Properties

Label 560.6.a.e.1.1
Level $560$
Weight $6$
Character 560.1
Self dual yes
Analytic conductor $89.815$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,6,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 560.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +25.0000 q^{5} +49.0000 q^{7} -162.000 q^{9} +O(q^{10})\) \(q+9.00000 q^{3} +25.0000 q^{5} +49.0000 q^{7} -162.000 q^{9} +187.000 q^{11} +627.000 q^{13} +225.000 q^{15} +1813.00 q^{17} -258.000 q^{19} +441.000 q^{21} -2970.00 q^{23} +625.000 q^{25} -3645.00 q^{27} +1299.00 q^{29} -1916.00 q^{31} +1683.00 q^{33} +1225.00 q^{35} +6578.00 q^{37} +5643.00 q^{39} +6676.00 q^{41} -3178.00 q^{43} -4050.00 q^{45} +22001.0 q^{47} +2401.00 q^{49} +16317.0 q^{51} +26168.0 q^{53} +4675.00 q^{55} -2322.00 q^{57} -3932.00 q^{59} -48740.0 q^{61} -7938.00 q^{63} +15675.0 q^{65} +44832.0 q^{67} -26730.0 q^{69} -63736.0 q^{71} +60470.0 q^{73} +5625.00 q^{75} +9163.00 q^{77} +43721.0 q^{79} +6561.00 q^{81} -97276.0 q^{83} +45325.0 q^{85} +11691.0 q^{87} +45560.0 q^{89} +30723.0 q^{91} -17244.0 q^{93} -6450.00 q^{95} -57295.0 q^{97} -30294.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) −162.000 −0.666667
\(10\) 0 0
\(11\) 187.000 0.465972 0.232986 0.972480i \(-0.425150\pi\)
0.232986 + 0.972480i \(0.425150\pi\)
\(12\) 0 0
\(13\) 627.000 1.02899 0.514493 0.857495i \(-0.327980\pi\)
0.514493 + 0.857495i \(0.327980\pi\)
\(14\) 0 0
\(15\) 225.000 0.258199
\(16\) 0 0
\(17\) 1813.00 1.52151 0.760756 0.649038i \(-0.224828\pi\)
0.760756 + 0.649038i \(0.224828\pi\)
\(18\) 0 0
\(19\) −258.000 −0.163959 −0.0819796 0.996634i \(-0.526124\pi\)
−0.0819796 + 0.996634i \(0.526124\pi\)
\(20\) 0 0
\(21\) 441.000 0.218218
\(22\) 0 0
\(23\) −2970.00 −1.17068 −0.585338 0.810789i \(-0.699038\pi\)
−0.585338 + 0.810789i \(0.699038\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −3645.00 −0.962250
\(28\) 0 0
\(29\) 1299.00 0.286823 0.143412 0.989663i \(-0.454193\pi\)
0.143412 + 0.989663i \(0.454193\pi\)
\(30\) 0 0
\(31\) −1916.00 −0.358089 −0.179045 0.983841i \(-0.557301\pi\)
−0.179045 + 0.983841i \(0.557301\pi\)
\(32\) 0 0
\(33\) 1683.00 0.269029
\(34\) 0 0
\(35\) 1225.00 0.169031
\(36\) 0 0
\(37\) 6578.00 0.789932 0.394966 0.918696i \(-0.370756\pi\)
0.394966 + 0.918696i \(0.370756\pi\)
\(38\) 0 0
\(39\) 5643.00 0.594085
\(40\) 0 0
\(41\) 6676.00 0.620236 0.310118 0.950698i \(-0.399632\pi\)
0.310118 + 0.950698i \(0.399632\pi\)
\(42\) 0 0
\(43\) −3178.00 −0.262109 −0.131055 0.991375i \(-0.541836\pi\)
−0.131055 + 0.991375i \(0.541836\pi\)
\(44\) 0 0
\(45\) −4050.00 −0.298142
\(46\) 0 0
\(47\) 22001.0 1.45277 0.726387 0.687286i \(-0.241198\pi\)
0.726387 + 0.687286i \(0.241198\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 16317.0 0.878446
\(52\) 0 0
\(53\) 26168.0 1.27962 0.639810 0.768533i \(-0.279013\pi\)
0.639810 + 0.768533i \(0.279013\pi\)
\(54\) 0 0
\(55\) 4675.00 0.208389
\(56\) 0 0
\(57\) −2322.00 −0.0946619
\(58\) 0 0
\(59\) −3932.00 −0.147056 −0.0735281 0.997293i \(-0.523426\pi\)
−0.0735281 + 0.997293i \(0.523426\pi\)
\(60\) 0 0
\(61\) −48740.0 −1.67711 −0.838554 0.544819i \(-0.816598\pi\)
−0.838554 + 0.544819i \(0.816598\pi\)
\(62\) 0 0
\(63\) −7938.00 −0.251976
\(64\) 0 0
\(65\) 15675.0 0.460176
\(66\) 0 0
\(67\) 44832.0 1.22012 0.610058 0.792357i \(-0.291146\pi\)
0.610058 + 0.792357i \(0.291146\pi\)
\(68\) 0 0
\(69\) −26730.0 −0.675890
\(70\) 0 0
\(71\) −63736.0 −1.50051 −0.750255 0.661148i \(-0.770069\pi\)
−0.750255 + 0.661148i \(0.770069\pi\)
\(72\) 0 0
\(73\) 60470.0 1.32811 0.664053 0.747685i \(-0.268835\pi\)
0.664053 + 0.747685i \(0.268835\pi\)
\(74\) 0 0
\(75\) 5625.00 0.115470
\(76\) 0 0
\(77\) 9163.00 0.176121
\(78\) 0 0
\(79\) 43721.0 0.788174 0.394087 0.919073i \(-0.371061\pi\)
0.394087 + 0.919073i \(0.371061\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −97276.0 −1.54992 −0.774962 0.632008i \(-0.782231\pi\)
−0.774962 + 0.632008i \(0.782231\pi\)
\(84\) 0 0
\(85\) 45325.0 0.680441
\(86\) 0 0
\(87\) 11691.0 0.165597
\(88\) 0 0
\(89\) 45560.0 0.609689 0.304845 0.952402i \(-0.401395\pi\)
0.304845 + 0.952402i \(0.401395\pi\)
\(90\) 0 0
\(91\) 30723.0 0.388920
\(92\) 0 0
\(93\) −17244.0 −0.206743
