Properties

Label 560.6.a.f.1.1
Level $560$
Weight $6$
Character 560.1
Self dual yes
Analytic conductor $89.815$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,6,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 560.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.0000 q^{3} -25.0000 q^{5} -49.0000 q^{7} -122.000 q^{9} +267.000 q^{11} -1087.00 q^{13} -275.000 q^{15} -513.000 q^{17} +802.000 q^{19} -539.000 q^{21} +1290.00 q^{23} +625.000 q^{25} -4015.00 q^{27} +1779.00 q^{29} +2584.00 q^{31} +2937.00 q^{33} +1225.00 q^{35} +13862.0 q^{37} -11957.0 q^{39} -11904.0 q^{41} +598.000 q^{43} +3050.00 q^{45} +17019.0 q^{47} +2401.00 q^{49} -5643.00 q^{51} +27852.0 q^{53} -6675.00 q^{55} +8822.00 q^{57} -30912.0 q^{59} -1780.00 q^{61} +5978.00 q^{63} +27175.0 q^{65} -25052.0 q^{67} +14190.0 q^{69} +51984.0 q^{71} +47690.0 q^{73} +6875.00 q^{75} -13083.0 q^{77} +102121. q^{79} -14519.0 q^{81} +83676.0 q^{83} +12825.0 q^{85} +19569.0 q^{87} -32400.0 q^{89} +53263.0 q^{91} +28424.0 q^{93} -20050.0 q^{95} -148645. q^{97} -32574.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 11.0000 0.705650 0.352825 0.935689i \(-0.385221\pi\)
0.352825 + 0.935689i \(0.385221\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) −122.000 −0.502058
\(10\) 0 0
\(11\) 267.000 0.665318 0.332659 0.943047i \(-0.392054\pi\)
0.332659 + 0.943047i \(0.392054\pi\)
\(12\) 0 0
\(13\) −1087.00 −1.78390 −0.891951 0.452131i \(-0.850664\pi\)
−0.891951 + 0.452131i \(0.850664\pi\)
\(14\) 0 0
\(15\) −275.000 −0.315576
\(16\) 0 0
\(17\) −513.000 −0.430522 −0.215261 0.976557i \(-0.569060\pi\)
−0.215261 + 0.976557i \(0.569060\pi\)
\(18\) 0 0
\(19\) 802.000 0.509672 0.254836 0.966984i \(-0.417979\pi\)
0.254836 + 0.966984i \(0.417979\pi\)
\(20\) 0 0
\(21\) −539.000 −0.266711
\(22\) 0 0
\(23\) 1290.00 0.508476 0.254238 0.967142i \(-0.418175\pi\)
0.254238 + 0.967142i \(0.418175\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −4015.00 −1.05993
\(28\) 0 0
\(29\) 1779.00 0.392809 0.196404 0.980523i \(-0.437074\pi\)
0.196404 + 0.980523i \(0.437074\pi\)
\(30\) 0 0
\(31\) 2584.00 0.482935 0.241467 0.970409i \(-0.422371\pi\)
0.241467 + 0.970409i \(0.422371\pi\)
\(32\) 0 0
\(33\) 2937.00 0.469482
\(34\) 0 0
\(35\) 1225.00 0.169031
\(36\) 0 0
\(37\) 13862.0 1.66464 0.832322 0.554292i \(-0.187011\pi\)
0.832322 + 0.554292i \(0.187011\pi\)
\(38\) 0 0
\(39\) −11957.0 −1.25881
\(40\) 0 0
\(41\) −11904.0 −1.10594 −0.552972 0.833200i \(-0.686506\pi\)
−0.552972 + 0.833200i \(0.686506\pi\)
\(42\) 0 0
\(43\) 598.000 0.0493208 0.0246604 0.999696i \(-0.492150\pi\)
0.0246604 + 0.999696i \(0.492150\pi\)
\(44\) 0 0
\(45\) 3050.00 0.224527
\(46\) 0 0
\(47\) 17019.0 1.12380 0.561900 0.827205i \(-0.310070\pi\)
0.561900 + 0.827205i \(0.310070\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −5643.00 −0.303798
\(52\) 0 0
\(53\) 27852.0 1.36197 0.680984 0.732299i \(-0.261552\pi\)
0.680984 + 0.732299i \(0.261552\pi\)
\(54\) 0 0
\(55\) −6675.00 −0.297539
\(56\) 0 0
\(57\) 8822.00 0.359650
\(58\) 0 0
\(59\) −30912.0 −1.15610 −0.578052 0.816000i \(-0.696187\pi\)
−0.578052 + 0.816000i \(0.696187\pi\)
\(60\) 0 0
\(61\) −1780.00 −0.0612485 −0.0306242 0.999531i \(-0.509750\pi\)
−0.0306242 + 0.999531i \(0.509750\pi\)
\(62\) 0 0
\(63\) 5978.00 0.189760
\(64\) 0 0
\(65\) 27175.0 0.797786
\(66\) 0 0
\(67\) −25052.0 −0.681797 −0.340899 0.940100i \(-0.610731\pi\)
−0.340899 + 0.940100i \(0.610731\pi\)
\(68\) 0 0
\(69\) 14190.0 0.358806
\(70\) 0 0
\(71\) 51984.0 1.22384 0.611919 0.790921i \(-0.290398\pi\)
0.611919 + 0.790921i \(0.290398\pi\)
\(72\) 0 0
\(73\) 47690.0 1.04742 0.523709 0.851897i \(-0.324548\pi\)
0.523709 + 0.851897i \(0.324548\pi\)
\(74\) 0 0
\(75\) 6875.00 0.141130
\(76\) 0 0
\(77\) −13083.0 −0.251467
\(78\) 0 0
\(79\) 102121. 1.84097 0.920486 0.390775i \(-0.127793\pi\)
0.920486 + 0.390775i \(0.127793\pi\)
\(80\) 0 0
\(81\) −14519.0 −0.245881
\(82\) 0 0
\(83\) 83676.0 1.33323 0.666616 0.745401i \(-0.267742\pi\)
0.666616 + 0.745401i \(0.267742\pi\)
\(84\) 0 0
\(85\) 12825.0 0.192535
\(86\) 0 0
\(87\) 19569.0 0.277185
\(88\) 0 0
\(89\) −32400.0 −0.433581 −0.216790 0.976218i \(-0.569559\pi\)
−0.216790 + 0.976218i \(0.569559\pi\)
