.0 0.0378601
\(226\) 0 0
\(227\) 998117. 1.28563 0.642816 0.766020i \(-0.277766\pi\)
0.642816 + 0.766020i \(0.277766\pi\)
\(228\) 0 0
\(229\) −854644. −1.07695 −0.538476 0.842641i \(-0.681000\pi\)
−0.538476 + 0.842641i \(0.681000\pi\)
\(230\) 0 0
\(231\) 595595. 0.734380
\(232\) 0 0
\(233\) 1.25818e6 1.51829 0.759144 0.650922i \(-0.225618\pi\)
0.759144 + 0.650922i \(0.225618\pi\)
\(234\) 0 0
\(235\) 13425.0 0.0158579
\(236\) 0 0
\(237\) 475609. 0.550021
\(238\) 0 0
\(239\) 706581. 0.800142 0.400071 0.916484i \(-0.368985\pi\)
0.400071 + 0.916484i \(0.368985\pi\)
\(240\) 0 0
\(241\) 616330. 0.683551 0.341775 0.939782i \(-0.388972\pi\)
0.341775 + 0.939782i \(0.388972\pi\)
\(242\) 0 0
\(243\) −344080. −0.373804
\(244\) 0 0
\(245\) 60025.0 0.0638877
\(246\) 0 0
\(247\) 568658. 0.593074
\(248\) 0 0
\(249\) −639948. −0.654103
\(250\) 0 0
\(251\) −190842. −0.191201 −0.0956004 0.995420i \(-0.530477\pi\)
−0.0956004 + 0.995420i \(0.530477\pi\)
\(252\) 0 0
\(253\) 2.82425e6 2.77397
\(254\) 0 0
\(255\) −722075. −0.695395
\(256\) 0 0
\(257\) −1.13094e6 −1.06809 −0.534045 0.845456i \(-0.679329\pi\)
−0.534045 + 0.845456i \(0.679329\pi\)
\(258\) 0 0
\(259\) −809382. −0.749729
\(260\) 0 0
\(261\) 210634. 0.191394
\(262\) 0 0
\(263\) 1.67377e6 1.49213 0.746065 0.665874i \(-0.231941\pi\)
0.746065 + 0.665874i \(0.231941\pi\)
\(264\) 0 0
\(265\) −274600. −0.240207
\(266\) 0 0
\(267\) −292672. −0.251248
\(268\) 0 0
\(269\) −630942. −0.531629 −0.265815 0.964024i \(-0.585641\pi\)
−0.265815 + 0.964024i \(0.585641\pi\)
\(270\) 0 0
\(271\) 372476. 0.308088 0.154044 0.988064i \(-0.450770\pi\)
0.154044 + 0.988064i \(0.450770\pi\)
\(272\) 0 0
\(273\) 275723. 0.223906
\(274\) 0 0
\(275\) 446875. 0.356332
\(276\) 0 0
\(277\) 867010. 0.678930 0.339465 0.940619i \(-0.389754\pi\)
0.339465 + 0.940619i \(0.389754\pi\)
\(278\) 0 0
\(279\) −310776. −0.239021
\(280\) 0 0
\(281\) −1.94498e6 −1.46943 −0.734716 0.678375i \(-0.762685\pi\)
−0.734716 + 0.678375i \(0.762685\pi\)
\(282\) 0 0
\(283\) −1.18501e6 −0.879543 −0.439771 0.898110i \(-0.644941\pi\)
−0.439771 + 0.898110i \(0.644941\pi\)
\(284\) 0 0
\(285\) 730150. 0.532476
\(286\) 0 0
\(287\) 924924. 0.662829
\(288\) 0 0
\(289\) 1.46674e6 1.03302
\(290\) 0 0
\(291\) −1.07398e6 −0.743467
\(292\) 0 0
\(293\) 33669.0 0.0229119 0.0114560 0.999934i \(-0.496353\pi\)
0.0114560 + 0.999934i \(0.496353\pi\)
\(294\) 0 0
\(295\) 648900. 0.434133
\(296\) 0 0
\(297\) −2.39454e6 −1.57518
\(298\) 0 0
\(299\) 1.30745e6 0.845760
\(300\) 0 0
\(301\) −110642. −0.0703888
\(302\) 0 0
\(303\) −497250. −0.311149
\(304\) 0 0
\(305\) 979700. 0.603036
\(306\) 0 0
\(307\) 27043.0 0.0163760 0.00818802 0.999966i \(-0.497394\pi\)
0.00818802 + 0.999966i \(0.497394\pi\)
\(308\) 0 0
\(309\) 2.53621e6 1.51109
\(310\) 0 0
\(311\) −2.14919e6 −1.26001 −0.630004 0.776592i \(-0.716947\pi\)
−0.630004 + 0.776592i \(0.716947\pi\)
\(312\) 0 0
\(313\) −2.67052e6 −1.54076 −0.770381 0.637583i \(-0.779934\pi\)
−0.770381 + 0.637583i \(0.779934\pi\)
\(314\) 0 0
\(315\) 56350.0 0.0319976
\(316\) 0 0
\(317\) −250514. −0.140018 −0.0700090 0.997546i \(-0.522303\pi\)