\(94\) 0 0
\(95\) −6450.00 −0.0733248
\(96\) 0 0
\(97\) −57295.0 −0.618283 −0.309142 0.951016i \(-0.600042\pi\)
−0.309142 + 0.951016i \(0.600042\pi\)
\(98\) 0 0
\(99\) −30294.0 −0.310648
\(100\) 0 0
\(101\) −44970.0 −0.438651 −0.219326 0.975652i \(-0.570386\pi\)
−0.219326 + 0.975652i \(0.570386\pi\)
\(102\) 0 0
\(103\) 101405. 0.941817 0.470908 0.882182i \(-0.343926\pi\)
0.470908 + 0.882182i \(0.343926\pi\)
\(104\) 0 0
\(105\) 11025.0 0.0975900
\(106\) 0 0
\(107\) 166002. 1.40170 0.700848 0.713311i \(-0.252805\pi\)
0.700848 + 0.713311i \(0.252805\pi\)
\(108\) 0 0
\(109\) 8289.00 0.0668245 0.0334123 0.999442i \(-0.489363\pi\)
0.0334123 + 0.999442i \(0.489363\pi\)
\(110\) 0 0
\(111\) 59202.0 0.456067
\(112\) 0 0
\(113\) 263206. 1.93910 0.969549 0.244898i \(-0.0787545\pi\)
0.969549 + 0.244898i \(0.0787545\pi\)
\(114\) 0 0
\(115\) −74250.0 −0.523542
\(116\) 0 0
\(117\) −101574. −0.685990
\(118\) 0 0
\(119\) 88837.0 0.575078
\(120\) 0 0
\(121\) −126082. −0.782870
\(122\) 0 0
\(123\) 60084.0 0.358093
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −30052.0 −0.165335 −0.0826674 0.996577i \(-0.526344\pi\)
−0.0826674 + 0.996577i \(0.526344\pi\)
\(128\) 0 0
\(129\) −28602.0 −0.151329
\(130\) 0 0
\(131\) 120050. 0.611201 0.305600 0.952160i \(-0.401143\pi\)
0.305600 + 0.952160i \(0.401143\pi\)
\(132\) 0 0
\(133\) −12642.0 −0.0619707
\(134\) 0 0
\(135\) −91125.0 −0.430331
\(136\) 0 0
\(137\) 31776.0 0.144643 0.0723216 0.997381i \(-0.476959\pi\)
0.0723216 + 0.997381i \(0.476959\pi\)
\(138\) 0 0
\(139\) 200162. 0.878708 0.439354 0.898314i \(-0.355207\pi\)
0.439354 + 0.898314i \(0.355207\pi\)
\(140\) 0 0
\(141\) 198009. 0.838759
\(142\) 0 0
\(143\) 117249. 0.479478
\(144\) 0 0
\(145\) 32475.0 0.128271
\(146\) 0 0
\(147\) 21609.0 0.0824786
\(148\) 0 0
\(149\) 309642. 1.14260 0.571300 0.820741i \(-0.306439\pi\)
0.571300 + 0.820741i \(0.306439\pi\)
\(150\) 0 0
\(151\) 208657. 0.744716 0.372358 0.928089i \(-0.378549\pi\)
0.372358 + 0.928089i \(0.378549\pi\)
\(152\) 0 0
\(153\) −293706. −1.01434
\(154\) 0 0
\(155\) −47900.0 −0.160142
\(156\) 0 0
\(157\) 36010.0 0.116593 0.0582967 0.998299i \(-0.481433\pi\)
0.0582967 + 0.998299i \(0.481433\pi\)
\(158\) 0 0
\(159\) 235512. 0.738789
\(160\) 0 0
\(161\) −145530. −0.442474
\(162\) 0 0
\(163\) −175670. −0.517879 −0.258940 0.965893i \(-0.583373\pi\)
−0.258940 + 0.965893i \(0.583373\pi\)
\(164\) 0 0
\(165\) 42075.0 0.120313
\(166\) 0 0
\(167\) 157413. 0.436767 0.218383 0.975863i \(-0.429922\pi\)
0.218383 + 0.975863i \(0.429922\pi\)
\(168\) 0 0
\(169\) 21836.0 0.0588107
\(170\) 0 0
\(171\) 41796.0 0.109306
\(172\) 0 0
\(173\) −23471.0 −0.0596233 −0.0298117 0.999556i \(-0.509491\pi\)
−0.0298117 + 0.999556i \(0.509491\pi\)
\(174\) 0 0
\(175\) 30625.0 0.0755929
\(176\) 0 0
\(177\) −35388.0 −0.0849030
\(178\) 0 0
\(179\) −612228. −1.42817 −0.714086 0.700058i \(-0.753158\pi\)
−0.714086 + 0.700058i \(0.753158\pi\)
\(180\) 0 0
\(181\) 528832. 1.19983 0.599917 0.800062i \(-0.295200\pi\)
0.599917 + 0.800062i \(0.295200\pi\)
\(182\) 0 0
\(183\) −438660. −0.968279
\(184\) 0 0
\(185\) 164450. 0.353268
\(186\) 0 0
\(187\) 339031. 0.708982
\(188\) 0 0
\(189\) −178605. −0.363696
\(190\) 0 0
\(191\) −540369. −1.07178 −0.535892 0.844287i \(-0.680024\pi\)
−0.535892 + 0.844287i \(0.680024\pi\)
\(192\) 0 0
\(193\) 960320. 1.85576 0.927882 0.372874i \(-0.121628\pi\)
0.927882 + 0.372874i \(0.121628\pi\)
\(194\) 0 0
\(195\) 141075. 0.265683
\(196\) 0 0
\(197\) 761944. 1.39881 0.699403 0.714728i \(-0.253449\pi\)
0.699403 + 0.714728i \(0.253449\pi\)
\(198\) 0 0
\(199\) −125084. −0.223908 −0.111954 0.993713i \(-0.535711\pi\)
−0.111954 + 0.993713i \(0.535711\pi\)
\(200\) 0 0
\(201\) 403488. 0.704434
\(202\) 0 0
\(203\) 63651.0 0.108409
\(204\) 0 0
\(205\) 166900. 0.277378
\(206\) 0 0
\(207\) 481140. 0.780451
\(208\) 0 0
\(209\) −48246.0 −0.0764004
\(210\) 0 0
\(211\) −627547. −0.970376 −0.485188 0.874410i \(-0.661249\pi\)
−0.485188 + 0.874410i \(0.661249\pi\)
\(212\) 0 0
\(213\) −573624. −0.866320
\(214\) 0 0
\(215\) −79450.0 −0.117219
\(216\) 0 0
\(217\) −93884.0 −0.135345
\(218\) 0 0
\(219\) 544230. 0.766782
\(220\) 0 0
\(221\) 1.13675e6 1.56561