\(90\) 0 0
\(91\) 53263.0 0.674252
\(92\) 0 0
\(93\) 28424.0 0.340783
\(94\) 0 0
\(95\) −20050.0 −0.227932
\(96\) 0 0
\(97\) −148645. −1.60406 −0.802031 0.597283i \(-0.796247\pi\)
−0.802031 + 0.597283i \(0.796247\pi\)
\(98\) 0 0
\(99\) −32574.0 −0.334028
\(100\) 0 0
\(101\) −41310.0 −0.402951 −0.201475 0.979494i \(-0.564574\pi\)
−0.201475 + 0.979494i \(0.564574\pi\)
\(102\) 0 0
\(103\) −108785. −1.01036 −0.505180 0.863014i \(-0.668574\pi\)
−0.505180 + 0.863014i \(0.668574\pi\)
\(104\) 0 0
\(105\) 13475.0 0.119277
\(106\) 0 0
\(107\) 106098. 0.895876 0.447938 0.894065i \(-0.352159\pi\)
0.447938 + 0.894065i \(0.352159\pi\)
\(108\) 0 0
\(109\) −124111. −1.00056 −0.500281 0.865863i \(-0.666770\pi\)
−0.500281 + 0.865863i \(0.666770\pi\)
\(110\) 0 0
\(111\) 152482. 1.17466
\(112\) 0 0
\(113\) 192834. 1.42065 0.710326 0.703873i \(-0.248548\pi\)
0.710326 + 0.703873i \(0.248548\pi\)
\(114\) 0 0
\(115\) −32250.0 −0.227397
\(116\) 0 0
\(117\) 132614. 0.895622
\(118\) 0 0
\(119\) 25137.0 0.162722
\(120\) 0 0
\(121\) −89762.0 −0.557351
\(122\) 0 0
\(123\) −130944. −0.780410
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −99248.0 −0.546025 −0.273012 0.962010i \(-0.588020\pi\)
−0.273012 + 0.962010i \(0.588020\pi\)
\(128\) 0 0
\(129\) 6578.00 0.0348032
\(130\) 0 0
\(131\) 276810. 1.40930 0.704650 0.709555i \(-0.251104\pi\)
0.704650 + 0.709555i \(0.251104\pi\)
\(132\) 0 0
\(133\) −39298.0 −0.192638
\(134\) 0 0
\(135\) 100375. 0.474014
\(136\) 0 0
\(137\) 237744. 1.08220 0.541101 0.840958i \(-0.318008\pi\)
0.541101 + 0.840958i \(0.318008\pi\)
\(138\) 0 0
\(139\) −160478. −0.704496 −0.352248 0.935907i \(-0.614583\pi\)
−0.352248 + 0.935907i \(0.614583\pi\)
\(140\) 0 0
\(141\) 187209. 0.793011
\(142\) 0 0
\(143\) −290229. −1.18686
\(144\) 0 0
\(145\) −44475.0 −0.175669
\(146\) 0 0
\(147\) 26411.0 0.100807
\(148\) 0 0
\(149\) −99678.0 −0.367819 −0.183909 0.982943i \(-0.558875\pi\)
−0.183909 + 0.982943i \(0.558875\pi\)
\(150\) 0 0
\(151\) 206017. 0.735293 0.367647 0.929966i \(-0.380164\pi\)
0.367647 + 0.929966i \(0.380164\pi\)
\(152\) 0 0
\(153\) 62586.0 0.216147
\(154\) 0 0
\(155\) −64600.0 −0.215975
\(156\) 0 0
\(157\) 581150. 1.88165 0.940826 0.338891i \(-0.110052\pi\)
0.940826 + 0.338891i \(0.110052\pi\)
\(158\) 0 0
\(159\) 306372. 0.961073
\(160\) 0 0
\(161\) −63210.0 −0.192186
\(162\) 0 0
\(163\) −346610. −1.02181 −0.510907 0.859636i \(-0.670690\pi\)
−0.510907 + 0.859636i \(0.670690\pi\)
\(164\) 0 0
\(165\) −73425.0 −0.209959
\(166\) 0 0
\(167\) 448887. 1.24551 0.622753 0.782418i \(-0.286014\pi\)
0.622753 + 0.782418i \(0.286014\pi\)
\(168\) 0 0
\(169\) 810276. 2.18231
\(170\) 0 0
\(171\) −97844.0 −0.255884
\(172\) 0 0
\(173\) −262509. −0.666851 −0.333426 0.942776i \(-0.608205\pi\)
−0.333426 + 0.942776i \(0.608205\pi\)
\(174\) 0 0
\(175\) −30625.0 −0.0755929
\(176\) 0 0
\(177\) −340032. −0.815805
\(178\) 0 0
\(179\) 111012. 0.258963 0.129481 0.991582i \(-0.458669\pi\)
0.129481 + 0.991582i \(0.458669\pi\)
\(180\) 0 0
\(181\) 112772. 0.255861 0.127931 0.991783i \(-0.459166\pi\)
0.127931 + 0.991783i \(0.459166\pi\)
\(182\) 0 0
\(183\) −19580.0 −0.0432200
\(184\) 0 0
\(185\) −346550. −0.744452
\(186\) 0 0
\(187\) −136971. −0.286434
\(188\) 0 0
\(189\) 196735. 0.400615
\(190\) 0 0
\(191\) 731991. 1.45185 0.725926 0.687773i \(-0.241411\pi\)
0.725926 + 0.687773i \(0.241411\pi\)
\(192\) 0 0
\(193\) −186040. −0.359512 −0.179756 0.983711i \(-0.557531\pi\)
−0.179756 + 0.983711i \(0.557531\pi\)
\(194\) 0 0
\(195\) 298925. 0.562958
\(196\) 0 0
\(197\) 121356. 0.222790 0.111395 0.993776i \(-0.464468\pi\)
0.111395 + 0.993776i \(0.464468\pi\)
\(198\) 0 0
\(199\) −648584. −1.16100 −0.580502 0.814259i \(-0.697144\pi\)
−0.580502 + 0.814259i \(0.697144\pi\)
\(200\) 0 0
\(201\) −275572. −0.481111
\(202\) 0 0
\(203\) −87171.0 −0.148468
\(204\) 0 0
\(205\) 297600. 0.494593
\(206\) 0 0
\(207\) −157380. −0.255284
\(208\) 0 0
\(209\) 214134. 0.339094
\(210\) 0 0
\(211\) 149773. 0.231594 0.115797 0.993273i \(-0.463058\pi\)
0.115797 + 0.993273i \(0.463058\pi\)
\(212\) 0 0
\(213\) 571824. 0.863601
\(214\) 0 0
\(215\) −14950.0 −0.0220569
\(216\) 0 0
\(217\) −126616. −0.182532
\(218\) 0 0
