Properties

Label 560.6.a.d.1.1
Level $560$
Weight $6$
Character 560.1
Self dual yes
Analytic conductor $89.815$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,6,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 560.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -25.0000 q^{5} -49.0000 q^{7} -234.000 q^{9} +O(q^{10})\) \(q+3.00000 q^{3} -25.0000 q^{5} -49.0000 q^{7} -234.000 q^{9} -405.000 q^{11} -391.000 q^{13} -75.0000 q^{15} +999.000 q^{17} -2342.00 q^{19} -147.000 q^{21} -2430.00 q^{23} +625.000 q^{25} -1431.00 q^{27} +8259.00 q^{29} -4016.00 q^{31} -1215.00 q^{33} +1225.00 q^{35} -7042.00 q^{37} -1173.00 q^{39} +3336.00 q^{41} +23518.0 q^{43} +5850.00 q^{45} -10317.0 q^{47} +2401.00 q^{49} +2997.00 q^{51} +3084.00 q^{53} +10125.0 q^{55} -7026.00 q^{57} +18816.0 q^{59} +21668.0 q^{61} +11466.0 q^{63} +9775.00 q^{65} -52124.0 q^{67} -7290.00 q^{69} +28560.0 q^{71} -70342.0 q^{73} +1875.00 q^{75} +19845.0 q^{77} -58823.0 q^{79} +52569.0 q^{81} -756.000 q^{83} -24975.0 q^{85} +24777.0 q^{87} +135384. q^{89} +19159.0 q^{91} -12048.0 q^{93} +58550.0 q^{95} +110435. q^{97} +94770.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.192450 0.0962250 0.995360i \(-0.469323\pi\)
0.0962250 + 0.995360i \(0.469323\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) −234.000 −0.962963
\(10\) 0 0
\(11\) −405.000 −1.00919 −0.504595 0.863356i \(-0.668358\pi\)
−0.504595 + 0.863356i \(0.668358\pi\)
\(12\) 0 0
\(13\) −391.000 −0.641680 −0.320840 0.947133i \(-0.603965\pi\)
−0.320840 + 0.947133i \(0.603965\pi\)
\(14\) 0 0
\(15\) −75.0000 −0.0860663
\(16\) 0 0
\(17\) 999.000 0.838384 0.419192 0.907898i \(-0.362313\pi\)
0.419192 + 0.907898i \(0.362313\pi\)
\(18\) 0 0
\(19\) −2342.00 −1.48834 −0.744171 0.667989i \(-0.767155\pi\)
−0.744171 + 0.667989i \(0.767155\pi\)
\(20\) 0 0
\(21\) −147.000 −0.0727393
\(22\) 0 0
\(23\) −2430.00 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −1431.00 −0.377772
\(28\) 0 0
\(29\) 8259.00 1.82361 0.911806 0.410621i \(-0.134688\pi\)
0.911806 + 0.410621i \(0.134688\pi\)
\(30\) 0 0
\(31\) −4016.00 −0.750567 −0.375284 0.926910i \(-0.622455\pi\)
−0.375284 + 0.926910i \(0.622455\pi\)
\(32\) 0 0
\(33\) −1215.00 −0.194219
\(34\) 0 0
\(35\) 1225.00 0.169031
\(36\) 0 0
\(37\) −7042.00 −0.845652 −0.422826 0.906211i \(-0.638962\pi\)
−0.422826 + 0.906211i \(0.638962\pi\)
\(38\) 0 0
\(39\) −1173.00 −0.123491
\(40\) 0 0
\(41\) 3336.00 0.309932 0.154966 0.987920i \(-0.450473\pi\)
0.154966 + 0.987920i \(0.450473\pi\)
\(42\) 0 0
\(43\) 23518.0 1.93968 0.969838 0.243750i \(-0.0783776\pi\)
0.969838 + 0.243750i \(0.0783776\pi\)
\(44\) 0 0
\(45\) 5850.00 0.430650
\(46\) 0 0
\(47\) −10317.0 −0.681254 −0.340627 0.940199i \(-0.610639\pi\)
−0.340627 + 0.940199i \(0.610639\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 2997.00 0.161347
\(52\) 0 0
\(53\) 3084.00 0.150808 0.0754041 0.997153i \(-0.475975\pi\)
0.0754041 + 0.997153i \(0.475975\pi\)
\(54\) 0 0
\(55\) 10125.0 0.451324
\(56\) 0 0
\(57\) −7026.00 −0.286432
\(58\) 0 0
\(59\) 18816.0 0.703716 0.351858 0.936053i \(-0.385550\pi\)
0.351858 + 0.936053i \(0.385550\pi\)
\(60\) 0 0
\(61\) 21668.0 0.745580 0.372790 0.927916i \(-0.378401\pi\)
0.372790 + 0.927916i \(0.378401\pi\)
\(62\) 0 0
\(63\) 11466.0 0.363966
\(64\) 0 0
\(65\) 9775.00 0.286968
\(66\) 0 0
\(67\) −52124.0 −1.41857 −0.709285 0.704922i \(-0.750982\pi\)
−0.709285 + 0.704922i \(0.750982\pi\)
\(68\) 0 0
\(69\) −7290.00 −0.184334
\(70\) 0 0
\(71\) 28560.0 0.672376 0.336188 0.941795i \(-0.390862\pi\)
0.336188 + 0.941795i \(0.390862\pi\)
\(72\) 0 0
\(73\) −70342.0 −1.54493 −0.772463 0.635060i \(-0.780975\pi\)
−0.772463 + 0.635060i \(0.780975\pi\)
\(74\) 0 0
\(75\) 1875.00 0.0384900
\(76\) 0 0
\(77\) 19845.0 0.381438
\(78\) 0 0
\(79\) −58823.0 −1.06042 −0.530212 0.847865i \(-0.677888\pi\)
−0.530212 + 0.847865i \(0.677888\pi\)
\(80\) 0 0
\(81\) 52569.0 0.890261
\(82\) 0 0
\(83\) −756.000 −0.0120455 −0.00602277 0.999982i \(-0.501917\pi\)
−0.00602277 + 0.999982i \(0.501917\pi\)
\(84\) 0 0
\(85\) −24975.0 −0.374937
\(86\) 0 0
\(87\) 24777.0 0.350954
\(88\) 0 0
\(89\) 135384. 1.81173 0.905863 0.423572i \(-0.139224\pi\)
0.905863 + 0.423572i \(0.139224\pi\)