\(222\) 0 0
\(223\) 1.22110e6 1.64433 0.822166 0.569248i \(-0.192766\pi\)
0.822166 + 0.569248i \(0.192766\pi\)
\(224\) 0 0
\(225\) −101250. −0.133333
\(226\) 0 0
\(227\) −390547. −0.503047 −0.251524 0.967851i \(-0.580932\pi\)
−0.251524 + 0.967851i \(0.580932\pi\)
\(228\) 0 0
\(229\) −712124. −0.897360 −0.448680 0.893692i \(-0.648106\pi\)
−0.448680 + 0.893692i \(0.648106\pi\)
\(230\) 0 0
\(231\) 82467.0 0.101683
\(232\) 0 0
\(233\) 561576. 0.677671 0.338835 0.940846i \(-0.389967\pi\)
0.338835 + 0.940846i \(0.389967\pi\)
\(234\) 0 0
\(235\) 550025. 0.649700
\(236\) 0 0
\(237\) 393489. 0.455053
\(238\) 0 0
\(239\) 1.36084e6 1.54103 0.770515 0.637421i \(-0.219999\pi\)
0.770515 + 0.637421i \(0.219999\pi\)
\(240\) 0 0
\(241\) 530050. 0.587860 0.293930 0.955827i \(-0.405037\pi\)
0.293930 + 0.955827i \(0.405037\pi\)
\(242\) 0 0
\(243\) 944784. 1.02640
\(244\) 0 0
\(245\) 60025.0 0.0638877
\(246\) 0 0
\(247\) −161766. −0.168712
\(248\) 0 0
\(249\) −875484. −0.894849
\(250\) 0 0
\(251\) −990330. −0.992192 −0.496096 0.868268i \(-0.665234\pi\)
−0.496096 + 0.868268i \(0.665234\pi\)
\(252\) 0 0
\(253\) −555390. −0.545503
\(254\) 0 0
\(255\) 407925. 0.392853
\(256\) 0 0
\(257\) −1.81643e6 −1.71548 −0.857740 0.514083i \(-0.828132\pi\)
−0.857740 + 0.514083i \(0.828132\pi\)
\(258\) 0 0
\(259\) 322322. 0.298566
\(260\) 0 0
\(261\) −210438. −0.191215
\(262\) 0 0
\(263\) 1.95847e6 1.74594 0.872968 0.487777i \(-0.162192\pi\)
0.872968 + 0.487777i \(0.162192\pi\)
\(264\) 0 0
\(265\) 654200. 0.572263
\(266\) 0 0
\(267\) 410040. 0.352004
\(268\) 0 0
\(269\) 218034. 0.183715 0.0918573 0.995772i \(-0.470720\pi\)
0.0918573 + 0.995772i \(0.470720\pi\)
\(270\) 0 0
\(271\) −1.26265e6 −1.04438 −0.522192 0.852828i \(-0.674886\pi\)
−0.522192 + 0.852828i \(0.674886\pi\)
\(272\) 0 0
\(273\) 276507. 0.224543
\(274\) 0 0
\(275\) 116875. 0.0931944
\(276\) 0 0
\(277\) −1.10264e6 −0.863443 −0.431721 0.902007i \(-0.642094\pi\)
−0.431721 + 0.902007i \(0.642094\pi\)
\(278\) 0 0
\(279\) 310392. 0.238726
\(280\) 0 0
\(281\) −998213. −0.754149 −0.377075 0.926183i \(-0.623070\pi\)
−0.377075 + 0.926183i \(0.623070\pi\)
\(282\) 0 0
\(283\) 386371. 0.286773 0.143387 0.989667i \(-0.454201\pi\)
0.143387 + 0.989667i \(0.454201\pi\)
\(284\) 0 0
\(285\) −58050.0 −0.0423341
\(286\) 0 0
\(287\) 327124. 0.234427
\(288\) 0 0
\(289\) 1.86711e6 1.31500
\(290\) 0 0
\(291\) −515655. −0.356966
\(292\) 0 0
\(293\) −783571. −0.533224 −0.266612 0.963804i \(-0.585904\pi\)
−0.266612 + 0.963804i \(0.585904\pi\)
\(294\) 0 0
\(295\) −98300.0 −0.0657656
\(296\) 0 0
\(297\) −681615. −0.448382
\(298\) 0 0
\(299\) −1.86219e6 −1.20461
\(300\) 0 0
\(301\) −155722. −0.0990681
\(302\) 0 0
\(303\) −404730. −0.253255
\(304\) 0 0
\(305\) −1.21850e6 −0.750025
\(306\) 0 0
\(307\) −2.81773e6 −1.70629 −0.853147 0.521670i \(-0.825309\pi\)
−0.853147 + 0.521670i \(0.825309\pi\)
\(308\) 0 0
\(309\) 912645. 0.543758
\(310\) 0 0
\(311\) 847398. 0.496806 0.248403 0.968657i \(-0.420094\pi\)
0.248403 + 0.968657i \(0.420094\pi\)
\(312\) 0 0
\(313\) 364955. 0.210561 0.105281 0.994443i \(-0.466426\pi\)
0.105281 + 0.994443i \(0.466426\pi\)
\(314\) 0 0
\(315\) −198450. −0.112687
\(316\) 0 0
\(317\) 1.93744e6 1.08288 0.541439 0.840740i \(-0.317880\pi\)
0.541439 + 0.840740i \(0.317880\pi\)
\(318\) 0 0
\(319\) 242913. 0.133652
\(320\) 0 0
\(321\) 1.49402e6 0.809270
\(322\) 0 0
\(323\) −467754. −0.249466
\(324\) 0 0
\(325\) 391875. 0.205797
\(326\) 0 0
\(327\) 74601.0 0.0385812
\(328\) 0 0
\(329\) 1.07805e6 0.549097
\(330\) 0 0
\(331\) 61460.0 0.0308335 0.0154167 0.999881i \(-0.495093\pi\)
0.0154167 + 0.999881i \(0.495093\pi\)
\(332\) 0 0
\(333\) −1.06564e6 −0.526621
\(334\) 0 0
\(335\) 1.12080e6 0.545652
\(336\) 0 0
\(337\) −3.74116e6 −1.79445 −0.897225 0.441574i \(-0.854420\pi\)
−0.897225 + 0.441574i \(0.854420\pi\)
\(338\) 0 0
\(339\) 2.36885e6 1.11954
\(340\) 0 0
\(341\) −358292. −0.166860
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) −668250. −0.302267
\(346\) 0 0
\(347\) −211334. −0.0942206 −0.0471103 0.998890i \(-0.515001\pi\)
−0.0471103 + 0.998890i \(0.515001\pi\)
\(348\) 0 0
\(349\) 3.39558e6 1.49228 0.746140 0.665789i \(-0.231905\pi\)