\(219\) 524590. 0.739111
\(220\) 0 0
\(221\) 557631. 0.768009
\(222\) 0 0
\(223\) 1.10096e6 1.48255 0.741274 0.671202i \(-0.234222\pi\)
0.741274 + 0.671202i \(0.234222\pi\)
\(224\) 0 0
\(225\) −76250.0 −0.100412
\(226\) 0 0
\(227\) 695127. 0.895364 0.447682 0.894193i \(-0.352250\pi\)
0.447682 + 0.894193i \(0.352250\pi\)
\(228\) 0 0
\(229\) 463736. 0.584362 0.292181 0.956363i \(-0.405619\pi\)
0.292181 + 0.956363i \(0.405619\pi\)
\(230\) 0 0
\(231\) −143913. −0.177448
\(232\) 0 0
\(233\) −1.57654e6 −1.90245 −0.951227 0.308492i \(-0.900176\pi\)
−0.951227 + 0.308492i \(0.900176\pi\)
\(234\) 0 0
\(235\) −425475. −0.502579
\(236\) 0 0
\(237\) 1.12333e6 1.29908
\(238\) 0 0
\(239\) 512037. 0.579838 0.289919 0.957051i \(-0.406372\pi\)
0.289919 + 0.957051i \(0.406372\pi\)
\(240\) 0 0
\(241\) 989330. 1.09723 0.548616 0.836074i \(-0.315155\pi\)
0.548616 + 0.836074i \(0.315155\pi\)
\(242\) 0 0
\(243\) 815936. 0.886422
\(244\) 0 0
\(245\) −60025.0 −0.0638877
\(246\) 0 0
\(247\) −871774. −0.909204
\(248\) 0 0
\(249\) 920436. 0.940795
\(250\) 0 0
\(251\) 61230.0 0.0613451 0.0306726 0.999529i \(-0.490235\pi\)
0.0306726 + 0.999529i \(0.490235\pi\)
\(252\) 0 0
\(253\) 344430. 0.338298
\(254\) 0 0
\(255\) 141075. 0.135863
\(256\) 0 0
\(257\) 1.33887e6 1.26446 0.632231 0.774780i \(-0.282139\pi\)
0.632231 + 0.774780i \(0.282139\pi\)
\(258\) 0 0
\(259\) −679238. −0.629177
\(260\) 0 0
\(261\) −217038. −0.197213
\(262\) 0 0
\(263\) 1.65619e6 1.47645 0.738227 0.674553i \(-0.235663\pi\)
0.738227 + 0.674553i \(0.235663\pi\)
\(264\) 0 0
\(265\) −696300. −0.609090
\(266\) 0 0
\(267\) −356400. −0.305956
\(268\) 0 0
\(269\) −750606. −0.632457 −0.316229 0.948683i \(-0.602417\pi\)
−0.316229 + 0.948683i \(0.602417\pi\)
\(270\) 0 0
\(271\) 557908. 0.461466 0.230733 0.973017i \(-0.425888\pi\)
0.230733 + 0.973017i \(0.425888\pi\)
\(272\) 0 0
\(273\) 585893. 0.475786
\(274\) 0 0
\(275\) 166875. 0.133064
\(276\) 0 0
\(277\) 1.77256e6 1.38804 0.694018 0.719957i \(-0.255839\pi\)
0.694018 + 0.719957i \(0.255839\pi\)
\(278\) 0 0
\(279\) −315248. −0.242461
\(280\) 0 0
\(281\) −1.09893e6 −0.830243 −0.415122 0.909766i \(-0.636261\pi\)
−0.415122 + 0.909766i \(0.636261\pi\)
\(282\) 0 0
\(283\) 320569. 0.237933 0.118967 0.992898i \(-0.462042\pi\)
0.118967 + 0.992898i \(0.462042\pi\)
\(284\) 0 0
\(285\) −220550. −0.160840
\(286\) 0 0
\(287\) 583296. 0.418008
\(288\) 0 0
\(289\) −1.15669e6 −0.814651
\(290\) 0 0
\(291\) −1.63510e6 −1.13191
\(292\) 0 0
\(293\) −1.62337e6 −1.10471 −0.552355 0.833609i \(-0.686271\pi\)
−0.552355 + 0.833609i \(0.686271\pi\)
\(294\) 0 0
\(295\) 772800. 0.517026
\(296\) 0 0
\(297\) −1.07200e6 −0.705189
\(298\) 0 0
\(299\) −1.40223e6 −0.907071
\(300\) 0 0
\(301\) −29302.0 −0.0186415
\(302\) 0 0
\(303\) −454410. −0.284342
\(304\) 0 0
\(305\) 44500.0 0.0273912
\(306\) 0 0
\(307\) −995087. −0.602581 −0.301290 0.953532i \(-0.597417\pi\)
−0.301290 + 0.953532i \(0.597417\pi\)
\(308\) 0 0
\(309\) −1.19664e6 −0.712961
\(310\) 0 0
\(311\) −1.34398e6 −0.787939 −0.393969 0.919124i \(-0.628898\pi\)
−0.393969 + 0.919124i \(0.628898\pi\)
\(312\) 0 0
\(313\) 1.91971e6 1.10758 0.553788 0.832658i \(-0.313182\pi\)
0.553788 + 0.832658i \(0.313182\pi\)
\(314\) 0 0
\(315\) −149450. −0.0848632
\(316\) 0 0
\(317\) −1.91366e6 −1.06959 −0.534794 0.844983i \(-0.679611\pi\)
−0.534794 + 0.844983i \(0.679611\pi\)
\(318\) 0 0
\(319\) 474993. 0.261343
\(320\) 0 0
\(321\) 1.16708e6 0.632175
\(322\) 0 0
\(323\) −411426. −0.219425
\(324\) 0 0
\(325\) −679375. −0.356781
\(326\) 0 0
\(327\) −1.36522e6 −0.706047
\(328\) 0 0
\(329\) −833931. −0.424757
\(330\) 0 0
\(331\) 2.25694e6 1.13227 0.566135 0.824313i \(-0.308438\pi\)
0.566135 + 0.824313i \(0.308438\pi\)
\(332\) 0 0
\(333\) −1.69116e6 −0.835748
\(334\) 0 0
\(335\) 626300. 0.304909
\(336\) 0 0
\(337\) −1.45016e6 −0.695571 −0.347786 0.937574i \(-0.613066\pi\)
−0.347786 + 0.937574i \(0.613066\pi\)
\(338\) 0 0
\(339\) 2.12117e6 1.00248
\(340\) 0 0
\(341\) 689928. 0.321305
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) −354750. −0.160463
\(346\) 0 0
\(347\) −856386. −0.381809 −0.190904 0.981609i \(-0.561142\pi\)
−0.190904 + 0.981609i \(0.561142\pi\)
\(348\) 0 0