\(90\) 0 0
\(91\) 19159.0 0.242532
\(92\) 0 0
\(93\) −12048.0 −0.144447
\(94\) 0 0
\(95\) 58550.0 0.665607
\(96\) 0 0
\(97\) 110435. 1.19173 0.595864 0.803085i \(-0.296810\pi\)
0.595864 + 0.803085i \(0.296810\pi\)
\(98\) 0 0
\(99\) 94770.0 0.971813
\(100\) 0 0
\(101\) 33450.0 0.326282 0.163141 0.986603i \(-0.447838\pi\)
0.163141 + 0.986603i \(0.447838\pi\)
\(102\) 0 0
\(103\) 110311. 1.02453 0.512266 0.858827i \(-0.328806\pi\)
0.512266 + 0.858827i \(0.328806\pi\)
\(104\) 0 0
\(105\) 3675.00 0.0325300
\(106\) 0 0
\(107\) −35358.0 −0.298558 −0.149279 0.988795i \(-0.547695\pi\)
−0.149279 + 0.988795i \(0.547695\pi\)
\(108\) 0 0
\(109\) −151183. −1.21881 −0.609406 0.792858i \(-0.708592\pi\)
−0.609406 + 0.792858i \(0.708592\pi\)
\(110\) 0 0
\(111\) −21126.0 −0.162746
\(112\) 0 0
\(113\) −133686. −0.984895 −0.492447 0.870342i \(-0.663898\pi\)
−0.492447 + 0.870342i \(0.663898\pi\)
\(114\) 0 0
\(115\) 60750.0 0.428353
\(116\) 0 0
\(117\) 91494.0 0.617914
\(118\) 0 0
\(119\) −48951.0 −0.316880
\(120\) 0 0
\(121\) 2974.00 0.0184662
\(122\) 0 0
\(123\) 10008.0 0.0596464
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) 283984. 1.56237 0.781186 0.624298i \(-0.214615\pi\)
0.781186 + 0.624298i \(0.214615\pi\)
\(128\) 0 0
\(129\) 70554.0 0.373291
\(130\) 0 0
\(131\) −261438. −1.33104 −0.665519 0.746381i \(-0.731790\pi\)
−0.665519 + 0.746381i \(0.731790\pi\)
\(132\) 0 0
\(133\) 114758. 0.562541
\(134\) 0 0
\(135\) 35775.0 0.168945
\(136\) 0 0
\(137\) 39672.0 0.180585 0.0902927 0.995915i \(-0.471220\pi\)
0.0902927 + 0.995915i \(0.471220\pi\)
\(138\) 0 0
\(139\) 182626. 0.801725 0.400863 0.916138i \(-0.368710\pi\)
0.400863 + 0.916138i \(0.368710\pi\)
\(140\) 0 0
\(141\) −30951.0 −0.131107
\(142\) 0 0
\(143\) 158355. 0.647577
\(144\) 0 0
\(145\) −206475. −0.815544
\(146\) 0 0
\(147\) 7203.00 0.0274929
\(148\) 0 0
\(149\) −12078.0 −0.0445686 −0.0222843 0.999752i \(-0.507094\pi\)
−0.0222843 + 0.999752i \(0.507094\pi\)
\(150\) 0 0
\(151\) 208417. 0.743859 0.371930 0.928261i \(-0.378696\pi\)
0.371930 + 0.928261i \(0.378696\pi\)
\(152\) 0 0
\(153\) −233766. −0.807333
\(154\) 0 0
\(155\) 100400. 0.335664
\(156\) 0 0
\(157\) 364094. 1.17887 0.589433 0.807817i \(-0.299351\pi\)
0.589433 + 0.807817i \(0.299351\pi\)
\(158\) 0 0
\(159\) 9252.00 0.0290230
\(160\) 0 0
\(161\) 119070. 0.362024
\(162\) 0 0
\(163\) −626.000 −0.00184546 −0.000922731 1.00000i \(-0.500294\pi\)
−0.000922731 1.00000i \(0.500294\pi\)
\(164\) 0 0
\(165\) 30375.0 0.0868573
\(166\) 0 0
\(167\) −445617. −1.23643 −0.618216 0.786008i \(-0.712144\pi\)
−0.618216 + 0.786008i \(0.712144\pi\)
\(168\) 0 0
\(169\) −218412. −0.588247
\(170\) 0 0
\(171\) 548028. 1.43322
\(172\) 0 0
\(173\) 643467. 1.63460 0.817299 0.576214i \(-0.195470\pi\)
0.817299 + 0.576214i \(0.195470\pi\)
\(174\) 0 0
\(175\) −30625.0 −0.0755929
\(176\) 0 0
\(177\) 56448.0 0.135430
\(178\) 0 0
\(179\) −245148. −0.571868 −0.285934 0.958249i \(-0.592304\pi\)
−0.285934 + 0.958249i \(0.592304\pi\)
\(180\) 0 0
\(181\) 686180. 1.55683 0.778416 0.627749i \(-0.216024\pi\)
0.778416 + 0.627749i \(0.216024\pi\)
\(182\) 0 0
\(183\) 65004.0 0.143487
\(184\) 0 0
\(185\) 176050. 0.378187
\(186\) 0 0
\(187\) −404595. −0.846090
\(188\) 0 0
\(189\) 70119.0 0.142785
\(190\) 0 0
\(191\) 527031. 1.04533 0.522664 0.852539i \(-0.324938\pi\)
0.522664 + 0.852539i \(0.324938\pi\)
\(192\) 0 0
\(193\) 143216. 0.276757 0.138378 0.990379i \(-0.455811\pi\)
0.138378 + 0.990379i \(0.455811\pi\)
\(194\) 0 0
\(195\) 29325.0 0.0552270
\(196\) 0 0
\(197\) 348468. 0.639731 0.319865 0.947463i \(-0.396362\pi\)
0.319865 + 0.947463i \(0.396362\pi\)
\(198\) 0 0
\(199\) −754520. −1.35064 −0.675318 0.737527i \(-0.735993\pi\)
−0.675318 + 0.737527i \(0.735993\pi\)
\(200\) 0 0
\(201\) −156372. −0.273004
\(202\) 0 0
\(203\) −404691. −0.689261
\(204\) 0 0
\(205\) −83400.0 −0.138606
\(206\) 0 0
\(207\) 568620. 0.922351
\(208\) 0 0
\(209\) 948510. 1.50202
\(210\) 0 0
\(211\) 590749. 0.913475 0.456738 0.889601i \(-0.349018\pi\)
0.456738 + 0.889601i \(0.349018\pi\)
\(212\) 0 0
\(213\) 85680.0 0.129399
\(214\) 0 0
\(215\) −587950. −0.867450
\(216\) 0 0
\(217\) 196784. 0.283688
\(218\) 0 0
\(219\) −211026. −0.297321