0.746140 + 0.665789i \(0.231905\pi\)
\(350\) 0 0
\(351\) −2.28542e6 −0.990142
\(352\) 0 0
\(353\) −3.88094e6 −1.65768 −0.828838 0.559489i \(-0.810997\pi\)
−0.828838 + 0.559489i \(0.810997\pi\)
\(354\) 0 0
\(355\) −1.59340e6 −0.671049
\(356\) 0 0
\(357\) 799533. 0.332021
\(358\) 0 0
\(359\) −3.24210e6 −1.32767 −0.663836 0.747878i \(-0.731073\pi\)
−0.663836 + 0.747878i \(0.731073\pi\)
\(360\) 0 0
\(361\) −2.40954e6 −0.973117
\(362\) 0 0
\(363\) −1.13474e6 −0.451990
\(364\) 0 0
\(365\) 1.51175e6 0.593947
\(366\) 0 0
\(367\) −1.44430e6 −0.559749 −0.279874 0.960037i \(-0.590293\pi\)
−0.279874 + 0.960037i \(0.590293\pi\)
\(368\) 0 0
\(369\) −1.08151e6 −0.413490
\(370\) 0 0
\(371\) 1.28223e6 0.483651
\(372\) 0 0
\(373\) 3.43542e6 1.27852 0.639260 0.768991i \(-0.279241\pi\)
0.639260 + 0.768991i \(0.279241\pi\)
\(374\) 0 0
\(375\) 140625. 0.0516398
\(376\) 0 0
\(377\) 814473. 0.295137
\(378\) 0 0
\(379\) 1.68635e6 0.603044 0.301522 0.953459i \(-0.402505\pi\)
0.301522 + 0.953459i \(0.402505\pi\)
\(380\) 0 0
\(381\) −270468. −0.0954560
\(382\) 0 0
\(383\) −2.64354e6 −0.920850 −0.460425 0.887699i \(-0.652303\pi\)
−0.460425 + 0.887699i \(0.652303\pi\)
\(384\) 0 0
\(385\) 229075. 0.0787637
\(386\) 0 0
\(387\) 514836. 0.174740
\(388\) 0 0
\(389\) −452099. −0.151481 −0.0757407 0.997128i \(-0.524132\pi\)
−0.0757407 + 0.997128i \(0.524132\pi\)
\(390\) 0 0
\(391\) −5.38461e6 −1.78120
\(392\) 0 0
\(393\) 1.08045e6 0.352877
\(394\) 0 0
\(395\) 1.09302e6 0.352482
\(396\) 0 0
\(397\) −1.95530e6 −0.622641 −0.311321 0.950305i \(-0.600771\pi\)
−0.311321 + 0.950305i \(0.600771\pi\)
\(398\) 0 0
\(399\) −113778. −0.0357788
\(400\) 0 0
\(401\) −4.76737e6 −1.48053 −0.740266 0.672314i \(-0.765300\pi\)
−0.740266 + 0.672314i \(0.765300\pi\)
\(402\) 0 0
\(403\) −1.20133e6 −0.368469
\(404\) 0 0
\(405\) 164025. 0.0496904
\(406\) 0 0
\(407\) 1.23009e6 0.368086
\(408\) 0 0
\(409\) −4.13199e6 −1.22138 −0.610690 0.791870i \(-0.709108\pi\)
−0.610690 + 0.791870i \(0.709108\pi\)
\(410\) 0 0
\(411\) 285984. 0.0835097
\(412\) 0 0
\(413\) −192668. −0.0555820
\(414\) 0 0
\(415\) −2.43190e6 −0.693147
\(416\) 0 0
\(417\) 1.80146e6 0.507322
\(418\) 0 0
\(419\) −190512. −0.0530136 −0.0265068 0.999649i \(-0.508438\pi\)
−0.0265068 + 0.999649i \(0.508438\pi\)
\(420\) 0 0
\(421\) −5.19186e6 −1.42764 −0.713818 0.700332i \(-0.753035\pi\)
−0.713818 + 0.700332i \(0.753035\pi\)
\(422\) 0 0
\(423\) −3.56416e6 −0.968515
\(424\) 0 0
\(425\) 1.13312e6 0.304302
\(426\) 0 0
\(427\) −2.38826e6 −0.633887
\(428\) 0 0
\(429\) 1.05524e6 0.276827
\(430\) 0 0
\(431\) 4.21781e6 1.09369 0.546845 0.837234i \(-0.315829\pi\)
0.546845 + 0.837234i \(0.315829\pi\)
\(432\) 0 0
\(433\) −4.86027e6 −1.24578 −0.622890 0.782310i \(-0.714041\pi\)
−0.622890 + 0.782310i \(0.714041\pi\)
\(434\) 0 0
\(435\) 292275. 0.0740574
\(436\) 0 0
\(437\) 766260. 0.191943
\(438\) 0 0
\(439\) 2.03113e6 0.503011 0.251505 0.967856i \(-0.419074\pi\)
0.251505 + 0.967856i \(0.419074\pi\)
\(440\) 0 0
\(441\) −388962. −0.0952381
\(442\) 0 0
\(443\) −2.84199e6 −0.688038 −0.344019 0.938963i \(-0.611789\pi\)
−0.344019 + 0.938963i \(0.611789\pi\)
\(444\) 0 0
\(445\) 1.13900e6 0.272661
\(446\) 0 0
\(447\) 2.78678e6 0.659680
\(448\) 0 0
\(449\) −4.59682e6 −1.07607 −0.538037 0.842921i \(-0.680834\pi\)
−0.538037 + 0.842921i \(0.680834\pi\)
\(450\) 0 0
\(451\) 1.24841e6 0.289012
\(452\) 0 0
\(453\) 1.87791e6 0.429962
\(454\) 0 0
\(455\) 768075. 0.173930
\(456\) 0 0
\(457\) 4.93367e6 1.10504 0.552522 0.833498i \(-0.313665\pi\)
0.552522 + 0.833498i \(0.313665\pi\)
\(458\) 0 0
\(459\) −6.60838e6 −1.46408
\(460\) 0 0
\(461\) −4.75667e6 −1.04244 −0.521220 0.853422i \(-0.674523\pi\)
−0.521220 + 0.853422i \(0.674523\pi\)
\(462\) 0 0
\(463\) −4.08619e6 −0.885862 −0.442931 0.896556i \(-0.646061\pi\)
−0.442931 + 0.896556i \(0.646061\pi\)
\(464\) 0 0
\(465\) −431100. −0.0924582
\(466\) 0 0
\(467\) 4.15932e6 0.882531 0.441266 0.897377i \(-0.354530\pi\)
0.441266 + 0.897377i \(0.354530\pi\)
\(468\) 0 0
\(469\) 2.19677e6 0.461160
\(470\) 0 0
\(471\) 324090. 0.0673152
\(472\) 0 0
\(473\) −594286. −0.122136
\(474\) 0 0
\(475\) −161250. −0.0327918
\(476\) 0 0
\(477\) −4.23922e6 −0.853080