−0.0700090 + 0.997546i \(0.522303\pi\)
\(318\) 0 0
\(319\) 3.27398e6 1.80136
\(320\) 0 0
\(321\) −1.42361e6 −0.771134
\(322\) 0 0
\(323\) −2.91888e6 −1.55672
\(324\) 0 0
\(325\) 206875. 0.108642
\(326\) 0 0
\(327\) 1.79141e6 0.926457
\(328\) 0 0
\(329\) 26313.0 0.0134023
\(330\) 0 0
\(331\) −1.05899e6 −0.531277 −0.265639 0.964073i \(-0.585583\pi\)
−0.265639 + 0.964073i \(0.585583\pi\)
\(332\) 0 0
\(333\) −759828. −0.375495
\(334\) 0 0
\(335\) −110400. −0.0537473
\(336\) 0 0
\(337\) −2.85025e6 −1.36712 −0.683562 0.729893i \(-0.739570\pi\)
−0.683562 + 0.729893i \(0.739570\pi\)
\(338\) 0 0
\(339\) −2.08682e6 −0.986246
\(340\) 0 0
\(341\) −4.83054e6 −2.24962
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 1.67875e6 0.759344
\(346\) 0 0
\(347\) −1.89141e6 −0.843259 −0.421630 0.906768i \(-0.638542\pi\)
−0.421630 + 0.906768i \(0.638542\pi\)
\(348\) 0 0
\(349\) −1.04232e6 −0.458075 −0.229038 0.973418i \(-0.573558\pi\)
−0.229038 + 0.973418i \(0.573558\pi\)
\(350\) 0 0
\(351\) −1.10852e6 −0.480259
\(352\) 0 0
\(353\) −2.30309e6 −0.983725 −0.491862 0.870673i \(-0.663684\pi\)
−0.491862 + 0.870673i \(0.663684\pi\)
\(354\) 0 0
\(355\) 797000. 0.335651
\(356\) 0 0
\(357\) −1.41527e6 −0.587716
\(358\) 0 0
\(359\) 1.67594e6 0.686315 0.343157 0.939278i \(-0.388504\pi\)
0.343157 + 0.939278i \(0.388504\pi\)
\(360\) 0 0
\(361\) 475425. 0.192006
\(362\) 0 0
\(363\) 5.95296e6 2.37119
\(364\) 0 0
\(365\) −125450. −0.0492877
\(366\) 0 0
\(367\) −94663.0 −0.0366872 −0.0183436 0.999832i \(-0.505839\pi\)
−0.0183436 + 0.999832i \(0.505839\pi\)
\(368\) 0 0
\(369\) 868296. 0.331972
\(370\) 0 0
\(371\) −538216. −0.203012
\(372\) 0 0
\(373\) −953536. −0.354867 −0.177433 0.984133i \(-0.556779\pi\)
−0.177433 + 0.984133i \(0.556779\pi\)
\(374\) 0 0
\(375\) 265625. 0.0975418
\(376\) 0 0
\(377\) 1.51565e6 0.549219
\(378\) 0 0
\(379\) −3.88824e6 −1.39045 −0.695225 0.718792i \(-0.744695\pi\)
−0.695225 + 0.718792i \(0.744695\pi\)
\(380\) 0 0
\(381\) 3.72633e6 1.31513
\(382\) 0 0
\(383\) −2.93636e6 −1.02285 −0.511425 0.859328i \(-0.670882\pi\)
−0.511425 + 0.859328i \(0.670882\pi\)
\(384\) 0 0
\(385\) 875875. 0.301155
\(386\) 0 0
\(387\) −103868. −0.0352537
\(388\) 0 0
\(389\) 1.70377e6 0.570871 0.285435 0.958398i \(-0.407862\pi\)
0.285435 + 0.958398i \(0.407862\pi\)
\(390\) 0 0
\(391\) −6.71105e6 −2.21998
\(392\) 0 0
\(393\) 1.64359e6 0.536801
\(394\) 0 0
\(395\) 699425. 0.225553
\(396\) 0 0
\(397\) 1.19110e6 0.379292 0.189646 0.981853i \(-0.439266\pi\)
0.189646 + 0.981853i \(0.439266\pi\)
\(398\) 0 0
\(399\) 1.43109e6 0.450024
\(400\) 0 0
\(401\) −3.38330e6 −1.05070 −0.525351 0.850885i \(-0.676066\pi\)
−0.525351 + 0.850885i \(0.676066\pi\)
\(402\) 0 0
\(403\) −2.23624e6 −0.685891
\(404\) 0 0
\(405\) −1.70278e6 −0.515846
\(406\) 0 0
\(407\) −1.18104e7 −3.53409
\(408\) 0 0
\(409\) −1.33185e6 −0.393682 −0.196841 0.980435i \(-0.563068\pi\)
−0.196841 + 0.980435i \(0.563068\pi\)
\(410\) 0 0
\(411\) 3.18390e6 0.929725
\(412\) 0 0
\(413\) 1.27184e6 0.366909
\(414\) 0 0
\(415\) −941100. −0.268235
\(416\) 0 0
\(417\) −3.00720e6 −0.846880
\(418\) 0 0