\(220\) 0 0
\(221\) −390609. −0.537974
\(222\) 0 0
\(223\) 396103. 0.533391 0.266696 0.963781i \(-0.414068\pi\)
0.266696 + 0.963781i \(0.414068\pi\)
\(224\) 0 0
\(225\) −146250. −0.192593
\(226\) 0 0
\(227\) −9537.00 −0.0122842 −0.00614210 0.999981i \(-0.501955\pi\)
−0.00614210 + 0.999981i \(0.501955\pi\)
\(228\) 0 0
\(229\) 705056. 0.888454 0.444227 0.895914i \(-0.353478\pi\)
0.444227 + 0.895914i \(0.353478\pi\)
\(230\) 0 0
\(231\) 59535.0 0.0734078
\(232\) 0 0
\(233\) 534216. 0.644655 0.322327 0.946628i \(-0.395535\pi\)
0.322327 + 0.946628i \(0.395535\pi\)
\(234\) 0 0
\(235\) 257925. 0.304666
\(236\) 0 0
\(237\) −176469. −0.204079
\(238\) 0 0
\(239\) 901221. 1.02056 0.510278 0.860010i \(-0.329543\pi\)
0.510278 + 0.860010i \(0.329543\pi\)
\(240\) 0 0
\(241\) −952390. −1.05626 −0.528132 0.849162i \(-0.677107\pi\)
−0.528132 + 0.849162i \(0.677107\pi\)
\(242\) 0 0
\(243\) 505440. 0.549103
\(244\) 0 0
\(245\) −60025.0 −0.0638877
\(246\) 0 0
\(247\) 915722. 0.955039
\(248\) 0 0
\(249\) −2268.00 −0.00231817
\(250\) 0 0
\(251\) 1.10024e6 1.10231 0.551153 0.834404i \(-0.314188\pi\)
0.551153 + 0.834404i \(0.314188\pi\)
\(252\) 0 0
\(253\) 984150. 0.966629
\(254\) 0 0
\(255\) −74925.0 −0.0721566
\(256\) 0 0
\(257\) −1.08230e6 −1.02215 −0.511074 0.859537i \(-0.670752\pi\)
−0.511074 + 0.859537i \(0.670752\pi\)
\(258\) 0 0
\(259\) 345058. 0.319626
\(260\) 0 0
\(261\) −1.93261e6 −1.75607
\(262\) 0 0
\(263\) −82950.0 −0.0739481 −0.0369740 0.999316i \(-0.511772\pi\)
−0.0369740 + 0.999316i \(0.511772\pi\)
\(264\) 0 0
\(265\) −77100.0 −0.0674434
\(266\) 0 0
\(267\) 406152. 0.348667
\(268\) 0 0
\(269\) −633822. −0.534056 −0.267028 0.963689i \(-0.586042\pi\)
−0.267028 + 0.963689i \(0.586042\pi\)
\(270\) 0 0
\(271\) 278956. 0.230734 0.115367 0.993323i \(-0.463196\pi\)
0.115367 + 0.993323i \(0.463196\pi\)
\(272\) 0 0
\(273\) 57477.0 0.0466753
\(274\) 0 0
\(275\) −253125. −0.201838
\(276\) 0 0
\(277\) 2.17523e6 1.70336 0.851679 0.524064i \(-0.175585\pi\)
0.851679 + 0.524064i \(0.175585\pi\)
\(278\) 0 0
\(279\) 939744. 0.722768
\(280\) 0 0
\(281\) −692901. −0.523486 −0.261743 0.965138i \(-0.584297\pi\)
−0.261743 + 0.965138i \(0.584297\pi\)
\(282\) 0 0
\(283\) −1.04021e6 −0.772065 −0.386032 0.922485i \(-0.626155\pi\)
−0.386032 + 0.922485i \(0.626155\pi\)
\(284\) 0 0
\(285\) 175650. 0.128096
\(286\) 0 0
\(287\) −163464. −0.117143
\(288\) 0 0
\(289\) −421856. −0.297112
\(290\) 0 0
\(291\) 331305. 0.229348
\(292\) 0 0
\(293\) −1.08565e6 −0.738789 −0.369394 0.929273i \(-0.620435\pi\)
−0.369394 + 0.929273i \(0.620435\pi\)
\(294\) 0 0
\(295\) −470400. −0.314711
\(296\) 0 0
\(297\) 579555. 0.381244
\(298\) 0 0
\(299\) 950130. 0.614618
\(300\) 0 0
\(301\) −1.15238e6 −0.733129
\(302\) 0 0
\(303\) 100350. 0.0627929
\(304\) 0 0
\(305\) −541700. −0.333434
\(306\) 0 0
\(307\) −1463.00 −0.000885928 0 −0.000442964 1.00000i \(-0.500141\pi\)
−0.000442964 1.00000i \(0.500141\pi\)
\(308\) 0 0
\(309\) 330933. 0.197171
\(310\) 0 0
\(311\) −3.11977e6 −1.82903 −0.914515 0.404551i \(-0.867428\pi\)
−0.914515 + 0.404551i \(0.867428\pi\)
\(312\) 0 0
\(313\) 831425. 0.479692 0.239846 0.970811i \(-0.422903\pi\)
0.239846 + 0.970811i \(0.422903\pi\)
\(314\) 0 0
\(315\) −286650. −0.162770
\(316\) 0 0
\(317\) −1.25851e6 −0.703408 −0.351704 0.936111i \(-0.614398\pi\)
−0.351704 + 0.936111i \(0.614398\pi\)
\(318\) 0 0
\(319\) −3.34489e6 −1.84037
\(320\) 0 0
\(321\) −106074. −0.0574575
\(322\) 0 0
\(323\) −2.33966e6 −1.24780
\(324\) 0 0
\(325\) −244375. −0.128336
\(326\) 0 0
\(327\) −453549. −0.234560
\(328\) 0 0
\(329\) 505533. 0.257490
\(330\) 0 0
\(331\) 2.30465e6 1.15621 0.578103 0.815964i \(-0.303793\pi\)
0.578103 + 0.815964i \(0.303793\pi\)
\(332\) 0 0
\(333\) 1.64783e6 0.814332
\(334\) 0 0
\(335\) 1.30310e6 0.634404
\(336\) 0 0
\(337\) 769166. 0.368931 0.184466 0.982839i \(-0.440945\pi\)
0.184466 + 0.982839i \(0.440945\pi\)
\(338\) 0 0
\(339\) −401058. −0.189543
\(340\) 0 0
\(341\) 1.62648e6 0.757465
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) 182250. 0.0824365
\(346\) 0 0
\(347\) −382074. −0.170343 −0.0851714 0.996366i \(-0.527144\pi\)
−0.0851714 + 0.996366i \(0.527144\pi\)
\(348\) 0 0