\(349\) −347602. −0.152763 −0.0763816 0.997079i \(-0.524337\pi\)
−0.0763816 + 0.997079i \(0.524337\pi\)
\(350\) 0 0
\(351\) 4.36430e6 1.89081
\(352\) 0 0
\(353\) −2.21860e6 −0.947640 −0.473820 0.880622i \(-0.657125\pi\)
−0.473820 + 0.880622i \(0.657125\pi\)
\(354\) 0 0
\(355\) −1.29960e6 −0.547317
\(356\) 0 0
\(357\) 276507. 0.114825
\(358\) 0 0
\(359\) −2.94338e6 −1.20534 −0.602672 0.797989i \(-0.705897\pi\)
−0.602672 + 0.797989i \(0.705897\pi\)
\(360\) 0 0
\(361\) −1.83290e6 −0.740235
\(362\) 0 0
\(363\) −987382. −0.393295
\(364\) 0 0
\(365\) −1.19225e6 −0.468420
\(366\) 0 0
\(367\) −2.33000e6 −0.903005 −0.451503 0.892270i \(-0.649112\pi\)
−0.451503 + 0.892270i \(0.649112\pi\)
\(368\) 0 0
\(369\) 1.45229e6 0.555248
\(370\) 0 0
\(371\) −1.36475e6 −0.514775
\(372\) 0 0
\(373\) 1.69246e6 0.629865 0.314932 0.949114i \(-0.398018\pi\)
0.314932 + 0.949114i \(0.398018\pi\)
\(374\) 0 0
\(375\) −171875. −0.0631153
\(376\) 0 0
\(377\) −1.93377e6 −0.700732
\(378\) 0 0
\(379\) 1.50075e6 0.536673 0.268337 0.963325i \(-0.413526\pi\)
0.268337 + 0.963325i \(0.413526\pi\)
\(380\) 0 0
\(381\) −1.09173e6 −0.385303
\(382\) 0 0
\(383\) −3.48522e6 −1.21404 −0.607020 0.794686i \(-0.707635\pi\)
−0.607020 + 0.794686i \(0.707635\pi\)
\(384\) 0 0
\(385\) 327075. 0.112459
\(386\) 0 0
\(387\) −72956.0 −0.0247619
\(388\) 0 0
\(389\) −3.60598e6 −1.20823 −0.604114 0.796898i \(-0.706473\pi\)
−0.604114 + 0.796898i \(0.706473\pi\)
\(390\) 0 0
\(391\) −661770. −0.218910
\(392\) 0 0
\(393\) 3.04491e6 0.994473
\(394\) 0 0
\(395\) −2.55302e6 −0.823308
\(396\) 0 0
\(397\) 4.74380e6 1.51060 0.755302 0.655377i \(-0.227490\pi\)
0.755302 + 0.655377i \(0.227490\pi\)
\(398\) 0 0
\(399\) −432278. −0.135935
\(400\) 0 0
\(401\) 5.26539e6 1.63520 0.817598 0.575789i \(-0.195305\pi\)
0.817598 + 0.575789i \(0.195305\pi\)
\(402\) 0 0
\(403\) −2.80881e6 −0.861508
\(404\) 0 0
\(405\) 362975. 0.109961
\(406\) 0 0
\(407\) 3.70115e6 1.10752
\(408\) 0 0
\(409\) 1.37015e6 0.405004 0.202502 0.979282i \(-0.435093\pi\)
0.202502 + 0.979282i \(0.435093\pi\)
\(410\) 0 0
\(411\) 2.61518e6 0.763656
\(412\) 0 0
\(413\) 1.51469e6 0.436966
\(414\) 0 0
\(415\) −2.09190e6 −0.596239
\(416\) 0 0
\(417\) −1.76526e6 −0.497128
\(418\) 0 0
\(419\) −6.16429e6 −1.71533 −0.857666 0.514207i \(-0.828086\pi\)
−0.857666 + 0.514207i \(0.828086\pi\)
\(420\) 0 0
\(421\) 2.45358e6 0.674677 0.337338 0.941383i \(-0.390473\pi\)
0.337338 + 0.941383i \(0.390473\pi\)
\(422\) 0 0
\(423\) −2.07632e6 −0.564213
\(424\) 0 0
\(425\) −320625. −0.0861043
\(426\) 0 0
\(427\) 87220.0 0.0231498
\(428\) 0 0
\(429\) −3.19252e6 −0.837510
\(430\) 0 0
\(431\) −7.66771e6 −1.98826 −0.994128 0.108207i \(-0.965489\pi\)
−0.994128 + 0.108207i \(0.965489\pi\)
\(432\) 0 0
\(433\) −5.00285e6 −1.28232 −0.641161 0.767406i \(-0.721547\pi\)
−0.641161 + 0.767406i \(0.721547\pi\)
\(434\) 0 0
\(435\) −489225. −0.123961
\(436\) 0 0
\(437\) 1.03458e6 0.259156
\(438\) 0 0
\(439\) −1.86363e6 −0.461527 −0.230764 0.973010i \(-0.574122\pi\)
−0.230764 + 0.973010i \(0.574122\pi\)
\(440\) 0 0
\(441\) −292922. −0.0717225
\(442\) 0 0
\(443\) −2.60747e6 −0.631263 −0.315632 0.948882i \(-0.602216\pi\)
−0.315632 + 0.948882i \(0.602216\pi\)
\(444\) 0 0
\(445\) 810000. 0.193903
\(446\) 0 0
\(447\) −1.09646e6 −0.259551
\(448\) 0 0
\(449\) −4.78007e6 −1.11897 −0.559484 0.828841i \(-0.689001\pi\)
−0.559484 + 0.828841i \(0.689001\pi\)
\(450\) 0 0
\(451\) −3.17837e6 −0.735805
\(452\) 0 0
\(453\) 2.26619e6 0.518860
\(454\) 0 0
\(455\) −1.33157e6 −0.301535
\(456\) 0 0
\(457\) −7.96757e6 −1.78458 −0.892289 0.451465i \(-0.850902\pi\)
−0.892289 + 0.451465i \(0.850902\pi\)
\(458\) 0 0
\(459\) 2.05969e6 0.456322
\(460\) 0 0
\(461\) 1.77665e6 0.389358 0.194679 0.980867i \(-0.437633\pi\)
0.194679 + 0.980867i \(0.437633\pi\)
\(462\) 0 0
\(463\) 998548. 0.216479 0.108240 0.994125i \(-0.465479\pi\)
0.108240 + 0.994125i \(0.465479\pi\)
\(464\) 0 0
\(465\) −710600. −0.152403
\(466\) 0 0
\(467\) 5.08478e6 1.07890 0.539449 0.842019i \(-0.318633\pi\)
0.539449 + 0.842019i \(0.318633\pi\)
\(468\) 0 0
\(469\) 1.22755e6 0.257695
\(470\) 0 0
\(471\) 6.39265e6 1.32779
\(472\) 0 0
\(473\) 159666. 0.0328140
\(474\) 0 0
\(475\) 501250. 0.101934
\(476\) 0 0