\(419\) −5.82786e6 −1.62171 −0.810856 0.585246i \(-0.800998\pi\)
−0.810856 + 0.585246i \(0.800998\pi\)
\(420\) 0 0
\(421\) 2.47430e6 0.680374 0.340187 0.940358i \(-0.389510\pi\)
0.340187 + 0.940358i \(0.389510\pi\)
\(422\) 0 0
\(423\) 24702.0 0.00671245
\(424\) 0 0
\(425\) −1.06188e6 −0.285168
\(426\) 0 0
\(427\) 1.92021e6 0.509659
\(428\) 0 0
\(429\) 4.02331e6 1.05546
\(430\) 0 0
\(431\) −4.61851e6 −1.19759 −0.598796 0.800902i \(-0.704354\pi\)
−0.598796 + 0.800902i \(0.704354\pi\)
\(432\) 0 0
\(433\) 58606.0 0.0150218 0.00751091 0.999972i \(-0.497609\pi\)
0.00751091 + 0.999972i \(0.497609\pi\)
\(434\) 0 0
\(435\) 1.94608e6 0.493102
\(436\) 0 0
\(437\) 6.78610e6 1.69987
\(438\) 0 0
\(439\) −7.04298e6 −1.74419 −0.872097 0.489332i \(-0.837241\pi\)
−0.872097 + 0.489332i \(0.837241\pi\)
\(440\) 0 0
\(441\) 110446. 0.0270429
\(442\) 0 0
\(443\) −1.46894e6 −0.355627 −0.177813 0.984064i \(-0.556902\pi\)
−0.177813 + 0.984064i \(0.556902\pi\)
\(444\) 0 0
\(445\) −430400. −0.103032
\(446\) 0 0
\(447\) −3.38433e6 −0.801131
\(448\) 0 0
\(449\) −7.48414e6 −1.75197 −0.875983 0.482341i \(-0.839787\pi\)
−0.875983 + 0.482341i \(0.839787\pi\)
\(450\) 0 0
\(451\) 1.34963e7 3.12446
\(452\) 0 0
\(453\) −8.01691e6 −1.83553
\(454\) 0 0
\(455\) 405475. 0.0918196
\(456\) 0 0
\(457\) 170320. 0.0381483 0.0190741 0.999818i \(-0.493928\pi\)
0.0190741 + 0.999818i \(0.493928\pi\)
\(458\) 0 0
\(459\) 5.68995e6 1.26060
\(460\) 0 0
\(461\) −4.28685e6 −0.939476 −0.469738 0.882806i \(-0.655652\pi\)
−0.469738 + 0.882806i \(0.655652\pi\)
\(462\) 0 0
\(463\) −3.38317e6 −0.733452 −0.366726 0.930329i \(-0.619521\pi\)
−0.366726 + 0.930329i \(0.619521\pi\)
\(464\) 0 0
\(465\) −2.87130e6 −0.615809
\(466\) 0 0
\(467\) −5.18029e6 −1.09916 −0.549581 0.835440i \(-0.685213\pi\)
−0.549581 + 0.835440i \(0.685213\pi\)
\(468\) 0 0
\(469\) −216384. −0.0454248
\(470\) 0 0
\(471\) −1.22492e6 −0.254422
\(472\) 0 0
\(473\) −1.61447e6 −0.331801
\(474\) 0 0
\(475\) 1.07375e6 0.218358
\(476\) 0 0
\(477\) −505264. −0.101677
\(478\) 0 0
\(479\) 8.76779e6 1.74603 0.873014 0.487695i \(-0.162162\pi\)
0.873014 + 0.487695i \(0.162162\pi\)
\(480\) 0 0
\(481\) −5.46746e6 −1.07751
\(482\) 0 0
\(483\) 3.29035e6 0.641762
\(484\) 0 0
\(485\) −1.57938e6 −0.304881
\(486\) 0 0
\(487\) −270154. −0.0516166 −0.0258083 0.999667i \(-0.508216\pi\)
−0.0258083 + 0.999667i \(0.508216\pi\)
\(488\) 0 0
\(489\) −6.55068e6 −1.23884
\(490\) 0 0
\(491\) −4.85550e6 −0.908930 −0.454465 0.890765i \(-0.650170\pi\)
−0.454465 + 0.890765i \(0.650170\pi\)
\(492\) 0 0
\(493\) −7.77972e6 −1.44161
\(494\) 0 0
\(495\) 822250. 0.150831
\(496\) 0 0
\(497\) 1.56212e6 0.283677
\(498\) 0 0
\(499\) 2.98576e6 0.536789 0.268394 0.963309i \(-0.413507\pi\)
0.268394 + 0.963309i \(0.413507\pi\)
\(500\) 0 0
\(501\) 9.23027e6 1.64293
\(502\) 0 0
\(503\) 8.28783e6 1.46057 0.730283 0.683145i \(-0.239388\pi\)
0.730283 + 0.683145i \(0.239388\pi\)
\(504\) 0 0
\(505\) −731250. −0.127596
\(506\) 0 0
\(507\) −4.44944e6 −0.768751
\(508\) 0 0
\(509\) 6.24307e6 1.06808 0.534040 0.845459i \(-0.320673\pi\)
0.534040 + 0.845459i \(0.320673\pi\)
\(510\) 0 0
\(511\) −245882. −0.0416557
