Properties

Label 560.6.a.d
Level $560$
Weight $6$
Character orbit 560.a
Self dual yes
Analytic conductor $89.815$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,6,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} - 25 q^{5} - 49 q^{7} - 234 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} - 25 q^{5} - 49 q^{7} - 234 q^{9} - 405 q^{11} - 391 q^{13} - 75 q^{15} + 999 q^{17} - 2342 q^{19} - 147 q^{21} - 2430 q^{23} + 625 q^{25} - 1431 q^{27} + 8259 q^{29} - 4016 q^{31} - 1215 q^{33} + 1225 q^{35} - 7042 q^{37} - 1173 q^{39} + 3336 q^{41} + 23518 q^{43} + 5850 q^{45} - 10317 q^{47} + 2401 q^{49} + 2997 q^{51} + 3084 q^{53} + 10125 q^{55} - 7026 q^{57} + 18816 q^{59} + 21668 q^{61} + 11466 q^{63} + 9775 q^{65} - 52124 q^{67} - 7290 q^{69} + 28560 q^{71} - 70342 q^{73} + 1875 q^{75} + 19845 q^{77} - 58823 q^{79} + 52569 q^{81} - 756 q^{83} - 24975 q^{85} + 24777 q^{87} + 135384 q^{89} + 19159 q^{91} - 12048 q^{93} + 58550 q^{95} + 110435 q^{97} + 94770 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 −25.0000 0 −49.0000 0 −234.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.6.a.d 1
4.b odd 2 1 70.6.a.c 1
12.b even 2 1 630.6.a.n 1
20.d odd 2 1 350.6.a.k 1
20.e even 4 2 350.6.c.e 2
28.d even 2 1 490.6.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.c 1 4.b odd 2 1
350.6.a.k 1 20.d odd 2 1
350.6.c.e 2 20.e even 4 2
490.6.a.e 1 28.d even 2 1
560.6.a.d 1 1.a even 1 1 trivial
630.6.a.n 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 3 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(560))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 25 \) Copy content Toggle raw display
$7$ \( T + 49 \) Copy content Toggle raw display
$11$ \( T + 405 \) Copy content Toggle raw display
$13$ \( T + 391 \) Copy content Toggle raw display
$17$ \( T - 999 \) Copy content Toggle raw display
$19$ \( T + 2342 \) Copy content Toggle raw display
$23$ \( T + 2430 \) Copy content Toggle raw display
$29$ \( T - 8259 \) Copy content Toggle raw display
$31$ \( T + 4016 \) Copy content Toggle raw display
$37$ \( T + 7042 \) Copy content Toggle raw display
$41$ \( T - 3336 \) Copy content Toggle raw display
$43$ \( T - 23518 \) Copy content Toggle raw display
$47$ \( T + 10317 \) Copy content Toggle raw display
$53$ \( T - 3084 \) Copy content Toggle raw display
$59$ \( T - 18816 \) Copy content Toggle raw display
$61$ \( T - 21668 \) Copy content Toggle raw display
$67$ \( T + 52124 \) Copy content Toggle raw display
$71$ \( T - 28560 \) Copy content Toggle raw display
$73$ \( T + 70342 \) Copy content Toggle raw display
$79$ \( T + 58823 \) Copy content Toggle raw display
$83$ \( T + 756 \) Copy content Toggle raw display
$89$ \( T - 135384 \) Copy content Toggle raw display
$97$ \( T - 110435 \) Copy content Toggle raw display
show more
show less