\(478\) 0 0
\(479\) 3.36040e6 0.669195 0.334597 0.942361i \(-0.391400\pi\)
0.334597 + 0.942361i \(0.391400\pi\)
\(480\) 0 0
\(481\) 4.12441e6 0.812828
\(482\) 0 0
\(483\) −1.30977e6 −0.255463
\(484\) 0 0
\(485\) −1.43238e6 −0.276505
\(486\) 0 0
\(487\) −7.05243e6 −1.34746 −0.673730 0.738977i \(-0.735309\pi\)
−0.673730 + 0.738977i \(0.735309\pi\)
\(488\) 0 0
\(489\) −1.58103e6 −0.298998
\(490\) 0 0
\(491\) 83937.0 0.0157127 0.00785633 0.999969i \(-0.497499\pi\)
0.00785633 + 0.999969i \(0.497499\pi\)
\(492\) 0 0
\(493\) 2.35509e6 0.436405
\(494\) 0 0
\(495\) −757350. −0.138926
\(496\) 0 0
\(497\) −3.12306e6 −0.567140
\(498\) 0 0
\(499\) 7.10526e6 1.27741 0.638703 0.769454i \(-0.279471\pi\)
0.638703 + 0.769454i \(0.279471\pi\)
\(500\) 0 0
\(501\) 1.41672e6 0.252167
\(502\) 0 0
\(503\) −2.89147e6 −0.509564 −0.254782 0.966999i \(-0.582004\pi\)
−0.254782 + 0.966999i \(0.582004\pi\)
\(504\) 0 0
\(505\) −1.12425e6 −0.196171
\(506\) 0 0
\(507\) 196524. 0.0339544
\(508\) 0 0
\(509\) 1.03548e6 0.177153 0.0885764 0.996069i \(-0.471768\pi\)
0.0885764 + 0.996069i \(0.471768\pi\)
\(510\) 0 0
\(511\) 2.96303e6 0.501977
\(512\) 0 0
\(513\) 940410. 0.157770
\(514\) 0 0
\(515\) 2.53513e6 0.421193
\(516\) 0 0
\(517\) 4.11419e6 0.676952
\(518\) 0 0
\(519\) −211239. −0.0344236
\(520\) 0 0
\(521\) −7.49715e6 −1.21005 −0.605023 0.796208i \(-0.706836\pi\)
−0.605023 + 0.796208i \(0.706836\pi\)
\(522\) 0 0
\(523\) −3.53223e6 −0.564670 −0.282335 0.959316i \(-0.591109\pi\)
−0.282335 + 0.959316i \(0.591109\pi\)
\(524\) 0 0
\(525\) 275625. 0.0436436
\(526\) 0 0
\(527\) −3.47371e6 −0.544837
\(528\) 0 0
\(529\) 2.38456e6 0.370483
\(530\) 0 0
\(531\) 636984. 0.0980375
\(532\) 0 0
\(533\) 4.18585e6 0.638213
\(534\) 0 0
\(535\) 4.15005e6 0.626858
\(536\) 0 0
\(537\) −5.51005e6 −0.824556
\(538\) 0 0
\(539\) 448987. 0.0665674
\(540\) 0 0
\(541\) −4.99188e6 −0.733281 −0.366641 0.930363i \(-0.619492\pi\)
−0.366641 + 0.930363i \(0.619492\pi\)
\(542\) 0 0
\(543\) 4.75949e6 0.692725
\(544\) 0 0
\(545\) 207225. 0.0298848
\(546\) 0 0
\(547\) −5.12634e6 −0.732553 −0.366277 0.930506i \(-0.619368\pi\)
−0.366277 + 0.930506i \(0.619368\pi\)
\(548\) 0 0
\(549\) 7.89588e6 1.11807
\(550\) 0 0
\(551\) −335142. −0.0470273
\(552\) 0 0
\(553\) 2.14233e6 0.297902
\(554\) 0 0
\(555\) 1.48005e6 0.203959
\(556\) 0 0
\(557\) 8.86866e6 1.21121 0.605606 0.795765i \(-0.292931\pi\)
0.605606 + 0.795765i \(0.292931\pi\)
\(558\) 0 0
\(559\) −1.99261e6 −0.269707
\(560\) 0 0
\(561\) 3.05128e6 0.409331
\(562\) 0 0
\(563\) −9.07277e6 −1.20634 −0.603169 0.797613i \(-0.706096\pi\)
−0.603169 + 0.797613i \(0.706096\pi\)
\(564\) 0 0
\(565\) 6.58015e6 0.867191
\(566\) 0 0
\(567\) 321489. 0.0419961
\(568\) 0 0
\(569\) 2.08310e6 0.269730 0.134865 0.990864i \(-0.456940\pi\)
0.134865 + 0.990864i \(0.456940\pi\)
\(570\) 0 0
\(571\) 5.46368e6 0.701286 0.350643 0.936509i \(-0.385963\pi\)
0.350643 + 0.936509i \(0.385963\pi\)
\(572\) 0 0
\(573\) −4.86332e6 −0.618794
\(574\) 0 0
\(575\) −1.85625e6 −0.234135
\(576\) 0 0
\(577\) 7.66246e6 0.958140 0.479070 0.877777i \(-0.340974\pi\)
0.479070 + 0.877777i \(0.340974\pi\)
\(578\) 0 0
\(579\) 8.64288e6 1.07143
\(580\) 0 0
\(581\) −4.76652e6 −0.585816
\(582\) 0 0
\(583\) 4.89342e6 0.596267
\(584\) 0 0
\(585\) −2.53935e6 −0.306784
\(586\) 0 0
\(587\) 1.57465e7 1.88620 0.943100 0.332510i \(-0.107896\pi\)
0.943100 + 0.332510i \(0.107896\pi\)
\(588\) 0 0
\(589\) 494328. 0.0587120
\(590\) 0 0
\(591\) 6.85750e6 0.807601
\(592\) 0 0
\(593\) −1.62409e7 −1.89658 −0.948292 0.317398i \(-0.897191\pi\)
−0.948292 + 0.317398i \(0.897191\pi\)
\(594\) 0 0
\(595\) 2.22093e6 0.257183
\(596\) 0 0
\(597\) −1.12576e6 −0.129273
\(598\) 0 0
\(599\) 1.90793e6 0.217268 0.108634 0.994082i \(-0.465352\pi\)
0.108634 + 0.994082i \(0.465352\pi\)
\(600\) 0 0
\(601\) 3.52970e6 0.398613 0.199306 0.979937i \(-0.436131\pi\)
0.199306 + 0.979937i \(0.436131\pi\)
\(602\) 0 0
\(603\) −7.26278e6 −0.813411
\(604\) 0 0
\(605\) −3.15205e6 −0.350110
\(606\) 0 0
\(607\) −3.37799e6 −0.372123 −0.186061 0.982538i \(-0.559572\pi\)
−0.186061 + 0.982538i \(0.559572\pi\)
\(608\) 0 0
\(609\) 572859. 0.0625899
\(610\) 0 0
\(611\) 1.37946e7 1.49488
\(612\) 0 0