\(512\) 0 0
\(513\) −5.75358e6 −0.965261
\(514\) 0 0
\(515\) 3.72972e6 0.619668
\(516\) 0 0
\(517\) 383955. 0.0631763
\(518\) 0 0
\(519\) 6.30620e6 1.02766
\(520\) 0 0
\(521\) 7.49509e6 1.20971 0.604856 0.796335i \(-0.293230\pi\)
0.604856 + 0.796335i \(0.293230\pi\)
\(522\) 0 0
\(523\) −3.80957e6 −0.609007 −0.304503 0.952511i \(-0.598490\pi\)
−0.304503 + 0.952511i \(0.598490\pi\)
\(524\) 0 0
\(525\) 520625. 0.0824379
\(526\) 0 0
\(527\) 1.14784e7 1.80035
\(528\) 0 0
\(529\) 9.16616e6 1.42413
\(530\) 0 0
\(531\) 1.19398e6 0.183764
\(532\) 0 0
\(533\) 6.24796e6 0.952621
\(534\) 0 0
\(535\) −2.09355e6 −0.316227
\(536\) 0 0
\(537\) 1.28209e7 1.91860
\(538\) 0 0
\(539\) 1.71672e6 0.254523
\(540\) 0 0
\(541\) 7.67156e6 1.12691 0.563457 0.826145i \(-0.309471\pi\)
0.563457 + 0.826145i \(0.309471\pi\)
\(542\) 0 0
\(543\) 5.16528e6 0.751786
\(544\) 0 0
\(545\) 2.63442e6 0.379922
\(546\) 0 0
\(547\) 9.53845e6 1.36304 0.681522 0.731798i \(-0.261319\pi\)
0.681522 + 0.731798i \(0.261319\pi\)
\(548\) 0 0
\(549\) 1.80265e6 0.255258
\(550\) 0 0
\(551\) 7.86672e6 1.10386
\(552\) 0 0
\(553\) 1.37087e6 0.190627
\(554\) 0 0
\(555\) −7.02015e6 −0.967417
\(556\) 0 0
\(557\) −7.45022e6 −1.01749 −0.508746 0.860916i \(-0.669891\pi\)
−0.508746 + 0.860916i \(0.669891\pi\)
\(558\) 0 0
\(559\) −747398. −0.101163
\(560\) 0 0
\(561\) −2.06513e7 −2.77039
\(562\) 0 0
\(563\) −3.36698e6 −0.447682 −0.223841 0.974626i \(-0.571860\pi\)
−0.223841 + 0.974626i \(0.571860\pi\)
\(564\) 0 0
\(565\) −3.06885e6 −0.404440
\(566\) 0 0
\(567\) −3.33744e6 −0.435969
\(568\) 0 0
\(569\) −4.05501e6 −0.525063 −0.262532 0.964923i \(-0.584557\pi\)
−0.262532 + 0.964923i \(0.584557\pi\)
\(570\) 0 0
\(571\) −7.31585e6 −0.939020 −0.469510 0.882927i \(-0.655569\pi\)
−0.469510 + 0.882927i \(0.655569\pi\)
\(572\) 0 0
\(573\) 3.16661e6 0.402910
\(574\) 0 0
\(575\) 2.46875e6 0.311392
\(576\) 0 0
\(577\) −9.76895e6 −1.22154 −0.610771 0.791807i \(-0.709140\pi\)
−0.610771 + 0.791807i \(0.709140\pi\)
\(578\) 0 0
\(579\) 1.57257e6 0.194945
\(580\) 0 0
\(581\) −1.84456e6 −0.226700
\(582\) 0 0
\(583\) −7.85356e6 −0.956963
\(584\) 0 0
\(585\) 380650. 0.0459871
\(586\) 0 0
\(587\) −3.75689e6 −0.450021 −0.225011 0.974356i \(-0.572242\pi\)
−0.225011 + 0.974356i \(0.572242\pi\)
\(588\) 0 0
\(589\) −1.16068e7 −1.37856
\(590\) 0 0
\(591\) −1.25183e7 −1.47426
\(592\) 0 0
\(593\) 2.89048e6 0.337546 0.168773 0.985655i \(-0.446020\pi\)
0.168773 + 0.985655i \(0.446020\pi\)
\(594\) 0 0
\(595\) −2.08128e6 −0.241011
\(596\) 0 0
\(597\) 8.18754e6 0.940194
\(598\) 0 0
\(599\) −1.32233e7 −1.50582 −0.752910 0.658124i \(-0.771350\pi\)
−0.752910 + 0.658124i \(0.771350\pi\)
\(600\) 0 0
\(601\) 3.47399e6 0.392321 0.196161 0.980572i \(-0.437153\pi\)
0.196161 + 0.980572i \(0.437153\pi\)
\(602\) 0 0
\(603\) −203136. −0.0227506
\(604\) 0 0
\(605\) 8.75435e6 0.972379
\(606\) 0 0
\(607\) −6.45088e6 −0.710636 −0.355318 0.934746i \(-0.615627\pi\)
−0.355318 + 0.934746i \(0.615627\pi\)
\(608\) 0 0
\(609\) 3.81431e6 0.416747
\(610\) 0 0
\(611\) 177747. 0.0192619
\(612\) 0 0
\(613\) 8.43820e6 0.906982 0.453491 0.891261i \(-0.350178\pi\)