\(477\) −3.39794e6 −0.683786
\(478\) 0 0
\(479\) −3.71936e6 −0.740678 −0.370339 0.928897i \(-0.620758\pi\)
−0.370339 + 0.928897i \(0.620758\pi\)
\(480\) 0 0
\(481\) −1.50680e7 −2.96956
\(482\) 0 0
\(483\) −695310. −0.135616
\(484\) 0 0
\(485\) 3.71612e6 0.717358
\(486\) 0 0
\(487\) 9.12035e6 1.74256 0.871282 0.490782i \(-0.163289\pi\)
0.871282 + 0.490782i \(0.163289\pi\)
\(488\) 0 0
\(489\) −3.81271e6 −0.721044
\(490\) 0 0
\(491\) 7.83774e6 1.46719 0.733596 0.679586i \(-0.237840\pi\)
0.733596 + 0.679586i \(0.237840\pi\)
\(492\) 0 0
\(493\) −912627. −0.169113
\(494\) 0 0
\(495\) 814350. 0.149382
\(496\) 0 0
\(497\) −2.54722e6 −0.462567
\(498\) 0 0
\(499\) 96103.0 0.0172777 0.00863884 0.999963i \(-0.497250\pi\)
0.00863884 + 0.999963i \(0.497250\pi\)
\(500\) 0 0
\(501\) 4.93776e6 0.878892
\(502\) 0 0
\(503\) 2.37577e6 0.418682 0.209341 0.977843i \(-0.432868\pi\)
0.209341 + 0.977843i \(0.432868\pi\)
\(504\) 0 0
\(505\) 1.03275e6 0.180205
\(506\) 0 0
\(507\) 8.91304e6 1.53995
\(508\) 0 0
\(509\) 5.91484e6 1.01193 0.505963 0.862555i \(-0.331137\pi\)
0.505963 + 0.862555i \(0.331137\pi\)
\(510\) 0 0
\(511\) −2.33681e6 −0.395887
\(512\) 0 0
\(513\) −3.22003e6 −0.540215
\(514\) 0 0
\(515\) 2.71963e6 0.451847
\(516\) 0 0
\(517\) 4.54407e6 0.747685
\(518\) 0 0
\(519\) −2.88760e6 −0.470564
\(520\) 0 0
\(521\) 1.46099e6 0.235806 0.117903 0.993025i \(-0.462383\pi\)
0.117903 + 0.993025i \(0.462383\pi\)
\(522\) 0 0
\(523\) 2.90691e6 0.464705 0.232352 0.972632i \(-0.425358\pi\)
0.232352 + 0.972632i \(0.425358\pi\)
\(524\) 0 0
\(525\) −336875. −0.0533422
\(526\) 0 0
\(527\) −1.32559e6 −0.207914
\(528\) 0 0
\(529\) −4.77224e6 −0.741453
\(530\) 0 0
\(531\) 3.77126e6 0.580431
\(532\) 0 0
\(533\) 1.29396e7 1.97290
\(534\) 0 0
\(535\) −2.65245e6 −0.400648
\(536\) 0 0
\(537\) 1.22113e6 0.182737
\(538\) 0 0
\(539\) 641067. 0.0950455
\(540\) 0 0
\(541\) 5.28092e6 0.775741 0.387870 0.921714i \(-0.373211\pi\)
0.387870 + 0.921714i \(0.373211\pi\)
\(542\) 0 0
\(543\) 1.24049e6 0.180549
\(544\) 0 0
\(545\) 3.10278e6 0.447465
\(546\) 0 0
\(547\) −1.31999e7 −1.88626 −0.943132 0.332419i \(-0.892135\pi\)
−0.943132 + 0.332419i \(0.892135\pi\)
\(548\) 0 0
\(549\) 217160. 0.0307503
\(550\) 0 0
\(551\) 1.42676e6 0.200203
\(552\) 0 0
\(553\) −5.00393e6 −0.695822
\(554\) 0 0
\(555\) −3.81205e6 −0.525323
\(556\) 0 0
\(557\) −1.39920e7 −1.91091 −0.955457 0.295131i \(-0.904637\pi\)
−0.955457 + 0.295131i \(0.904637\pi\)
\(558\) 0 0
\(559\) −650026. −0.0879835
\(560\) 0 0
\(561\) −1.50668e6 −0.202122
\(562\) 0 0
\(563\) 5.12689e6 0.681684 0.340842 0.940121i \(-0.389288\pi\)
0.340842 + 0.940121i \(0.389288\pi\)
\(564\) 0 0
\(565\) −4.82085e6 −0.635335
\(566\) 0 0
\(567\) 711431. 0.0929341
\(568\) 0 0
\(569\) −8.29102e6 −1.07356 −0.536781 0.843721i \(-0.680360\pi\)
−0.536781 + 0.843721i \(0.680360\pi\)
\(570\) 0 0
\(571\) −6.21372e6 −0.797556 −0.398778 0.917048i \(-0.630566\pi\)
−0.398778 + 0.917048i \(0.630566\pi\)
\(572\) 0 0
\(573\) 8.05190e6 1.02450
\(574\) 0 0
\(575\) 806250. 0.101695
\(576\) 0 0
\(577\) 1.14818e7 1.43572 0.717861 0.696186i \(-0.245121\pi\)
0.717861 + 0.696186i \(0.245121\pi\)
\(578\) 0 0
\(579\) −2.04644e6 −0.253690
\(580\) 0 0
\(581\) −4.10012e6 −0.503914
\(582\) 0 0
\(583\) 7.43648e6 0.906142
\(584\) 0 0
\(585\) −3.31535e6 −0.400534
\(586\) 0 0
\(587\) −641856. −0.0768851 −0.0384426 0.999261i \(-0.512240\pi\)
−0.0384426 + 0.999261i \(0.512240\pi\)
\(588\) 0 0
\(589\) 2.07237e6 0.246138
\(590\) 0 0
\(591\) 1.33492e6 0.157212
\(592\) 0 0
\(593\) −2.80572e6 −0.327648 −0.163824 0.986490i \(-0.552383\pi\)
−0.163824 + 0.986490i \(0.552383\pi\)
\(594\) 0 0
\(595\) −628425. −0.0727715
\(596\) 0 0
\(597\) −7.13442e6 −0.819263
\(598\) 0 0
\(599\) −7.74415e6 −0.881874 −0.440937 0.897538i \(-0.645354\pi\)
−0.440937 + 0.897538i \(0.645354\pi\)
\(600\) 0 0
\(601\) 2.88868e6 0.326222 0.163111 0.986608i \(-0.447847\pi\)
0.163111 + 0.986608i \(0.447847\pi\)
\(602\) 0 0
\(603\) 3.05634e6 0.342302
\(604\) 0 0
\(605\) 2.24405e6 0.249255
\(606\) 0 0
\(607\) −1.22095e7 −1.34501 −0.672504 0.740093i \(-0.734781\pi\)
−0.672504 + 0.740093i \(0.734781\pi\)
\(608\) 0 0
\(609\) −958881. −0.104766
\(610\) 0 0