\(613\) 1.20412e6 0.129425 0.0647127 0.997904i \(-0.479387\pi\)
0.0647127 + 0.997904i \(0.479387\pi\)
\(614\) 0 0
\(615\) 1.50210e6 0.160144
\(616\) 0 0
\(617\) −5.47330e6 −0.578810 −0.289405 0.957207i \(-0.593457\pi\)
−0.289405 + 0.957207i \(0.593457\pi\)
\(618\) 0 0
\(619\) −3.22662e6 −0.338471 −0.169236 0.985576i \(-0.554130\pi\)
−0.169236 + 0.985576i \(0.554130\pi\)
\(620\) 0 0
\(621\) 1.08256e7 1.12648
\(622\) 0 0
\(623\) 2.23244e6 0.230441
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −434214. −0.0441098
\(628\) 0 0
\(629\) 1.19259e7 1.20189
\(630\) 0 0
\(631\) −1.36282e7 −1.36259 −0.681297 0.732007i \(-0.738584\pi\)
−0.681297 + 0.732007i \(0.738584\pi\)
\(632\) 0 0
\(633\) −5.64792e6 −0.560247
\(634\) 0 0
\(635\) −751300. −0.0739399
\(636\) 0 0
\(637\) 1.50543e6 0.146998
\(638\) 0 0
\(639\) 1.03252e7 1.00034
\(640\) 0 0
\(641\) −1.92472e7 −1.85021 −0.925106 0.379710i \(-0.876024\pi\)
−0.925106 + 0.379710i \(0.876024\pi\)
\(642\) 0 0
\(643\) 1.28399e7 1.22472 0.612358 0.790580i \(-0.290221\pi\)
0.612358 + 0.790580i \(0.290221\pi\)
\(644\) 0 0
\(645\) −715050. −0.0676764
\(646\) 0 0
\(647\) −2.00233e7 −1.88050 −0.940251 0.340481i \(-0.889410\pi\)
−0.940251 + 0.340481i \(0.889410\pi\)
\(648\) 0 0
\(649\) −735284. −0.0685241
\(650\) 0 0
\(651\) −844956. −0.0781415
\(652\) 0 0
\(653\) −7.23655e6 −0.664124 −0.332062 0.943258i \(-0.607744\pi\)
−0.332062 + 0.943258i \(0.607744\pi\)
\(654\) 0 0
\(655\) 3.00125e6 0.273337
\(656\) 0 0
\(657\) −9.79614e6 −0.885404
\(658\) 0 0
\(659\) −1.42474e7 −1.27798 −0.638989 0.769216i \(-0.720647\pi\)
−0.638989 + 0.769216i \(0.720647\pi\)
\(660\) 0 0
\(661\) 1.49265e7 1.32878 0.664391 0.747385i \(-0.268691\pi\)
0.664391 + 0.747385i \(0.268691\pi\)
\(662\) 0 0
\(663\) 1.02308e7 0.903908
\(664\) 0 0
\(665\) −316050. −0.0277142
\(666\) 0 0
\(667\) −3.85803e6 −0.335777
\(668\) 0 0
\(669\) 1.09899e7 0.949355
\(670\) 0 0
\(671\) −9.11438e6 −0.781485
\(672\) 0 0
\(673\) −1.55062e7 −1.31967 −0.659837 0.751409i \(-0.729375\pi\)
−0.659837 + 0.751409i \(0.729375\pi\)
\(674\) 0 0
\(675\) −2.27812e6 −0.192450
\(676\) 0 0
\(677\) −7.80065e6 −0.654122 −0.327061 0.945003i \(-0.606058\pi\)
−0.327061 + 0.945003i \(0.606058\pi\)
\(678\) 0 0
\(679\) −2.80745e6 −0.233689
\(680\) 0 0
\(681\) −3.51492e6 −0.290434
\(682\) 0 0
\(683\) −1.58547e7 −1.30049 −0.650243 0.759727i \(-0.725333\pi\)
−0.650243 + 0.759727i \(0.725333\pi\)
\(684\) 0 0
\(685\) 794400. 0.0646864
\(686\) 0 0
\(687\) −6.40912e6 −0.518091
\(688\) 0 0
\(689\) 1.64073e7 1.31671
\(690\) 0 0
\(691\) −2.03656e7 −1.62257 −0.811284 0.584652i \(-0.801231\pi\)
−0.811284 + 0.584652i \(0.801231\pi\)
\(692\) 0 0
\(693\) −1.48441e6 −0.117414
\(694\) 0 0
\(695\) 5.00405e6 0.392970
\(696\) 0 0
\(697\) 1.21036e7 0.943696
\(698\) 0 0
\(699\) 5.05418e6 0.391253
\(700\) 0 0
\(701\) 2.48036e7 1.90643 0.953213 0.302300i \(-0.0977543\pi\)
0.953213 + 0.302300i \(0.0977543\pi\)
\(702\) 0 0
\(703\) −1.69712e6 −0.129517
\(704\) 0 0
\(705\) 4.95022e6 0.375104
\(706\) 0 0
\(707\) −2.20353e6 −0.165795
\(708\) 0 0
\(709\) 1.81917e7 1.35912 0.679560 0.733620i \(-0.262171\pi\)
0.679560 + 0.733620i \(0.262171\pi\)
\(710\) 0 0
\(711\) −7.08280e6 −0.525450
\(712\) 0 0
\(713\) 5.69052e6 0.419207
\(714\) 0 0
\(715\) 2.93122e6 0.214429
\(716\) 0 0
\(717\) 1.22475e7 0.889715
\(718\) 0 0
\(719\) 1.66202e7 1.19899 0.599493 0.800380i \(-0.295369\pi\)
0.599493 + 0.800380i \(0.295369\pi\)
\(720\) 0 0
\(721\) 4.96884e6 0.355973
\(722\) 0 0
\(723\) 4.77045e6 0.339401
\(724\) 0 0
\(725\) 811875. 0.0573646
\(726\) 0 0
\(727\) 1.57591e7 1.10585 0.552925 0.833231i \(-0.313511\pi\)
0.552925 + 0.833231i \(0.313511\pi\)
\(728\) 0 0
\(729\) 6.90873e6 0.481481
\(730\) 0 0
\(731\) −5.76171e6 −0.398803
\(732\) 0 0
\(733\) −2.15238e6 −0.147965 −0.0739827 0.997260i \(-0.523571\pi\)
−0.0739827 + 0.997260i \(0.523571\pi\)
\(734\) 0 0
\(735\) 540225. 0.0368856
\(736\) 0 0
\(737\) 8.38358e6 0.568540
\(738\) 0 0
\(739\) 2.27267e7 1.53083 0.765413 0.643540i \(-0.222535\pi\)
0.765413 + 0.643540i \(0.222535\pi\)
\(740\) 0 0
\(741\) −1.45589e6 −0.0974057
\(742\) 0 0
\(743\) −1.21153e7 −0.805123 −0.402561 0.915393i \(-0.631880\pi\)