0.453491 + 0.891261i \(0.350178\pi\)
\(614\) 0 0
\(615\) 8.02230e6 0.855285
\(616\) 0 0
\(617\) 9.45501e6 0.999882 0.499941 0.866059i \(-0.333355\pi\)
0.499941 + 0.866059i \(0.333355\pi\)
\(618\) 0 0
\(619\) −1.43145e6 −0.150158 −0.0750790 0.997178i \(-0.523921\pi\)
−0.0750790 + 0.997178i \(0.523921\pi\)
\(620\) 0 0
\(621\) −1.32286e7 −1.37652
\(622\) 0 0
\(623\) −843584. −0.0870780
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 2.08823e7 2.12134
\(628\) 0 0
\(629\) 2.80641e7 2.82829
\(630\) 0 0
\(631\) 1.01813e7 1.01795 0.508977 0.860780i \(-0.330024\pi\)
0.508977 + 0.860780i \(0.330024\pi\)
\(632\) 0 0
\(633\) −3.22203e6 −0.319610
\(634\) 0 0
\(635\) 5.47990e6 0.539310
\(636\) 0 0
\(637\) 794731. 0.0776018
\(638\) 0 0
\(639\) 1.46648e6 0.142077
\(640\) 0 0
\(641\) −1.76908e7 −1.70060 −0.850300 0.526298i \(-0.823580\pi\)
−0.850300 + 0.526298i \(0.823580\pi\)
\(642\) 0 0
\(643\) −1.82748e7 −1.74311 −0.871556 0.490296i \(-0.836889\pi\)
−0.871556 + 0.490296i \(0.836889\pi\)
\(644\) 0 0
\(645\) −959650. −0.0908267
\(646\) 0 0
\(647\) −1.52897e6 −0.143594 −0.0717972 0.997419i \(-0.522873\pi\)
−0.0717972 + 0.997419i \(0.522873\pi\)
\(648\) 0 0
\(649\) 1.85585e7 1.72955
\(650\) 0 0
\(651\) −5.62775e6 −0.520454
\(652\) 0 0
\(653\) −9.10088e6 −0.835219 −0.417610 0.908627i \(-0.637132\pi\)
−0.417610 + 0.908627i \(0.637132\pi\)
\(654\) 0 0
\(655\) 2.41705e6 0.220132
\(656\) 0 0
\(657\) −230828. −0.0208629
\(658\) 0 0
\(659\) 430119. 0.0385811 0.0192906 0.999814i \(-0.493859\pi\)
0.0192906 + 0.999814i \(0.493859\pi\)
\(660\) 0 0
\(661\) 7.65248e6 0.681238 0.340619 0.940202i \(-0.389363\pi\)
0.340619 + 0.940202i \(0.389363\pi\)
\(662\) 0 0
\(663\) −9.56027e6 −0.844669
\(664\) 0 0
\(665\) 2.10455e6 0.184546
\(666\) 0 0
\(667\) 1.80870e7 1.57418
\(668\) 0 0
\(669\) 384149. 0.0331844
\(670\) 0 0
\(671\) 2.80194e7 2.40244
\(672\) 0 0
\(673\) −2.18404e7 −1.85876 −0.929378 0.369128i \(-0.879656\pi\)
−0.929378 + 0.369128i \(0.879656\pi\)
\(674\) 0 0
\(675\) −2.09312e6 −0.176822
\(676\) 0 0
\(677\) 1.39504e7 1.16981 0.584905 0.811102i \(-0.301132\pi\)
0.584905 + 0.811102i \(0.301132\pi\)
\(678\) 0 0
\(679\) −3.09558e6 −0.257672
\(680\) 0 0
\(681\) 1.69680e7 1.40205
\(682\) 0 0
\(683\) −2.29121e7 −1.87937 −0.939686 0.342040i \(-0.888882\pi\)
−0.939686 + 0.342040i \(0.888882\pi\)
\(684\) 0 0
\(685\) 4.68220e6 0.381262
\(686\) 0 0
\(687\) −1.45289e7 −1.17447
\(688\) 0 0
\(689\) −3.63570e6 −0.291770
\(690\) 0 0
\(691\) 1.69127e7 1.34747 0.673734 0.738974i \(-0.264690\pi\)
0.673734 + 0.738974i \(0.264690\pi\)
\(692\) 0 0
\(693\) 1.61161e6 0.127476
\(694\) 0 0
\(695\) −4.42235e6 −0.347289
\(696\) 0 0
\(697\) −3.20703e7 −2.50047
\(698\) 0 0
\(699\) 2.13891e7 1.65577
\(700\) 0 0
\(701\) −1.90087e7 −1.46102 −0.730510 0.682902i \(-0.760718\pi\)
−0.730510 + 0.682902i \(0.760718\pi\)
\(702\) 0 0
\(703\) −2.83779e7 −2.16567
\(704\) 0 0
\(705\) 228225. 0.0172938
\(706\) 0 0
\(707\) −1.43325e6 −0.107838
\(708\) 0 0
\(709\) 1.66079e7 1.24079 0.620396 0.784289i \(-0.286972\pi\)
0.620396 + 0.784289i \(0.286972\pi\)
\(710\) 0 0
\(711\) 1.28694e6 0.0954740