\(611\) −1.84997e7 −2.00475
\(612\) 0 0
\(613\) 1.51667e7 1.63019 0.815096 0.579326i \(-0.196684\pi\)
0.815096 + 0.579326i \(0.196684\pi\)
\(614\) 0 0
\(615\) 3.27360e6 0.349010
\(616\) 0 0
\(617\) 1.53927e7 1.62780 0.813899 0.581006i \(-0.197341\pi\)
0.813899 + 0.581006i \(0.197341\pi\)
\(618\) 0 0
\(619\) 1.40843e7 1.47744 0.738720 0.674013i \(-0.235431\pi\)
0.738720 + 0.674013i \(0.235431\pi\)
\(620\) 0 0
\(621\) −5.17935e6 −0.538947
\(622\) 0 0
\(623\) 1.58760e6 0.163878
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 2.35547e6 0.239282
\(628\) 0 0
\(629\) −7.11121e6 −0.716666
\(630\) 0 0
\(631\) −1.56178e7 −1.56152 −0.780760 0.624831i \(-0.785168\pi\)
−0.780760 + 0.624831i \(0.785168\pi\)
\(632\) 0 0
\(633\) 1.64750e6 0.163424
\(634\) 0 0
\(635\) 2.48120e6 0.244190
\(636\) 0 0
\(637\) −2.60989e6 −0.254843
\(638\) 0 0
\(639\) −6.34205e6 −0.614437
\(640\) 0 0
\(641\) 4.04157e6 0.388513 0.194256 0.980951i \(-0.437771\pi\)
0.194256 + 0.980951i \(0.437771\pi\)
\(642\) 0 0
\(643\) 1.71035e7 1.63139 0.815693 0.578485i \(-0.196356\pi\)
0.815693 + 0.578485i \(0.196356\pi\)
\(644\) 0 0
\(645\) −164450. −0.0155645
\(646\) 0 0
\(647\) 8.83546e6 0.829790 0.414895 0.909869i \(-0.363818\pi\)
0.414895 + 0.909869i \(0.363818\pi\)
\(648\) 0 0
\(649\) −8.25350e6 −0.769178
\(650\) 0 0
\(651\) −1.39278e6 −0.128804
\(652\) 0 0
\(653\) 9.36125e6 0.859115 0.429557 0.903040i \(-0.358670\pi\)
0.429557 + 0.903040i \(0.358670\pi\)
\(654\) 0 0
\(655\) −6.92025e6 −0.630258
\(656\) 0 0
\(657\) −5.81818e6 −0.525864
\(658\) 0 0
\(659\) 366111. 0.0328397 0.0164199 0.999865i \(-0.494773\pi\)
0.0164199 + 0.999865i \(0.494773\pi\)
\(660\) 0 0
\(661\) 2.05164e7 1.82640 0.913202 0.407508i \(-0.133602\pi\)
0.913202 + 0.407508i \(0.133602\pi\)
\(662\) 0 0
\(663\) 6.13394e6 0.541946
\(664\) 0 0
\(665\) 982450. 0.0861502
\(666\) 0 0
\(667\) 2.29491e6 0.199734
\(668\) 0 0
\(669\) 1.21105e7 1.04616
\(670\) 0 0
\(671\) −475260. −0.0407498
\(672\) 0 0
\(673\) 7.48189e6 0.636757 0.318378 0.947964i \(-0.396862\pi\)
0.318378 + 0.947964i \(0.396862\pi\)
\(674\) 0 0
\(675\) −2.50938e6 −0.211985
\(676\) 0 0
\(677\) 1.21459e7 1.01849 0.509247 0.860621i \(-0.329924\pi\)
0.509247 + 0.860621i \(0.329924\pi\)
\(678\) 0 0
\(679\) 7.28360e6 0.606278
\(680\) 0 0
\(681\) 7.64640e6 0.631814
\(682\) 0 0
\(683\) 1.15232e7 0.945197 0.472599 0.881278i \(-0.343316\pi\)
0.472599 + 0.881278i \(0.343316\pi\)
\(684\) 0 0
\(685\) −5.94360e6 −0.483975
\(686\) 0 0
\(687\) 5.10110e6 0.412355
\(688\) 0 0
\(689\) −3.02751e7 −2.42962
\(690\) 0 0
\(691\) 1.71185e7 1.36386 0.681931 0.731417i \(-0.261141\pi\)
0.681931 + 0.731417i \(0.261141\pi\)
\(692\) 0 0
\(693\) 1.59613e6 0.126251
\(694\) 0 0
\(695\) 4.01195e6 0.315060
\(696\) 0 0
\(697\) 6.10675e6 0.476133
\(698\) 0 0
\(699\) −1.73419e7 −1.34247
\(700\) 0 0
\(701\) 9.72758e6 0.747669 0.373835 0.927495i \(-0.378043\pi\)
0.373835 + 0.927495i \(0.378043\pi\)
\(702\) 0 0
\(703\) 1.11173e7 0.848422
\(704\) 0 0
\(705\) −4.68022e6 −0.354645
\(706\) 0 0
\(707\) 2.02419e6 0.152301
\(708\) 0 0
\(709\) −673813. −0.0503412 −0.0251706 0.999683i \(-0.508013\pi\)
−0.0251706 + 0.999683i \(0.508013\pi\)
\(710\) 0 0
\(711\) −1.24588e7 −0.924274
\(712\) 0 0
\(713\) 3.33336e6 0.245560
\(714\) 0 0
\(715\) 7.25572e6 0.530781
\(716\) 0 0
\(717\) 5.63241e6 0.409163
\(718\) 0 0
\(719\) −2.77719e6 −0.200347 −0.100174 0.994970i \(-0.531940\pi\)
−0.100174 + 0.994970i \(0.531940\pi\)
\(720\) 0 0
\(721\) 5.33046e6 0.381880
\(722\) 0 0
\(723\) 1.08826e7 0.774262
\(724\) 0 0
\(725\) 1.11188e6 0.0785617
\(726\) 0 0
\(727\) −1.16385e7 −0.816700 −0.408350 0.912825i \(-0.633896\pi\)
−0.408350 + 0.912825i \(0.633896\pi\)
\(728\) 0 0
\(729\) 1.25034e7 0.871384
\(730\) 0 0
\(731\) −306774. −0.0212337
\(732\) 0 0
\(733\) −1.32013e7 −0.907522 −0.453761 0.891123i \(-0.649918\pi\)
−0.453761 + 0.891123i \(0.649918\pi\)
\(734\) 0 0
\(735\) −660275. −0.0450823
\(736\) 0 0
\(737\) −6.68888e6 −0.453612
\(738\) 0 0
\(739\) −3.25476e6 −0.219234 −0.109617 0.993974i \(-0.534962\pi\)
−0.109617 + 0.993974i \(0.534962\pi\)
\(740\) 0 0
\(741\) −9.58951e6 −0.641580
\(742\) 0 0
\(743\) 7.61596e6 0.506119 0.253059 0.967451i \(-0.418563\pi\)