\(349\) −3.88710e6 −1.70829 −0.854146 0.520034i \(-0.825919\pi\)
−0.854146 + 0.520034i \(0.825919\pi\)
\(350\) 0 0
\(351\) 559521. 0.242409
\(352\) 0 0
\(353\) −366453. −0.156524 −0.0782621 0.996933i \(-0.524937\pi\)
−0.0782621 + 0.996933i \(0.524937\pi\)
\(354\) 0 0
\(355\) −714000. −0.300696
\(356\) 0 0
\(357\) −146853. −0.0609835
\(358\) 0 0
\(359\) 3.14858e6 1.28937 0.644687 0.764446i \(-0.276988\pi\)
0.644687 + 0.764446i \(0.276988\pi\)
\(360\) 0 0
\(361\) 3.00887e6 1.21516
\(362\) 0 0
\(363\) 8922.00 0.00355382
\(364\) 0 0
\(365\) 1.75855e6 0.690912
\(366\) 0 0
\(367\) −2.13740e6 −0.828362 −0.414181 0.910195i \(-0.635932\pi\)
−0.414181 + 0.910195i \(0.635932\pi\)
\(368\) 0 0
\(369\) −780624. −0.298453
\(370\) 0 0
\(371\) −151116. −0.0570001
\(372\) 0 0
\(373\) −205624. −0.0765247 −0.0382624 0.999268i \(-0.512182\pi\)
−0.0382624 + 0.999268i \(0.512182\pi\)
\(374\) 0 0
\(375\) −46875.0 −0.0172133
\(376\) 0 0
\(377\) −3.22927e6 −1.17018
\(378\) 0 0
\(379\) −3.50536e6 −1.25353 −0.626766 0.779208i \(-0.715622\pi\)
−0.626766 + 0.779208i \(0.715622\pi\)
\(380\) 0 0
\(381\) 851952. 0.300679
\(382\) 0 0
\(383\) −1.12904e6 −0.393291 −0.196645 0.980475i \(-0.563005\pi\)
−0.196645 + 0.980475i \(0.563005\pi\)
\(384\) 0 0
\(385\) −496125. −0.170584
\(386\) 0 0
\(387\) −5.50321e6 −1.86784
\(388\) 0 0
\(389\) −1.20003e6 −0.402084 −0.201042 0.979583i \(-0.564433\pi\)
−0.201042 + 0.979583i \(0.564433\pi\)
\(390\) 0 0
\(391\) −2.42757e6 −0.803026
\(392\) 0 0
\(393\) −784314. −0.256158
\(394\) 0 0
\(395\) 1.47058e6 0.474236
\(396\) 0 0
\(397\) −4.41836e6 −1.40697 −0.703486 0.710709i \(-0.748374\pi\)
−0.703486 + 0.710709i \(0.748374\pi\)
\(398\) 0 0
\(399\) 344274. 0.108261
\(400\) 0 0
\(401\) −3.13278e6 −0.972903 −0.486451 0.873708i \(-0.661709\pi\)
−0.486451 + 0.873708i \(0.661709\pi\)
\(402\) 0 0
\(403\) 1.57026e6 0.481624
\(404\) 0 0
\(405\) −1.31422e6 −0.398137
\(406\) 0 0
\(407\) 2.85201e6 0.853424
\(408\) 0 0
\(409\) 861494. 0.254650 0.127325 0.991861i \(-0.459361\pi\)
0.127325 + 0.991861i \(0.459361\pi\)
\(410\) 0 0
\(411\) 119016. 0.0347537
\(412\) 0 0
\(413\) −921984. −0.265980
\(414\) 0 0
\(415\) 18900.0 0.00538693
\(416\) 0 0
\(417\) 547878. 0.154292
\(418\) 0 0
\(419\) −4.65796e6 −1.29617 −0.648083 0.761570i \(-0.724429\pi\)
−0.648083 + 0.761570i \(0.724429\pi\)
\(420\) 0 0
\(421\) 6.99894e6 1.92454 0.962271 0.272093i \(-0.0877159\pi\)
0.962271 + 0.272093i \(0.0877159\pi\)
\(422\) 0 0
\(423\) 2.41418e6 0.656022
\(424\) 0 0
\(425\) 624375. 0.167677
\(426\) 0 0
\(427\) −1.06173e6 −0.281803
\(428\) 0 0
\(429\) 475065. 0.124626
\(430\) 0 0
\(431\) 227091. 0.0588853 0.0294426 0.999566i \(-0.490627\pi\)
0.0294426 + 0.999566i \(0.490627\pi\)
\(432\) 0 0
\(433\) −7.09613e6 −1.81887 −0.909435 0.415846i \(-0.863485\pi\)
−0.909435 + 0.415846i \(0.863485\pi\)
\(434\) 0 0
\(435\) −619425. −0.156952
\(436\) 0 0
\(437\) 5.69106e6 1.42557
\(438\) 0 0
\(439\) −593258. −0.146920 −0.0734602 0.997298i \(-0.523404\pi\)
−0.0734602 + 0.997298i \(0.523404\pi\)
\(440\) 0 0
\(441\) −561834. −0.137566
\(442\) 0 0
\(443\) 3.27692e6 0.793334 0.396667 0.917963i \(-0.370167\pi\)
0.396667 + 0.917963i \(0.370167\pi\)
\(444\) 0 0
\(445\) −3.38460e6 −0.810228
\(446\) 0 0
\(447\) −36234.0 −0.00857724
\(448\) 0 0
\(449\) −4.32930e6 −1.01345 −0.506724 0.862108i \(-0.669144\pi\)
−0.506724 + 0.862108i \(0.669144\pi\)
\(450\) 0 0
\(451\) −1.35108e6 −0.312781
\(452\) 0 0
\(453\) 625251. 0.143156
\(454\) 0 0
\(455\) −478975. −0.108464
\(456\) 0 0
\(457\) −4.91638e6 −1.10117 −0.550586 0.834779i \(-0.685596\pi\)
−0.550586 + 0.834779i \(0.685596\pi\)
\(458\) 0 0
\(459\) −1.42957e6 −0.316718
\(460\) 0 0
\(461\) 7.02919e6 1.54047 0.770235 0.637761i \(-0.220139\pi\)
0.770235 + 0.637761i \(0.220139\pi\)
\(462\) 0 0
\(463\) −2.88559e6 −0.625579 −0.312789 0.949823i \(-0.601263\pi\)
−0.312789 + 0.949823i \(0.601263\pi\)
\(464\) 0 0
\(465\) 301200. 0.0645985
\(466\) 0 0
\(467\) 6.00583e6 1.27433 0.637163 0.770729i \(-0.280108\pi\)
0.637163 + 0.770729i \(0.280108\pi\)
\(468\) 0 0
\(469\) 2.55408e6 0.536169
\(470\) 0 0
\(471\) 1.09228e6 0.226873
\(472\) 0 0
\(473\) −9.52479e6 −1.95750
\(474\) 0 0
\(475\) −1.46375e6 −0.297669
\(476\) 0 0