\(712\) 0 0
\(713\) −2.66862e7 −1.96591
\(714\) 0 0
\(715\) 5.91662e6 0.432822
\(716\) 0 0
\(717\) 1.20119e7 0.872596
\(718\) 0 0
\(719\) −5.93610e6 −0.428232 −0.214116 0.976808i \(-0.568687\pi\)
−0.214116 + 0.976808i \(0.568687\pi\)
\(720\) 0 0
\(721\) 7.31026e6 0.523715
\(722\) 0 0
\(723\) 1.04776e7 0.745447
\(724\) 0 0
\(725\) 2.86188e6 0.202211
\(726\) 0 0
\(727\) −1.73276e7 −1.21591 −0.607957 0.793970i \(-0.708011\pi\)
−0.607957 + 0.793970i \(0.708011\pi\)
\(728\) 0 0
\(729\) 1.07016e7 0.745814
\(730\) 0 0
\(731\) 3.83634e6 0.265536
\(732\) 0 0
\(733\) 1.39829e7 0.961255 0.480627 0.876925i \(-0.340409\pi\)
0.480627 + 0.876925i \(0.340409\pi\)
\(734\) 0 0
\(735\) 1.02042e6 0.0696727
\(736\) 0 0
\(737\) −3.15744e6 −0.214125
\(738\) 0 0
\(739\) 1.14263e7 0.769649 0.384824 0.922990i \(-0.374262\pi\)
0.384824 + 0.922990i \(0.374262\pi\)
\(740\) 0 0
\(741\) 9.66719e6 0.646777
\(742\) 0 0
\(743\) −1.23126e7 −0.818236 −0.409118 0.912481i \(-0.634164\pi\)
−0.409118 + 0.912481i \(0.634164\pi\)
\(744\) 0 0
\(745\) −4.97695e6 −0.328528
\(746\) 0 0
\(747\) −1.73162e6 −0.113541
\(748\) 0 0
\(749\) −4.10336e6 −0.267261
\(750\) 0 0
\(751\) 1.43093e7 0.925806 0.462903 0.886409i \(-0.346808\pi\)
0.462903 + 0.886409i \(0.346808\pi\)
\(752\) 0 0
\(753\) −3.24431e6 −0.208514
\(754\) 0 0
\(755\) −1.17896e7 −0.752715
\(756\) 0 0
\(757\) −5.34505e6 −0.339010 −0.169505 0.985529i \(-0.554217\pi\)
−0.169505 + 0.985529i \(0.554217\pi\)
\(758\) 0 0
\(759\) 4.80122e7 3.02515
\(760\) 0 0
\(761\) 6.22568e6 0.389695 0.194848 0.980834i \(-0.437579\pi\)
0.194848 + 0.980834i \(0.437579\pi\)
\(762\) 0 0
\(763\) 5.16347e6 0.321093
\(764\) 0 0
\(765\) −1.95385e6 −0.120708
\(766\) 0 0
\(767\) 8.59144e6 0.527324
\(768\) 0 0
\(769\) 1.57888e7 0.962793 0.481397 0.876503i \(-0.340130\pi\)
0.481397 + 0.876503i \(0.340130\pi\)
\(770\) 0 0
\(771\) −1.92260e7 −1.16481
\(772\) 0 0
\(773\) −2.50453e7 −1.50757 −0.753785 0.657121i \(-0.771774\pi\)
−0.753785 + 0.657121i \(0.771774\pi\)
\(774\) 0 0
\(775\) −4.22250e6 −0.252531
\(776\) 0 0
\(777\) −1.37595e7 −0.817617
\(778\) 0 0
\(779\) 3.24290e7 1.91465
\(780\) 0 0
\(781\) 2.27942e7 1.33720
\(782\) 0 0
\(783\) −1.53351e7 −0.893884
\(784\) 0 0
\(785\) −1.80135e6 −0.104334
\(786\) 0 0
\(787\) 1.28020e6 0.0736784 0.0368392 0.999321i \(-0.488271\pi\)
0.0368392 + 0.999321i \(0.488271\pi\)
\(788\) 0 0
\(789\) 2.84541e7 1.62724
\(790\) 0 0
\(791\) −6.01495e6 −0.341815
\(792\) 0 0
\(793\) 1.29712e7 0.732484
\(794\) 0 0
\(795\) −4.66820e6 −0.261958
\(796\) 0 0
\(797\) −1.13798e7 −0.634584 −0.317292 0.948328i \(-0.602774\pi\)
−0.317292 + 0.948328i \(0.602774\pi\)
\(798\) 0 0
\(799\) −912363. −0.0505593
\(800\) 0 0
\(801\) −791936. −0.0436123
\(802\) 0 0
\(803\) −3.58787e6 −0.196358
\(804\) 0 0
\(805\) 4.83875e6 0.263174
\(806\) 0 0
\(807\) −1.07260e7 −0.579768
\(808\) 0 0
\(809\) −1.70542e7 −0.916138 −0.458069 0.888917i \(-0.651459\pi\)
−0.458069 + 0.888917i \(0.651459\pi\)
\(810\) 0 0
\(811\) 2.21494e7 1.18252 0.591262 0.806480i \(-0.298630\pi\)
0.591262 + 0.806480i \(0.298630\pi\)
\(812\) 0 0
\(813\) 6.33209e6 0.335986