0.253059 + 0.967451i \(0.418563\pi\)
\(744\) 0 0
\(745\) 2.49195e6 0.164493
\(746\) 0 0
\(747\) −1.02085e7 −0.669359
\(748\) 0 0
\(749\) −5.19880e6 −0.338609
\(750\) 0 0
\(751\) −655199. −0.0423910 −0.0211955 0.999775i \(-0.506747\pi\)
−0.0211955 + 0.999775i \(0.506747\pi\)
\(752\) 0 0
\(753\) 673530. 0.0432882
\(754\) 0 0
\(755\) −5.15042e6 −0.328833
\(756\) 0 0
\(757\) 1.85111e7 1.17406 0.587032 0.809564i \(-0.300296\pi\)
0.587032 + 0.809564i \(0.300296\pi\)
\(758\) 0 0
\(759\) 3.78873e6 0.238720
\(760\) 0 0
\(761\) −1.85291e7 −1.15983 −0.579914 0.814678i \(-0.696914\pi\)
−0.579914 + 0.814678i \(0.696914\pi\)
\(762\) 0 0
\(763\) 6.08144e6 0.378177
\(764\) 0 0
\(765\) −1.56465e6 −0.0966637
\(766\) 0 0
\(767\) 3.36013e7 2.06238
\(768\) 0 0
\(769\) −1.48414e7 −0.905024 −0.452512 0.891758i \(-0.649472\pi\)
−0.452512 + 0.891758i \(0.649472\pi\)
\(770\) 0 0
\(771\) 1.47276e7 0.892268
\(772\) 0 0
\(773\) 3.93042e6 0.236586 0.118293 0.992979i \(-0.462258\pi\)
0.118293 + 0.992979i \(0.462258\pi\)
\(774\) 0 0
\(775\) 1.61500e6 0.0965869
\(776\) 0 0
\(777\) −7.47162e6 −0.443979
\(778\) 0 0
\(779\) −9.54701e6 −0.563668
\(780\) 0 0
\(781\) 1.38797e7 0.814242
\(782\) 0 0
\(783\) −7.14269e6 −0.416349
\(784\) 0 0
\(785\) −1.45288e7 −0.841500
\(786\) 0 0
\(787\) −1.17824e7 −0.678105 −0.339053 0.940767i \(-0.610107\pi\)
−0.339053 + 0.940767i \(0.610107\pi\)
\(788\) 0 0
\(789\) 1.82180e7 1.04186
\(790\) 0 0
\(791\) −9.44887e6 −0.536956
\(792\) 0 0
\(793\) 1.93486e6 0.109261
\(794\) 0 0
\(795\) −7.65930e6 −0.429805
\(796\) 0 0
\(797\) −5.40952e6 −0.301657 −0.150828 0.988560i \(-0.548194\pi\)
−0.150828 + 0.988560i \(0.548194\pi\)
\(798\) 0 0
\(799\) −8.73075e6 −0.483821
\(800\) 0 0
\(801\) 3.95280e6 0.217683
\(802\) 0 0
\(803\) 1.27332e7 0.696867
\(804\) 0 0
\(805\) 1.58025e6 0.0859481
\(806\) 0 0
\(807\) −8.25667e6 −0.446294
\(808\) 0 0
\(809\) −7.12264e6 −0.382622 −0.191311 0.981529i \(-0.561274\pi\)
−0.191311 + 0.981529i \(0.561274\pi\)
\(810\) 0 0
\(811\) 3.03045e7 1.61791 0.808956 0.587869i \(-0.200033\pi\)
0.808956 + 0.587869i \(0.200033\pi\)
\(812\) 0 0
\(813\) 6.13699e6 0.325633
\(814\) 0 0
\(815\) 8.66525e6 0.456969
\(816\) 0 0
\(817\) 479596. 0.0251374
\(818\) 0 0
\(819\) −6.49809e6 −0.338513
\(820\) 0 0
\(821\) 2.82181e7 1.46106 0.730532 0.682878i \(-0.239272\pi\)
0.730532 + 0.682878i \(0.239272\pi\)
\(822\) 0 0
\(823\) 2.64534e7 1.36139 0.680694 0.732567i \(-0.261678\pi\)
0.680694 + 0.732567i \(0.261678\pi\)
\(824\) 0 0
\(825\) 1.83563e6 0.0938964
\(826\) 0 0
\(827\) −4.44481e6 −0.225990 −0.112995 0.993596i \(-0.536044\pi\)
−0.112995 + 0.993596i \(0.536044\pi\)
\(828\) 0 0
\(829\) −2.80386e6 −0.141700 −0.0708501 0.997487i \(-0.522571\pi\)
−0.0708501 + 0.997487i \(0.522571\pi\)
\(830\) 0 0
\(831\) 1.94981e7 0.979469
\(832\) 0 0
\(833\) −1.23171e6 −0.0615031
\(834\) 0 0
\(835\) −1.12222e7 −0.557007
\(836\) 0 0
\(837\) −1.03748e7 −0.511876
\(838\) 0 0
\(839\) −2.59804e7 −1.27421 −0.637104 0.770778i \(-0.719868\pi\)
−0.637104 + 0.770778i \(0.719868\pi\)
\(840\) 0 0
\(841\) −1.73463e7 −0.845701
\(842\) 0 0
\(843\) −1.20883e7 −0.585862
\(844\) 0 0
\(845\) −2.02569e7 −0.975958
\(846\) 0 0
\(847\) 4.39834e6 0.210659
\(848\) 0 0
\(849\) 3.52626e6 0.167898
\(850\) 0 0
\(851\) 1.78820e7 0.846431
\(852\) 0 0
\(853\) 1.18392e7 0.557121 0.278560 0.960419i \(-0.410143\pi\)
0.278560 + 0.960419i \(0.410143\pi\)
\(854\) 0 0
\(855\) 2.44610e6 0.114435
\(856\) 0 0
\(857\) −2.99283e6 −0.139197 −0.0695985 0.997575i \(-0.522172\pi\)
−0.0695985 + 0.997575i \(0.522172\pi\)
\(858\) 0 0
\(859\) −2.80980e7 −1.29925 −0.649626 0.760254i \(-0.725074\pi\)
−0.649626 + 0.760254i \(0.725074\pi\)
\(860\) 0 0
\(861\) 6.41626e6 0.294967
\(862\) 0 0
\(863\) −1.15833e7 −0.529424 −0.264712 0.964328i \(-0.585277\pi\)
−0.264712 + 0.964328i \(0.585277\pi\)
\(864\) 0 0
\(865\) 6.56272e6 0.298225
\(866\) 0 0
\(867\) −1.27236e7 −0.574859
\(868\) 0 0
\(869\) 2.72663e7 1.22483
\(870\) 0 0
\(871\) 2.72315e7 1.21626
\(872\) 0 0
\(873\) 1.81347e7 0.805331
\(874\) 0 0
\(875\) 765625. 0.0338062
\(876\) 0 0
\(877\) 4.12538e7 1.81119 0.905596 0.424141i \(-0.139424\pi\)
0.905596 + 0.424141i \(0.139424\pi\)
\(878\) 0 0
\(879\) −1.78571e7 −0.779539