\(477\) −721656. −0.145223
\(478\) 0 0
\(479\) −941094. −0.187411 −0.0937053 0.995600i \(-0.529871\pi\)
−0.0937053 + 0.995600i \(0.529871\pi\)
\(480\) 0 0
\(481\) 2.75342e6 0.542638
\(482\) 0 0
\(483\) 357210. 0.0696716
\(484\) 0 0
\(485\) −2.76087e6 −0.532957
\(486\) 0 0
\(487\) −1.91121e6 −0.365162 −0.182581 0.983191i \(-0.558445\pi\)
−0.182581 + 0.983191i \(0.558445\pi\)
\(488\) 0 0
\(489\) −1878.00 −0.000355160 0
\(490\) 0 0
\(491\) −3.95490e6 −0.740342 −0.370171 0.928964i \(-0.620701\pi\)
−0.370171 + 0.928964i \(0.620701\pi\)
\(492\) 0 0
\(493\) 8.25074e6 1.52889
\(494\) 0 0
\(495\) −2.36925e6 −0.434608
\(496\) 0 0
\(497\) −1.39944e6 −0.254134
\(498\) 0 0
\(499\) −7.09708e6 −1.27593 −0.637967 0.770063i \(-0.720225\pi\)
−0.637967 + 0.770063i \(0.720225\pi\)
\(500\) 0 0
\(501\) −1.33685e6 −0.237952
\(502\) 0 0
\(503\) 9.15982e6 1.61424 0.807118 0.590390i \(-0.201026\pi\)
0.807118 + 0.590390i \(0.201026\pi\)
\(504\) 0 0
\(505\) −836250. −0.145918
\(506\) 0 0
\(507\) −655236. −0.113208
\(508\) 0 0
\(509\) −9.42509e6 −1.61247 −0.806234 0.591596i \(-0.798498\pi\)
−0.806234 + 0.591596i \(0.798498\pi\)
\(510\) 0 0
\(511\) 3.44676e6 0.583927
\(512\) 0 0
\(513\) 3.35140e6 0.562255
\(514\) 0 0
\(515\) −2.75778e6 −0.458185
\(516\) 0 0
\(517\) 4.17838e6 0.687515
\(518\) 0 0
\(519\) 1.93040e6 0.314579
\(520\) 0 0
\(521\) −6.18917e6 −0.998938 −0.499469 0.866332i \(-0.666471\pi\)
−0.499469 + 0.866332i \(0.666471\pi\)
\(522\) 0 0
\(523\) 3.81497e6 0.609870 0.304935 0.952373i \(-0.401365\pi\)
0.304935 + 0.952373i \(0.401365\pi\)
\(524\) 0 0
\(525\) −91875.0 −0.0145479
\(526\) 0 0
\(527\) −4.01198e6 −0.629264
\(528\) 0 0
\(529\) −531443. −0.0825691
\(530\) 0 0
\(531\) −4.40294e6 −0.677652
\(532\) 0 0
\(533\) −1.30438e6 −0.198877
\(534\) 0 0
\(535\) 883950. 0.133519
\(536\) 0 0
\(537\) −735444. −0.110056
\(538\) 0 0
\(539\) −972405. −0.144170
\(540\) 0 0
\(541\) 6.30404e6 0.926032 0.463016 0.886350i \(-0.346767\pi\)
0.463016 + 0.886350i \(0.346767\pi\)
\(542\) 0 0
\(543\) 2.05854e6 0.299612
\(544\) 0 0
\(545\) 3.77957e6 0.545069
\(546\) 0 0
\(547\) 8.48475e6 1.21247 0.606234 0.795286i \(-0.292679\pi\)
0.606234 + 0.795286i \(0.292679\pi\)
\(548\) 0 0
\(549\) −5.07031e6 −0.717966
\(550\) 0 0
\(551\) −1.93426e7 −2.71416
\(552\) 0 0
\(553\) 2.88233e6 0.400802
\(554\) 0 0
\(555\) 528150. 0.0727821
\(556\) 0 0
\(557\) 6.87794e6 0.939335 0.469668 0.882843i \(-0.344374\pi\)
0.469668 + 0.882843i \(0.344374\pi\)
\(558\) 0 0
\(559\) −9.19554e6 −1.24465
\(560\) 0 0
\(561\) −1.21378e6 −0.162830
\(562\) 0 0
\(563\) 1.02257e7 1.35964 0.679820 0.733379i \(-0.262058\pi\)
0.679820 + 0.733379i \(0.262058\pi\)
\(564\) 0 0
\(565\) 3.34215e6 0.440458
\(566\) 0 0
\(567\) −2.57588e6 −0.336487
\(568\) 0 0
\(569\) −1.26751e7 −1.64123 −0.820614 0.571482i \(-0.806369\pi\)
−0.820614 + 0.571482i \(0.806369\pi\)
\(570\) 0 0
\(571\) 6.67155e6 0.856321 0.428160 0.903703i \(-0.359162\pi\)
0.428160 + 0.903703i \(0.359162\pi\)
\(572\) 0 0
\(573\) 1.58109e6 0.201174
\(574\) 0 0
\(575\) −1.51875e6 −0.191565
\(576\) 0 0
\(577\) −3.36511e6 −0.420784 −0.210392 0.977617i \(-0.567474\pi\)
−0.210392 + 0.977617i \(0.567474\pi\)
\(578\) 0 0
\(579\) 429648. 0.0532619
\(580\) 0 0
\(581\) 37044.0 0.00455279
\(582\) 0 0
\(583\) −1.24902e6 −0.152194
\(584\) 0 0
\(585\) −2.28735e6 −0.276339
\(586\) 0 0
\(587\) 1.10055e7 1.31830 0.659150 0.752012i \(-0.270916\pi\)
0.659150 + 0.752012i \(0.270916\pi\)
\(588\) 0 0
\(589\) 9.40547e6 1.11710
\(590\) 0 0
\(591\) 1.04540e6 0.123116
\(592\) 0 0
\(593\) 1.40222e6 0.163749 0.0818747 0.996643i \(-0.473909\pi\)
0.0818747 + 0.996643i \(0.473909\pi\)
\(594\) 0 0
\(595\) 1.22378e6 0.141713
\(596\) 0 0
\(597\) −2.26356e6 −0.259930
\(598\) 0 0
\(599\) −1.93034e6 −0.219820 −0.109910 0.993942i \(-0.535056\pi\)
−0.109910 + 0.993942i \(0.535056\pi\)
\(600\) 0 0
\(601\) −1.82271e6 −0.205841 −0.102921 0.994690i \(-0.532819\pi\)
−0.102921 + 0.994690i \(0.532819\pi\)
\(602\) 0 0
\(603\) 1.21970e7 1.36603
\(604\) 0 0
\(605\) −74350.0 −0.00825834
\(606\) 0 0
\(607\) 1.36917e7 1.50830 0.754148 0.656704i \(-0.228050\pi\)
0.754148 + 0.656704i \(0.228050\pi\)
\(608\) 0 0
\(609\) −1.21407e6 −0.132648
\(610\) 0 0
\(611\) 4.03395e6 0.437147