−0.402561 + 0.915393i \(0.631880\pi\)
\(744\) 0 0
\(745\) 7.74105e6 0.510986
\(746\) 0 0
\(747\) 1.57587e7 1.03328
\(748\) 0 0
\(749\) 8.13410e6 0.529791
\(750\) 0 0
\(751\) 2.07590e7 1.34310 0.671549 0.740961i \(-0.265629\pi\)
0.671549 + 0.740961i \(0.265629\pi\)
\(752\) 0 0
\(753\) −8.91297e6 −0.572842
\(754\) 0 0
\(755\) 5.21642e6 0.333047
\(756\) 0 0
\(757\) −1.86222e7 −1.18111 −0.590556 0.806997i \(-0.701091\pi\)
−0.590556 + 0.806997i \(0.701091\pi\)
\(758\) 0 0
\(759\) −4.99851e6 −0.314946
\(760\) 0 0
\(761\) 2.65336e7 1.66087 0.830434 0.557117i \(-0.188093\pi\)
0.830434 + 0.557117i \(0.188093\pi\)
\(762\) 0 0
\(763\) 406161. 0.0252573
\(764\) 0 0
\(765\) −7.34265e6 −0.453627
\(766\) 0 0
\(767\) −2.46536e6 −0.151319
\(768\) 0 0
\(769\) −2.01595e7 −1.22931 −0.614657 0.788794i \(-0.710706\pi\)
−0.614657 + 0.788794i \(0.710706\pi\)
\(770\) 0 0
\(771\) −1.63479e7 −0.990433
\(772\) 0 0
\(773\) −5.86488e6 −0.353029 −0.176514 0.984298i \(-0.556482\pi\)
−0.176514 + 0.984298i \(0.556482\pi\)
\(774\) 0 0
\(775\) −1.19750e6 −0.0716178
\(776\) 0 0
\(777\) 2.90090e6 0.172377
\(778\) 0 0
\(779\) −1.72241e6 −0.101693
\(780\) 0 0
\(781\) −1.19186e7 −0.699196
\(782\) 0 0
\(783\) −4.73486e6 −0.275996
\(784\) 0 0
\(785\) 900250. 0.0521422
\(786\) 0 0
\(787\) 1.63347e6 0.0940100 0.0470050 0.998895i \(-0.485032\pi\)
0.0470050 + 0.998895i \(0.485032\pi\)
\(788\) 0 0
\(789\) 1.76263e7 1.00802
\(790\) 0 0
\(791\) 1.28971e7 0.732910
\(792\) 0 0
\(793\) −3.05600e7 −1.72572
\(794\) 0 0
\(795\) 5.88780e6 0.330396
\(796\) 0 0
\(797\) 2.07673e7 1.15807 0.579034 0.815303i \(-0.303430\pi\)
0.579034 + 0.815303i \(0.303430\pi\)
\(798\) 0 0
\(799\) 3.98878e7 2.21041
\(800\) 0 0
\(801\) −7.38072e6 −0.406460
\(802\) 0 0
\(803\) 1.13079e7 0.618860
\(804\) 0 0
\(805\) −3.63825e6 −0.197880
\(806\) 0 0
\(807\) 1.96231e6 0.106068
\(808\) 0 0
\(809\) 3.53936e6 0.190131 0.0950656 0.995471i \(-0.469694\pi\)
0.0950656 + 0.995471i \(0.469694\pi\)
\(810\) 0 0
\(811\) 2.11480e7 1.12906 0.564530 0.825412i \(-0.309057\pi\)
0.564530 + 0.825412i \(0.309057\pi\)
\(812\) 0 0
\(813\) −1.13639e7 −0.602976
\(814\) 0 0
\(815\) −4.39175e6 −0.231603
\(816\) 0 0
\(817\) 819924. 0.0429753
\(818\) 0 0
\(819\) −4.97713e6 −0.259280
\(820\) 0 0
\(821\) 265389. 0.0137412 0.00687061 0.999976i \(-0.497813\pi\)
0.00687061 + 0.999976i \(0.497813\pi\)
\(822\) 0 0
\(823\) −3.09261e7 −1.59157 −0.795785 0.605579i \(-0.792942\pi\)
−0.795785 + 0.605579i \(0.792942\pi\)
\(824\) 0 0
\(825\) 1.05188e6 0.0538058
\(826\) 0 0
\(827\) 2.84152e7 1.44473 0.722367 0.691510i \(-0.243054\pi\)
0.722367 + 0.691510i \(0.243054\pi\)
\(828\) 0 0
\(829\) −3.33547e7 −1.68566 −0.842832 0.538177i \(-0.819113\pi\)
−0.842832 + 0.538177i \(0.819113\pi\)
\(830\) 0 0
\(831\) −9.92374e6 −0.498509
\(832\) 0 0
\(833\) 4.35301e6 0.217359
\(834\) 0 0
\(835\) 3.93532e6 0.195328
\(836\) 0 0
\(837\) 6.98382e6 0.344572
\(838\) 0 0
\(839\) 5.66205e6 0.277695 0.138848 0.990314i \(-0.455660\pi\)
0.138848 + 0.990314i \(0.455660\pi\)
\(840\) 0 0
\(841\) −1.88237e7 −0.917732
\(842\) 0 0
\(843\) −8.98392e6 −0.435408
\(844\) 0 0
\(845\) 545900. 0.0263009
\(846\) 0 0
\(847\) −6.17802e6 −0.295897
\(848\) 0 0
\(849\) 3.47734e6 0.165569
\(850\) 0 0
\(851\) −1.95367e7 −0.924754
\(852\) 0 0
\(853\) 2.19983e7 1.03518 0.517592 0.855628i \(-0.326829\pi\)
0.517592 + 0.855628i \(0.326829\pi\)
\(854\) 0 0
\(855\) 1.04490e6 0.0488832
\(856\) 0 0
\(857\) −2.17568e7 −1.01191 −0.505956 0.862559i \(-0.668860\pi\)
−0.505956 + 0.862559i \(0.668860\pi\)
\(858\) 0 0
\(859\) 4.09384e7 1.89299 0.946494 0.322721i \(-0.104598\pi\)
0.946494 + 0.322721i \(0.104598\pi\)
\(860\) 0 0
\(861\) 2.94412e6 0.135347
\(862\) 0 0
\(863\) −5.65597e6 −0.258512 −0.129256 0.991611i \(-0.541259\pi\)
−0.129256 + 0.991611i \(0.541259\pi\)
\(864\) 0 0
\(865\) −586775. −0.0266644
\(866\) 0 0
\(867\) 1.68040e7 0.759216
\(868\) 0 0
\(869\) 8.17583e6 0.367267
\(870\) 0 0
\(871\) 2.81097e7 1.25548
\(872\) 0 0
\(873\) 9.28179e6 0.412189
\(874\) 0 0
\(875\) 765625. 0.0338062
\(876\) 0 0
\(877\) 2.61067e7 1.14618 0.573089 0.819493i \(-0.305745\pi\)
0.573089 + 0.819493i \(0.305745\pi\)
\(878\) 0 0
\(879\) −7.05214e6 −0.307857