\(880\) 0 0
\(881\) −1.32541e7 −0.575321 −0.287661 0.957732i \(-0.592877\pi\)
−0.287661 + 0.957732i \(0.592877\pi\)
\(882\) 0 0
\(883\) 3.19208e7 1.37776 0.688878 0.724877i \(-0.258103\pi\)
0.688878 + 0.724877i \(0.258103\pi\)
\(884\) 0 0
\(885\) 8.50080e6 0.364839
\(886\) 0 0
\(887\) −1.74303e7 −0.743866 −0.371933 0.928260i \(-0.621305\pi\)
−0.371933 + 0.928260i \(0.621305\pi\)
\(888\) 0 0
\(889\) 4.86315e6 0.206378
\(890\) 0 0
\(891\) −3.87657e6 −0.163589
\(892\) 0 0
\(893\) 1.36492e7 0.572769
\(894\) 0 0
\(895\) −2.77530e6 −0.115812
\(896\) 0 0
\(897\) −1.54245e7 −0.640075
\(898\) 0 0
\(899\) 4.59694e6 0.189701
\(900\) 0 0
\(901\) −1.42881e7 −0.586357
\(902\) 0 0
\(903\) −322322. −0.0131544
\(904\) 0 0
\(905\) −2.81930e6 −0.114425
\(906\) 0 0
\(907\) 3.15066e7 1.27170 0.635848 0.771815i \(-0.280651\pi\)
0.635848 + 0.771815i \(0.280651\pi\)
\(908\) 0 0
\(909\) 5.03982e6 0.202304
\(910\) 0 0
\(911\) 4.91214e7 1.96099 0.980494 0.196548i \(-0.0629732\pi\)
0.980494 + 0.196548i \(0.0629732\pi\)
\(912\) 0 0
\(913\) 2.23415e7 0.887024
\(914\) 0 0
\(915\) 489500. 0.0193286
\(916\) 0 0
\(917\) −1.35637e7 −0.532665
\(918\) 0 0
\(919\) 4.51238e7 1.76245 0.881226 0.472696i \(-0.156719\pi\)
0.881226 + 0.472696i \(0.156719\pi\)
\(920\) 0 0
\(921\) −1.09460e7 −0.425211
\(922\) 0 0
\(923\) −5.65066e7 −2.18321
\(924\) 0 0
\(925\) 8.66375e6 0.332929
\(926\) 0 0
\(927\) 1.32718e7 0.507259
\(928\) 0 0
\(929\) −3.68196e7 −1.39972 −0.699858 0.714282i \(-0.746753\pi\)
−0.699858 + 0.714282i \(0.746753\pi\)
\(930\) 0 0
\(931\) 1.92560e6 0.0728102
\(932\) 0 0
\(933\) −1.47838e7 −0.556009
\(934\) 0 0
\(935\) 3.42428e6 0.128097
\(936\) 0 0
\(937\) 1.71904e7 0.639641 0.319820 0.947478i \(-0.396377\pi\)
0.319820 + 0.947478i \(0.396377\pi\)
\(938\) 0 0
\(939\) 2.11168e7 0.781562
\(940\) 0 0
\(941\) −8.10352e6 −0.298332 −0.149166 0.988812i \(-0.547659\pi\)
−0.149166 + 0.988812i \(0.547659\pi\)
\(942\) 0 0
\(943\) −1.53562e7 −0.562346
\(944\) 0 0
\(945\) −4.91838e6 −0.179160
\(946\) 0 0
\(947\) −1.83337e7 −0.664317 −0.332158 0.943224i \(-0.607777\pi\)
−0.332158 + 0.943224i \(0.607777\pi\)
\(948\) 0 0
\(949\) −5.18390e7 −1.86849
\(950\) 0 0
\(951\) −2.10502e7 −0.754755
\(952\) 0 0
\(953\) 6.03035e6 0.215085 0.107542 0.994200i \(-0.465702\pi\)
0.107542 + 0.994200i \(0.465702\pi\)
\(954\) 0 0
\(955\) −1.82998e7 −0.649288
\(956\) 0 0
\(957\) 5.22492e6 0.184417
\(958\) 0 0
\(959\) −1.16495e7 −0.409034
\(960\) 0 0
\(961\) −2.19521e7 −0.766774
\(962\) 0 0
\(963\) −1.29440e7 −0.449781
\(964\) 0 0
\(965\) 4.65100e6 0.160779
\(966\) 0 0
\(967\) 3.09228e7 1.06344 0.531720 0.846920i \(-0.321546\pi\)
0.531720 + 0.846920i \(0.321546\pi\)
\(968\) 0 0
\(969\) −4.52569e6 −0.154837
\(970\) 0 0
\(971\) 2.47924e6 0.0843859 0.0421929 0.999109i \(-0.486566\pi\)
0.0421929 + 0.999109i \(0.486566\pi\)
\(972\) 0 0
\(973\) 7.86342e6 0.266274
\(974\) 0 0
\(975\) −7.47312e6 −0.251762
\(976\) 0 0
\(977\) −2.09758e6 −0.0703044 −0.0351522 0.999382i \(-0.511192\pi\)
−0.0351522 + 0.999382i \(0.511192\pi\)
\(978\) 0 0
\(979\) −8.65080e6 −0.288469
\(980\) 0 0
\(981\) 1.51415e7 0.502340
\(982\) 0 0
\(983\) 4.45491e7 1.47047 0.735233 0.677814i \(-0.237073\pi\)
0.735233 + 0.677814i \(0.237073\pi\)
\(984\) 0 0
\(985\) −3.03390e6 −0.0996347
\(986\) 0 0
\(987\) −9.17324e6 −0.299730
\(988\) 0 0
\(989\) 771420. 0.0250784
\(990\) 0 0
\(991\) 1.95104e7 0.631075 0.315538 0.948913i \(-0.397815\pi\)
0.315538 + 0.948913i \(0.397815\pi\)
\(992\) 0 0
\(993\) 2.48263e7 0.798987
\(994\) 0 0
\(995\) 1.62146e7 0.519217
\(996\) 0 0
\(997\) −2.00678e7 −0.639385 −0.319692 0.947521i \(-0.603580\pi\)
−0.319692 + 0.947521i \(0.603580\pi\)
\(998\) 0 0
\(999\) −5.56559e7 −1.76440
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.6.a.f.1.1 1
4.3 odd 2 70.6.a.f.1.1 1
12.11 even 2 630.6.a.e.1.1 1
20.3 even 4 350.6.c.b.99.1 2
20.7 even 4 350.6.c.b.99.2 2
20.19 odd 2 350.6.a.d.1.1 1
28.27 even 2 490.6.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.f.1.1 1 4.3 odd 2
350.6.a.d.1.1 1 20.19 odd 2
350.6.c.b.99.1 2 20.3 even 4
350.6.c.b.99.2 2 20.7 even 4
490.6.a.l.1.1 1 28.27 even 2
560.6.a.f.1.1 1 1.1 even 1 trivial
630.6.a.e.1.1 1 12.11 even 2