\(612\) 0 0
\(613\) 1.11975e7 1.20357 0.601785 0.798658i \(-0.294456\pi\)
0.601785 + 0.798658i \(0.294456\pi\)
\(614\) 0 0
\(615\) −250200. −0.0266747
\(616\) 0 0
\(617\) −1.37060e7 −1.44944 −0.724718 0.689045i \(-0.758030\pi\)
−0.724718 + 0.689045i \(0.758030\pi\)
\(618\) 0 0
\(619\) 7.93359e6 0.832230 0.416115 0.909312i \(-0.363391\pi\)
0.416115 + 0.909312i \(0.363391\pi\)
\(620\) 0 0
\(621\) 3.47733e6 0.361840
\(622\) 0 0
\(623\) −6.63382e6 −0.684768
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 2.84553e6 0.289064
\(628\) 0 0
\(629\) −7.03496e6 −0.708981
\(630\) 0 0
\(631\) 1.31143e7 1.31121 0.655604 0.755105i \(-0.272414\pi\)
0.655604 + 0.755105i \(0.272414\pi\)
\(632\) 0 0
\(633\) 1.77225e6 0.175798
\(634\) 0 0
\(635\) −7.09960e6 −0.698714
\(636\) 0 0
\(637\) −938791. −0.0916685
\(638\) 0 0
\(639\) −6.68304e6 −0.647473
\(640\) 0 0
\(641\) −1.27270e7 −1.22344 −0.611719 0.791075i \(-0.709522\pi\)
−0.611719 + 0.791075i \(0.709522\pi\)
\(642\) 0 0
\(643\) −1.88399e7 −1.79701 −0.898505 0.438964i \(-0.855345\pi\)
−0.898505 + 0.438964i \(0.855345\pi\)
\(644\) 0 0
\(645\) −1.76385e6 −0.166941
\(646\) 0 0
\(647\) 944688. 0.0887213 0.0443606 0.999016i \(-0.485875\pi\)
0.0443606 + 0.999016i \(0.485875\pi\)
\(648\) 0 0
\(649\) −7.62048e6 −0.710184
\(650\) 0 0
\(651\) 590352. 0.0545957
\(652\) 0 0
\(653\) 2.01024e7 1.84486 0.922432 0.386158i \(-0.126198\pi\)
0.922432 + 0.386158i \(0.126198\pi\)
\(654\) 0 0
\(655\) 6.53595e6 0.595258
\(656\) 0 0
\(657\) 1.64600e7 1.48771
\(658\) 0 0
\(659\) 1.97097e7 1.76793 0.883967 0.467549i \(-0.154863\pi\)
0.883967 + 0.467549i \(0.154863\pi\)
\(660\) 0 0
\(661\) −227080. −0.0202151 −0.0101075 0.999949i \(-0.503217\pi\)
−0.0101075 + 0.999949i \(0.503217\pi\)
\(662\) 0 0
\(663\) −1.17183e6 −0.103533
\(664\) 0 0
\(665\) −2.86895e6 −0.251576
\(666\) 0 0
\(667\) −2.00694e7 −1.74670
\(668\) 0 0
\(669\) 1.18831e6 0.102651
\(670\) 0 0
\(671\) −8.77554e6 −0.752433
\(672\) 0 0
\(673\) 1.93220e7 1.64443 0.822214 0.569178i \(-0.192739\pi\)
0.822214 + 0.569178i \(0.192739\pi\)
\(674\) 0 0
\(675\) −894375. −0.0755545
\(676\) 0 0
\(677\) 3.35334e6 0.281194 0.140597 0.990067i \(-0.455098\pi\)
0.140597 + 0.990067i \(0.455098\pi\)
\(678\) 0 0
\(679\) −5.41132e6 −0.450431
\(680\) 0 0
\(681\) −28611.0 −0.00236410
\(682\) 0 0
\(683\) −1.60555e7 −1.31696 −0.658481 0.752598i \(-0.728801\pi\)
−0.658481 + 0.752598i \(0.728801\pi\)
\(684\) 0 0
\(685\) −991800. −0.0807603
\(686\) 0 0
\(687\) 2.11517e6 0.170983
\(688\) 0 0
\(689\) −1.20584e6 −0.0967705
\(690\) 0 0
\(691\) −1.35824e7 −1.08213 −0.541066 0.840980i \(-0.681979\pi\)
−0.541066 + 0.840980i \(0.681979\pi\)
\(692\) 0 0
\(693\) −4.64373e6 −0.367311
\(694\) 0 0
\(695\) −4.56565e6 −0.358542
\(696\) 0 0
\(697\) 3.33266e6 0.259842
\(698\) 0 0
\(699\) 1.60265e6 0.124064
\(700\) 0 0
\(701\) 2.05454e7 1.57913 0.789567 0.613664i \(-0.210305\pi\)
0.789567 + 0.613664i \(0.210305\pi\)
\(702\) 0 0
\(703\) 1.64924e7 1.25862
\(704\) 0 0
\(705\) 773775. 0.0586330
\(706\) 0 0
\(707\) −1.63905e6 −0.123323
\(708\) 0 0
\(709\) 2.57278e7 1.92215 0.961075 0.276287i \(-0.0891040\pi\)
0.961075 + 0.276287i \(0.0891040\pi\)
\(710\) 0 0
\(711\) 1.37646e7 1.02115
\(712\) 0 0
\(713\) 9.75888e6 0.718913
\(714\) 0 0
\(715\) −3.95888e6 −0.289605
\(716\) 0 0
\(717\) 2.70366e6 0.196406
\(718\) 0 0
\(719\) −7.04806e6 −0.508449 −0.254225 0.967145i \(-0.581820\pi\)
−0.254225 + 0.967145i \(0.581820\pi\)
\(720\) 0 0
\(721\) −5.40524e6 −0.387237
\(722\) 0 0
\(723\) −2.85717e6 −0.203278
\(724\) 0 0
\(725\) 5.16187e6 0.364722
\(726\) 0 0
\(727\) 1.90997e7 1.34027 0.670134 0.742240i \(-0.266237\pi\)
0.670134 + 0.742240i \(0.266237\pi\)
\(728\) 0 0
\(729\) −1.12579e7 −0.784586
\(730\) 0 0
\(731\) 2.34945e7 1.62619
\(732\) 0 0
\(733\) −2.30424e6 −0.158404 −0.0792021 0.996859i \(-0.525237\pi\)
−0.0792021 + 0.996859i \(0.525237\pi\)
\(734\) 0 0
\(735\) −180075. −0.0122952
\(736\) 0 0
\(737\) 2.11102e7 1.43161
\(738\) 0 0
\(739\) −3.62955e6 −0.244479 −0.122240 0.992501i \(-0.539008\pi\)
−0.122240 + 0.992501i \(0.539008\pi\)
\(740\) 0 0
\(741\) 2.74717e6 0.183797
\(742\) 0 0
\(743\) 9.73856e6 0.647177 0.323588 0.946198i \(-0.395111\pi\)