\(814\) 0 0
\(815\) −9.63335e6 −0.508023
\(816\) 0 0
\(817\) −3.87924e6 −0.203326
\(818\) 0 0
\(819\) 746074. 0.0388662
\(820\) 0 0
\(821\) −1.01068e7 −0.523307 −0.261654 0.965162i \(-0.584268\pi\)
−0.261654 + 0.965162i \(0.584268\pi\)
\(822\) 0 0
\(823\) 1.83993e7 0.946895 0.473447 0.880822i \(-0.343009\pi\)
0.473447 + 0.880822i \(0.343009\pi\)
\(824\) 0 0
\(825\) 7.59688e6 0.388598
\(826\) 0 0
\(827\) 2.48056e7 1.26121 0.630604 0.776105i \(-0.282807\pi\)
0.630604 + 0.776105i \(0.282807\pi\)
\(828\) 0 0
\(829\) −1.19708e6 −0.0604976 −0.0302488 0.999542i \(-0.509630\pi\)
−0.0302488 + 0.999542i \(0.509630\pi\)
\(830\) 0 0
\(831\) 1.47392e7 0.740407
\(832\) 0 0
\(833\) −4.07930e6 −0.203692
\(834\) 0 0
\(835\) 1.35739e7 0.673735
\(836\) 0 0
\(837\) 2.26258e7 1.11633
\(838\) 0 0
\(839\) 3.17171e7 1.55557 0.777783 0.628533i \(-0.216344\pi\)
0.777783 + 0.628533i \(0.216344\pi\)
\(840\) 0 0
\(841\) 456092. 0.0222363
\(842\) 0 0
\(843\) −3.30647e7 −1.60249
\(844\) 0 0
\(845\) −6.54330e6 −0.315250
\(846\) 0 0
\(847\) 1.71585e7 0.821810
\(848\) 0 0
\(849\) −2.01452e7 −0.959186
\(850\) 0 0
\(851\) −6.52461e7 −3.08838
\(852\) 0 0
\(853\) 3.18237e7 1.49754 0.748769 0.662831i \(-0.230645\pi\)
0.748769 + 0.662831i \(0.230645\pi\)
\(854\) 0 0
\(855\) 1.97570e6 0.0924285
\(856\) 0 0
\(857\) 2.27853e7 1.05975 0.529874 0.848076i \(-0.322239\pi\)
0.529874 + 0.848076i \(0.322239\pi\)
\(858\) 0 0
\(859\) 1.85966e7 0.859907 0.429953 0.902851i \(-0.358530\pi\)
0.429953 + 0.902851i \(0.358530\pi\)
\(860\) 0 0
\(861\) 1.57237e7 0.722848
\(862\) 0 0
\(863\) 2.77046e7 1.26627 0.633133 0.774043i \(-0.281769\pi\)
0.633133 + 0.774043i \(0.281769\pi\)
\(864\) 0 0
\(865\) 9.27382e6 0.421423
\(866\) 0 0
\(867\) 2.49346e7 1.12656
\(868\) 0 0
\(869\) 2.00036e7 0.898582
\(870\) 0 0
\(871\) −1.46170e6 −0.0652847
\(872\) 0 0
\(873\) −2.90605e6 −0.129053
\(874\) 0 0
\(875\) 765625. 0.0338062
\(876\) 0 0
\(877\) −2.41150e7 −1.05874 −0.529370 0.848391i \(-0.677572\pi\)
−0.529370 + 0.848391i \(0.677572\pi\)
\(878\) 0 0
\(879\) 572373. 0.0249866
\(880\) 0 0
\(881\) −1.26207e7 −0.547827 −0.273914 0.961754i \(-0.588318\pi\)
−0.273914 + 0.961754i \(0.588318\pi\)
\(882\) 0 0
\(883\) 6.01876e6 0.259780 0.129890 0.991528i \(-0.458538\pi\)
0.129890 + 0.991528i \(0.458538\pi\)
\(884\) 0 0
\(885\) 1.10313e7 0.473444
\(886\) 0 0
\(887\) −2.36901e7 −1.01102 −0.505509 0.862821i \(-0.668695\pi\)
−0.505509 + 0.862821i \(0.668695\pi\)
\(888\) 0 0
\(889\) 1.07406e7 0.455800
\(890\) 0 0
\(891\) −4.86994e7 −2.05508
\(892\) 0 0
\(893\) 922566. 0.0387141
\(894\) 0 0
\(895\) 1.88543e7 0.786779
\(896\) 0 0
\(897\) 2.22266e7 0.922344
\(898\) 0 0
\(899\) −3.09357e7 −1.27662
\(900\) 0 0
\(901\) 1.86618e7 0.765847
\(902\) 0 0
\(903\) −1.88091e6 −0.0767626
\(904\) 0 0
\(905\) 7.59600e6 0.308293
\(906\) 0 0
\(907\) 1.10583e7 0.446346 0.223173 0.974779i \(-0.428359\pi\)
0.223173 + 0.974779i \(0.428359\pi\)
\(908\) 0 0
\(909\) −1.34550e6 −0.0540100
\(910\) 0 0
\(911\) −3.07573e6 −0.122787 −0.0613934 0.998114i \(-0.519554\pi\)
−0.0613934 + 0.998114i \(0.519554\pi\)
\(912\) 0 0
\(913\) −2.69155e7 −1.06862