\(880\) 0 0
\(881\) 1.44294e6 0.0626339 0.0313170 0.999510i \(-0.490030\pi\)
0.0313170 + 0.999510i \(0.490030\pi\)
\(882\) 0 0
\(883\) 1.52432e7 0.657921 0.328960 0.944344i \(-0.393302\pi\)
0.328960 + 0.944344i \(0.393302\pi\)
\(884\) 0 0
\(885\) −884700. −0.0379698
\(886\) 0 0
\(887\) 3.31500e7 1.41473 0.707366 0.706847i \(-0.249883\pi\)
0.707366 + 0.706847i \(0.249883\pi\)
\(888\) 0 0
\(889\) −1.47255e6 −0.0624907
\(890\) 0 0
\(891\) 1.22691e6 0.0517747
\(892\) 0 0
\(893\) −5.67626e6 −0.238195
\(894\) 0 0
\(895\) −1.53057e7 −0.638698
\(896\) 0 0
\(897\) −1.67597e7 −0.695481
\(898\) 0 0
\(899\) −2.48888e6 −0.102708
\(900\) 0 0
\(901\) 4.74426e7 1.94696
\(902\) 0 0
\(903\) −1.40150e6 −0.0571970
\(904\) 0 0
\(905\) 1.32208e7 0.536582
\(906\) 0 0
\(907\) −1.16963e7 −0.472096 −0.236048 0.971741i \(-0.575852\pi\)
−0.236048 + 0.971741i \(0.575852\pi\)
\(908\) 0 0
\(909\) 7.28514e6 0.292434
\(910\) 0 0
\(911\) −2.89321e7 −1.15501 −0.577503 0.816389i \(-0.695973\pi\)
−0.577503 + 0.816389i \(0.695973\pi\)
\(912\) 0 0
\(913\) −1.81906e7 −0.722221
\(914\) 0 0
\(915\) −1.09665e7 −0.433027
\(916\) 0 0
\(917\) 5.88245e6 0.231012
\(918\) 0 0
\(919\) 4.57838e7 1.78823 0.894115 0.447838i \(-0.147806\pi\)
0.894115 + 0.447838i \(0.147806\pi\)
\(920\) 0 0
\(921\) −2.53596e7 −0.985129
\(922\) 0 0
\(923\) −3.99625e7 −1.54400
\(924\) 0 0
\(925\) 4.11125e6 0.157986
\(926\) 0 0
\(927\) −1.64276e7 −0.627878
\(928\) 0 0
\(929\) 2.46947e7 0.938782 0.469391 0.882990i \(-0.344474\pi\)
0.469391 + 0.882990i \(0.344474\pi\)
\(930\) 0 0
\(931\) −619458. −0.0234227
\(932\) 0 0
\(933\) 7.62658e6 0.286831
\(934\) 0 0
\(935\) 8.47578e6 0.317067
\(936\) 0 0
\(937\) −1.98926e7 −0.740187 −0.370094 0.928994i \(-0.620674\pi\)
−0.370094 + 0.928994i \(0.620674\pi\)
\(938\) 0 0
\(939\) 3.28460e6 0.121568
\(940\) 0 0
\(941\) −3.73454e7 −1.37488 −0.687438 0.726243i \(-0.741265\pi\)
−0.687438 + 0.726243i \(0.741265\pi\)
\(942\) 0 0
\(943\) −1.98277e7 −0.726095
\(944\) 0 0
\(945\) −4.46512e6 −0.162650
\(946\) 0 0
\(947\) −5.10396e7 −1.84941 −0.924703 0.380689i \(-0.875687\pi\)
−0.924703 + 0.380689i \(0.875687\pi\)
\(948\) 0 0
\(949\) 3.79147e7 1.36660
\(950\) 0 0
\(951\) 1.74369e7 0.625200
\(952\) 0 0
\(953\) 254832. 0.00908912 0.00454456 0.999990i \(-0.498553\pi\)
0.00454456 + 0.999990i \(0.498553\pi\)
\(954\) 0 0
\(955\) −1.35092e7 −0.479316
\(956\) 0 0
\(957\) 2.18622e6 0.0771638
\(958\) 0 0
\(959\) 1.55702e6 0.0546700
\(960\) 0 0
\(961\) −2.49581e7 −0.871772
\(962\) 0 0
\(963\) −2.68923e7 −0.934464
\(964\) 0 0
\(965\) 2.40080e7 0.829923
\(966\) 0 0
\(967\) −1.17012e7 −0.402405 −0.201203 0.979550i \(-0.564485\pi\)
−0.201203 + 0.979550i \(0.564485\pi\)
\(968\) 0 0
\(969\) −4.20979e6 −0.144029
\(970\) 0 0
\(971\) −3.59080e7 −1.22220 −0.611101 0.791553i \(-0.709273\pi\)
−0.611101 + 0.791553i \(0.709273\pi\)
\(972\) 0 0
\(973\) 9.80794e6 0.332120
\(974\) 0 0
\(975\) 3.52688e6 0.118817
\(976\) 0 0
\(977\) −5.50592e7 −1.84541 −0.922706 0.385504i \(-0.874028\pi\)
−0.922706 + 0.385504i \(0.874028\pi\)
\(978\) 0 0
\(979\) 8.51972e6 0.284098
\(980\) 0 0
\(981\) −1.34282e6 −0.0445497
\(982\) 0 0
\(983\) 1.81317e7 0.598488 0.299244 0.954177i \(-0.403266\pi\)
0.299244 + 0.954177i \(0.403266\pi\)
\(984\) 0 0
\(985\) 1.90486e7 0.625565
\(986\) 0 0
\(987\) 9.70244e6 0.317021
\(988\) 0 0
\(989\) 9.43866e6 0.306845
\(990\) 0 0
\(991\) 2.02908e7 0.656318 0.328159 0.944623i \(-0.393572\pi\)
0.328159 + 0.944623i \(0.393572\pi\)
\(992\) 0 0
\(993\) 553140. 0.0178017
\(994\) 0 0
\(995\) −3.12710e6 −0.100135
\(996\) 0 0
\(997\) 4.75390e7 1.51465 0.757325 0.653038i \(-0.226506\pi\)
0.757325 + 0.653038i \(0.226506\pi\)
\(998\) 0 0
\(999\) −2.39768e7 −0.760112
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.6.a.e.1.1 1
4.3 odd 2 70.6.a.b.1.1 1
12.11 even 2 630.6.a.i.1.1 1
20.3 even 4 350.6.c.g.99.2 2
20.7 even 4 350.6.c.g.99.1 2
20.19 odd 2 350.6.a.l.1.1 1
28.27 even 2 490.6.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.b.1.1 1 4.3 odd 2
350.6.a.l.1.1 1 20.19 odd 2
350.6.c.g.99.1 2 20.7 even 4
350.6.c.g.99.2 2 20.3 even 4
490.6.a.g.1.1 1 28.27 even 2
560.6.a.e.1.1 1 1.1 even 1 trivial
630.6.a.i.1.1 1 12.11 even 2