0.323588 + 0.946198i \(0.395111\pi\)
\(744\) 0 0
\(745\) 301950. 0.0199317
\(746\) 0 0
\(747\) 176904. 0.0115994
\(748\) 0 0
\(749\) 1.73254e6 0.112844
\(750\) 0 0
\(751\) 2.48272e7 1.60630 0.803152 0.595774i \(-0.203155\pi\)
0.803152 + 0.595774i \(0.203155\pi\)
\(752\) 0 0
\(753\) 3.30071e6 0.212139
\(754\) 0 0
\(755\) −5.21043e6 −0.332664
\(756\) 0 0
\(757\) −1.28400e7 −0.814376 −0.407188 0.913344i \(-0.633491\pi\)
−0.407188 + 0.913344i \(0.633491\pi\)
\(758\) 0 0
\(759\) 2.95245e6 0.186028
\(760\) 0 0
\(761\) 2.89560e7 1.81250 0.906249 0.422744i \(-0.138933\pi\)
0.906249 + 0.422744i \(0.138933\pi\)
\(762\) 0 0
\(763\) 7.40797e6 0.460668
\(764\) 0 0
\(765\) 5.84415e6 0.361050
\(766\) 0 0
\(767\) −7.35706e6 −0.451560
\(768\) 0 0
\(769\) −1.78116e7 −1.08614 −0.543071 0.839687i \(-0.682739\pi\)
−0.543071 + 0.839687i \(0.682739\pi\)
\(770\) 0 0
\(771\) −3.24689e6 −0.196713
\(772\) 0 0
\(773\) 1.73536e7 1.04458 0.522290 0.852768i \(-0.325078\pi\)
0.522290 + 0.852768i \(0.325078\pi\)
\(774\) 0 0
\(775\) −2.51000e6 −0.150113
\(776\) 0 0
\(777\) 1.03517e6 0.0615121
\(778\) 0 0
\(779\) −7.81291e6 −0.461285
\(780\) 0 0
\(781\) −1.15668e7 −0.678556
\(782\) 0 0
\(783\) −1.18186e7 −0.688910
\(784\) 0 0
\(785\) −9.10235e6 −0.527205
\(786\) 0 0
\(787\) −812177. −0.0467427 −0.0233714 0.999727i \(-0.507440\pi\)
−0.0233714 + 0.999727i \(0.507440\pi\)
\(788\) 0 0
\(789\) −248850. −0.0142313
\(790\) 0 0
\(791\) 6.55061e6 0.372255
\(792\) 0 0
\(793\) −8.47219e6 −0.478424
\(794\) 0 0
\(795\) −231300. −0.0129795
\(796\) 0 0
\(797\) −8.58201e6 −0.478568 −0.239284 0.970950i \(-0.576913\pi\)
−0.239284 + 0.970950i \(0.576913\pi\)
\(798\) 0 0
\(799\) −1.03067e7 −0.571152
\(800\) 0 0
\(801\) −3.16799e7 −1.74462
\(802\) 0 0
\(803\) 2.84885e7 1.55912
\(804\) 0 0
\(805\) −2.97675e6 −0.161902
\(806\) 0 0
\(807\) −1.90147e6 −0.102779
\(808\) 0 0
\(809\) −2.83000e6 −0.152025 −0.0760125 0.997107i \(-0.524219\pi\)
−0.0760125 + 0.997107i \(0.524219\pi\)
\(810\) 0 0
\(811\) 1.06484e7 0.568504 0.284252 0.958750i \(-0.408255\pi\)
0.284252 + 0.958750i \(0.408255\pi\)
\(812\) 0 0
\(813\) 836868. 0.0444049
\(814\) 0 0
\(815\) 15650.0 0.000825316 0
\(816\) 0 0
\(817\) −5.50792e7 −2.88690
\(818\) 0 0
\(819\) −4.48321e6 −0.233549
\(820\) 0 0
\(821\) −2.59970e7 −1.34606 −0.673032 0.739613i \(-0.735008\pi\)
−0.673032 + 0.739613i \(0.735008\pi\)
\(822\) 0 0
\(823\) 2.03099e7 1.04522 0.522611 0.852571i \(-0.324958\pi\)
0.522611 + 0.852571i \(0.324958\pi\)
\(824\) 0 0
\(825\) −759375. −0.0388438
\(826\) 0 0
\(827\) −1.68001e6 −0.0854175 −0.0427088 0.999088i \(-0.513599\pi\)
−0.0427088 + 0.999088i \(0.513599\pi\)
\(828\) 0 0
\(829\) −6.71070e6 −0.339142 −0.169571 0.985518i \(-0.554238\pi\)
−0.169571 + 0.985518i \(0.554238\pi\)
\(830\) 0 0
\(831\) 6.52569e6 0.327811
\(832\) 0 0
\(833\) 2.39860e6 0.119769
\(834\) 0 0
\(835\) 1.11404e7 0.552950
\(836\) 0 0
\(837\) 5.74690e6 0.283543
\(838\) 0 0
\(839\) −2.60856e7 −1.27937 −0.639686 0.768637i \(-0.720935\pi\)
−0.639686 + 0.768637i \(0.720935\pi\)
\(840\) 0 0
\(841\) 4.76999e7 2.32556
\(842\) 0 0
\(843\) −2.07870e6 −0.100745
\(844\) 0 0
\(845\) 5.46030e6 0.263072
\(846\) 0 0
\(847\) −145726. −0.00697957
\(848\) 0 0
\(849\) −3.12062e6 −0.148584
\(850\) 0 0
\(851\) 1.71121e7 0.809988
\(852\) 0 0
\(853\) 9.54873e6 0.449338 0.224669 0.974435i \(-0.427870\pi\)
0.224669 + 0.974435i \(0.427870\pi\)
\(854\) 0 0
\(855\) −1.37007e7 −0.640955
\(856\) 0 0
\(857\) 3.51377e7 1.63426 0.817130 0.576453i \(-0.195564\pi\)
0.817130 + 0.576453i \(0.195564\pi\)
\(858\) 0 0
\(859\) 1.60428e7 0.741816 0.370908 0.928670i \(-0.379047\pi\)
0.370908 + 0.928670i \(0.379047\pi\)
\(860\) 0 0
\(861\) −490392. −0.0225442
\(862\) 0 0
\(863\) 2.77776e7 1.26960 0.634802 0.772675i \(-0.281082\pi\)
0.634802 + 0.772675i \(0.281082\pi\)
\(864\) 0 0
\(865\) −1.60867e7 −0.731015
\(866\) 0 0
\(867\) −1.26557e6 −0.0571792
\(868\) 0 0
\(869\) 2.38233e7 1.07017
\(870\) 0 0
\(871\) 2.03805e7 0.910268
\(872\) 0 0
\(873\) −2.58418e7 −1.14759
\(874\) 0 0
\(875\) 765625. 0.0338062
\(876\) 0 0
\(877\) 2.46748e7 1.08332 0.541658 0.840599i \(-0.317797\pi\)
0.541658 + 0.840599i \(0.317797\pi\)
\(878\) 0 0
\(879\) −3.25695e6 −0.142180