\(914\) 0 0
\(915\) 1.66549e7 0.657642
\(916\) 0 0
\(917\) 4.73742e6 0.186045
\(918\) 0 0
\(919\) 1.89018e7 0.738270 0.369135 0.929376i \(-0.379654\pi\)
0.369135 + 0.929376i \(0.379654\pi\)
\(920\) 0 0
\(921\) 459731. 0.0178589
\(922\) 0 0
\(923\) 1.05523e7 0.407701
\(924\) 0 0
\(925\) −1.03238e7 −0.396719
\(926\) 0 0
\(927\) 6.86269e6 0.262298
\(928\) 0 0
\(929\) −1.81458e7 −0.689821 −0.344911 0.938636i \(-0.612091\pi\)
−0.344911 + 0.938636i \(0.612091\pi\)
\(930\) 0 0
\(931\) 4.12492e6 0.155970
\(932\) 0 0
\(933\) −3.65362e7 −1.37410
\(934\) 0 0
\(935\) −3.03696e7 −1.13608
\(936\) 0 0
\(937\) −2.17350e7 −0.808744 −0.404372 0.914595i \(-0.632510\pi\)
−0.404372 + 0.914595i \(0.632510\pi\)
\(938\) 0 0
\(939\) −4.53989e7 −1.68028
\(940\) 0 0
\(941\) 1.86808e7 0.687735 0.343868 0.939018i \(-0.388263\pi\)
0.343868 + 0.939018i \(0.388263\pi\)
\(942\) 0 0
\(943\) 7.45602e7 2.73041
\(944\) 0 0
\(945\) −4.10252e6 −0.149442
\(946\) 0 0
\(947\) 2.24778e6 0.0814476 0.0407238 0.999170i \(-0.487034\pi\)
0.0407238 + 0.999170i \(0.487034\pi\)
\(948\) 0 0
\(949\) −1.66096e6 −0.0598678
\(950\) 0 0
\(951\) −4.25874e6 −0.152697
\(952\) 0 0
\(953\) −3.73293e7 −1.33143 −0.665714 0.746207i \(-0.731873\pi\)
−0.665714 + 0.746207i \(0.731873\pi\)
\(954\) 0 0
\(955\) 4.65678e6 0.165225
\(956\) 0 0
\(957\) 5.56577e7 1.96447
\(958\) 0 0
\(959\) 9.17711e6 0.322225
\(960\) 0 0
\(961\) 1.70144e7 0.594303
\(962\) 0 0
\(963\) −3.85213e6 −0.133855
\(964\) 0 0
\(965\) 2.31260e6 0.0799433
\(966\) 0 0
\(967\) −2.61870e7 −0.900573 −0.450287 0.892884i \(-0.648678\pi\)
−0.450287 + 0.892884i \(0.648678\pi\)
\(968\) 0 0
\(969\) −4.96210e7 −1.69768
\(970\) 0 0
\(971\) 3.91957e7 1.33410 0.667052 0.745011i \(-0.267556\pi\)
0.667052 + 0.745011i \(0.267556\pi\)
\(972\) 0 0
\(973\) −8.66781e6 −0.293513
\(974\) 0 0
\(975\) 3.51688e6 0.118480
\(976\) 0 0
\(977\) 3.03935e6 0.101870 0.0509348 0.998702i \(-0.483780\pi\)
0.0509348 + 0.998702i \(0.483780\pi\)
\(978\) 0 0
\(979\) −1.23094e7 −0.410470
\(980\) 0 0
\(981\) 4.84734e6 0.160817
\(982\) 0 0
\(983\) 1.59937e7 0.527915 0.263957 0.964534i \(-0.414972\pi\)
0.263957 + 0.964534i \(0.414972\pi\)
\(984\) 0 0
\(985\) −1.84092e7 −0.604567
\(986\) 0 0
\(987\) 447321. 0.0146159
\(988\) 0 0
\(989\) −8.91910e6 −0.289955
\(990\) 0 0
\(991\) −3.63186e6 −0.117475 −0.0587375 0.998273i \(-0.518707\pi\)
−0.0587375 + 0.998273i \(0.518707\pi\)
\(992\) 0 0
\(993\) −1.80028e7 −0.579384
\(994\) 0 0
\(995\) 1.20405e7 0.385555
\(996\) 0 0
\(997\) −4.33287e7 −1.38051 −0.690253 0.723568i \(-0.742501\pi\)
−0.690253 + 0.723568i \(0.742501\pi\)
\(998\) 0 0
\(999\) 5.53188e7 1.75371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.6.a.h.1.1 1
4.3 odd 2 70.6.a.e.1.1 1
12.11 even 2 630.6.a.b.1.1 1
20.3 even 4 350.6.c.a.99.1 2
20.7 even 4 350.6.c.a.99.2 2
20.19 odd 2 350.6.a.e.1.1 1
28.27 even 2 490.6.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.e.1.1 1 4.3 odd 2
350.6.a.e.1.1 1 20.19 odd 2
350.6.c.a.99.1 2 20.3 even 4
350.6.c.a.99.2 2 20.7 even 4
490.6.a.m.1.1 1 28.27 even 2
560.6.a.h.1.1 1 1.1 even 1 trivial
630.6.a.b.1.1 1 12.11 even 2