\(880\) 0 0
\(881\) −1.27792e7 −0.554707 −0.277353 0.960768i \(-0.589457\pi\)
−0.277353 + 0.960768i \(0.589457\pi\)
\(882\) 0 0
\(883\) 2.63417e7 1.13695 0.568476 0.822700i \(-0.307533\pi\)
0.568476 + 0.822700i \(0.307533\pi\)
\(884\) 0 0
\(885\) −1.41120e6 −0.0605662
\(886\) 0 0
\(887\) −2.60037e7 −1.10975 −0.554877 0.831932i \(-0.687235\pi\)
−0.554877 + 0.831932i \(0.687235\pi\)
\(888\) 0 0
\(889\) −1.39152e7 −0.590521
\(890\) 0 0
\(891\) −2.12904e7 −0.898443
\(892\) 0 0
\(893\) 2.41624e7 1.01394
\(894\) 0 0
\(895\) 6.12870e6 0.255747
\(896\) 0 0
\(897\) 2.85039e6 0.118283
\(898\) 0 0
\(899\) −3.31681e7 −1.36874
\(900\) 0 0
\(901\) 3.08092e6 0.126435
\(902\) 0 0
\(903\) −3.45715e6 −0.141091
\(904\) 0 0
\(905\) −1.71545e7 −0.696236
\(906\) 0 0
\(907\) 4.11852e7 1.66235 0.831177 0.556008i \(-0.187668\pi\)
0.831177 + 0.556008i \(0.187668\pi\)
\(908\) 0 0
\(909\) −7.82730e6 −0.314197
\(910\) 0 0
\(911\) 7.92211e6 0.316261 0.158130 0.987418i \(-0.449453\pi\)
0.158130 + 0.987418i \(0.449453\pi\)
\(912\) 0 0
\(913\) 306180. 0.0121563
\(914\) 0 0
\(915\) −1.62510e6 −0.0641693
\(916\) 0 0
\(917\) 1.28105e7 0.503085
\(918\) 0 0
\(919\) −1.59154e7 −0.621624 −0.310812 0.950471i \(-0.600601\pi\)
−0.310812 + 0.950471i \(0.600601\pi\)
\(920\) 0 0
\(921\) −4389.00 −0.000170497 0
\(922\) 0 0
\(923\) −1.11670e7 −0.431450
\(924\) 0 0
\(925\) −4.40125e6 −0.169130
\(926\) 0 0
\(927\) −2.58128e7 −0.986587
\(928\) 0 0
\(929\) −3.37148e7 −1.28169 −0.640843 0.767672i \(-0.721415\pi\)
−0.640843 + 0.767672i \(0.721415\pi\)
\(930\) 0 0
\(931\) −5.62314e6 −0.212620
\(932\) 0 0
\(933\) −9.35930e6 −0.351997
\(934\) 0 0
\(935\) 1.01149e7 0.378383
\(936\) 0 0
\(937\) −4.04362e7 −1.50460 −0.752300 0.658820i \(-0.771056\pi\)
−0.752300 + 0.658820i \(0.771056\pi\)
\(938\) 0 0
\(939\) 2.49428e6 0.0923167
\(940\) 0 0
\(941\) 3.62378e7 1.33410 0.667048 0.745015i \(-0.267557\pi\)
0.667048 + 0.745015i \(0.267557\pi\)
\(942\) 0 0
\(943\) −8.10648e6 −0.296861
\(944\) 0 0
\(945\) −1.75298e6 −0.0638552
\(946\) 0 0
\(947\) −2.94238e7 −1.06616 −0.533082 0.846064i \(-0.678966\pi\)
−0.533082 + 0.846064i \(0.678966\pi\)
\(948\) 0 0
\(949\) 2.75037e7 0.991348
\(950\) 0 0
\(951\) −3.77552e6 −0.135371
\(952\) 0 0
\(953\) 3.59497e7 1.28222 0.641110 0.767449i \(-0.278474\pi\)
0.641110 + 0.767449i \(0.278474\pi\)
\(954\) 0 0
\(955\) −1.31758e7 −0.467485
\(956\) 0 0
\(957\) −1.00347e7 −0.354180
\(958\) 0 0
\(959\) −1.94393e6 −0.0682549
\(960\) 0 0
\(961\) −1.25009e7 −0.436649
\(962\) 0 0
\(963\) 8.27377e6 0.287500
\(964\) 0 0
\(965\) −3.58040e6 −0.123769
\(966\) 0 0
\(967\) −1.19506e6 −0.0410982 −0.0205491 0.999789i \(-0.506541\pi\)
−0.0205491 + 0.999789i \(0.506541\pi\)
\(968\) 0 0
\(969\) −7.01897e6 −0.240140
\(970\) 0 0
\(971\) −3.26221e7 −1.11036 −0.555180 0.831730i \(-0.687351\pi\)
−0.555180 + 0.831730i \(0.687351\pi\)
\(972\) 0 0
\(973\) −8.94867e6 −0.303024
\(974\) 0 0
\(975\) −733125. −0.0246983
\(976\) 0 0
\(977\) 5.36858e7 1.79938 0.899690 0.436529i \(-0.143792\pi\)
0.899690 + 0.436529i \(0.143792\pi\)
\(978\) 0 0
\(979\) −5.48305e7 −1.82838
\(980\) 0 0
\(981\) 3.53768e7 1.17367
\(982\) 0 0
\(983\) 3.31124e7 1.09297 0.546484 0.837469i \(-0.315966\pi\)
0.546484 + 0.837469i \(0.315966\pi\)
\(984\) 0 0
\(985\) −8.71170e6 −0.286096
\(986\) 0 0
\(987\) 1.51660e6 0.0495539
\(988\) 0 0
\(989\) −5.71487e7 −1.85787
\(990\) 0 0
\(991\) 1.97082e7 0.637475 0.318738 0.947843i \(-0.396741\pi\)
0.318738 + 0.947843i \(0.396741\pi\)
\(992\) 0 0
\(993\) 6.91396e6 0.222512
\(994\) 0 0
\(995\) 1.88630e7 0.604022
\(996\) 0 0
\(997\) 3.31940e7 1.05760 0.528800 0.848747i \(-0.322642\pi\)
0.528800 + 0.848747i \(0.322642\pi\)
\(998\) 0 0
\(999\) 1.00771e7 0.319464
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.6.a.d.1.1 1
4.3 odd 2 70.6.a.c.1.1 1
12.11 even 2 630.6.a.n.1.1 1
20.3 even 4 350.6.c.e.99.2 2
20.7 even 4 350.6.c.e.99.1 2
20.19 odd 2 350.6.a.k.1.1 1
28.27 even 2 490.6.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.c.1.1 1 4.3 odd 2
350.6.a.k.1.1 1 20.19 odd 2
350.6.c.e.99.1 2 20.7 even 4
350.6.c.e.99.2 2 20.3 even 4
490.6.a.e.1.1 1 28.27 even 2
560.6.a.d.1.1 1 1.1 even 1 trivial
630.6.a.n.1.1 1 12.11 even 2