Properties

Label 560.6.a.a.1.1
Level $560$
Weight $6$
Character 560.1
Self dual yes
Analytic conductor $89.815$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,6,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 560.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.0000 q^{3} -25.0000 q^{5} +49.0000 q^{7} -122.000 q^{9} +O(q^{10})\) \(q-11.0000 q^{3} -25.0000 q^{5} +49.0000 q^{7} -122.000 q^{9} -83.0000 q^{11} -83.0000 q^{13} +275.000 q^{15} -177.000 q^{17} +2082.00 q^{19} -539.000 q^{21} +3170.00 q^{23} +625.000 q^{25} +4015.00 q^{27} -8681.00 q^{29} -1636.00 q^{31} +913.000 q^{33} -1225.00 q^{35} +4298.00 q^{37} +913.000 q^{39} +2356.00 q^{41} -8738.00 q^{43} +3050.00 q^{45} +3641.00 q^{47} +2401.00 q^{49} +1947.00 q^{51} +33268.0 q^{53} +2075.00 q^{55} -22902.0 q^{57} +30968.0 q^{59} +4560.00 q^{61} -5978.00 q^{63} +2075.00 q^{65} -37788.0 q^{67} -34870.0 q^{69} +59304.0 q^{71} -8910.00 q^{73} -6875.00 q^{75} -4067.00 q^{77} -27589.0 q^{79} -14519.0 q^{81} -67676.0 q^{83} +4425.00 q^{85} +95491.0 q^{87} +10700.0 q^{89} -4067.00 q^{91} +17996.0 q^{93} -52050.0 q^{95} +65075.0 q^{97} +10126.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −11.0000 −0.705650 −0.352825 0.935689i \(-0.614779\pi\)
−0.352825 + 0.935689i \(0.614779\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) −122.000 −0.502058
\(10\) 0 0
\(11\) −83.0000 −0.206822 −0.103411 0.994639i \(-0.532976\pi\)
−0.103411 + 0.994639i \(0.532976\pi\)
\(12\) 0 0
\(13\) −83.0000 −0.136213 −0.0681067 0.997678i \(-0.521696\pi\)
−0.0681067 + 0.997678i \(0.521696\pi\)
\(14\) 0 0
\(15\) 275.000 0.315576
\(16\) 0 0
\(17\) −177.000 −0.148543 −0.0742713 0.997238i \(-0.523663\pi\)
−0.0742713 + 0.997238i \(0.523663\pi\)
\(18\) 0 0
\(19\) 2082.00 1.32311 0.661556 0.749896i \(-0.269896\pi\)
0.661556 + 0.749896i \(0.269896\pi\)
\(20\) 0 0
\(21\) −539.000 −0.266711
\(22\) 0 0
\(23\) 3170.00 1.24951 0.624755 0.780821i \(-0.285199\pi\)
0.624755 + 0.780821i \(0.285199\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 4015.00 1.05993
\(28\) 0 0
\(29\) −8681.00 −1.91679 −0.958395 0.285444i \(-0.907859\pi\)
−0.958395 + 0.285444i \(0.907859\pi\)
\(30\) 0 0
\(31\) −1636.00 −0.305759 −0.152879 0.988245i \(-0.548855\pi\)
−0.152879 + 0.988245i \(0.548855\pi\)
\(32\) 0 0
\(33\) 913.000 0.145944
\(34\) 0 0
\(35\) −1225.00 −0.169031
\(36\) 0 0
\(37\) 4298.00 0.516134 0.258067 0.966127i \(-0.416915\pi\)
0.258067 + 0.966127i \(0.416915\pi\)
\(38\) 0 0
\(39\) 913.000 0.0961190
\(40\) 0 0
\(41\) 2356.00 0.218885 0.109442 0.993993i \(-0.465093\pi\)
0.109442 + 0.993993i \(0.465093\pi\)
\(42\) 0 0
\(43\) −8738.00 −0.720677 −0.360339 0.932822i \(-0.617339\pi\)
−0.360339 + 0.932822i \(0.617339\pi\)
\(44\) 0 0
\(45\) 3050.00 0.224527
\(46\) 0 0
\(47\) 3641.00 0.240423 0.120212 0.992748i \(-0.461643\pi\)
0.120212 + 0.992748i \(0.461643\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 1947.00 0.104819
\(52\) 0 0
\(53\) 33268.0 1.62681 0.813405 0.581697i \(-0.197611\pi\)
0.813405 + 0.581697i \(0.197611\pi\)
\(54\) 0 0
\(55\) 2075.00 0.0924935
\(56\) 0 0
\(57\) −22902.0 −0.933655
\(58\) 0 0
\(59\) 30968.0 1.15820 0.579099 0.815257i \(-0.303404\pi\)
0.579099 + 0.815257i \(0.303404\pi\)
\(60\) 0 0
\(61\) 4560.00 0.156906 0.0784531 0.996918i \(-0.475002\pi\)
0.0784531 + 0.996918i \(0.475002\pi\)
\(62\) 0 0
\(63\) −5978.00 −0.189760
\(64\) 0 0
\(65\) 2075.00 0.0609165
\(66\) 0 0
\(67\) −37788.0 −1.02841 −0.514206 0.857667i \(-0.671913\pi\)
−0.514206 + 0.857667i \(0.671913\pi\)
\(68\) 0 0
\(69\) −34870.0 −0.881717
\(70\) 0 0
\(71\) 59304.0 1.39617 0.698085 0.716015i \(-0.254036\pi\)
0.698085 + 0.716015i \(0.254036\pi\)
\(72\) 0 0
\(73\) −8910.00 −0.195691 −0.0978454 0.995202i \(-0.531195\pi\)
−0.0978454 + 0.995202i \(0.531195\pi\)
\(74\) 0 0
\(75\) −6875.00 −0.141130
\(76\) 0 0
\(77\) −4067.00 −0.0781713
\(78\) 0 0
\(79\) −27589.0 −0.497357 −0.248678 0.968586i \(-0.579996\pi\)
−0.248678 + 0.968586i \(0.579996\pi\)
\(80\) 0 0
\(81\) −14519.0 −0.245881
\(82\) 0 0
\(83\) −67676.0 −1.07830 −0.539150 0.842210i \(-0.681254\pi\)
−0.539150 + 0.842210i \(0.681254\pi\)
\(84\) 0 0
\(85\) 4425.00 0.0664303
\(86\) 0 0
\(87\) 95491.0 1.35258
\(88\) 0 0
\(89\) 10700.0 0.143189 0.0715944 0.997434i \(-0.477191\pi\)
0.0715944 + 0.997434i \(0.477191\pi\)
\(90\) 0 0
\(91\) −4067.00 −0.0514838
\(92\) 0 0
\(93\) 17996.0 0.215759
\(94\) 0 0
\(95\) −52050.0 −0.591714
\(96\) 0 0
\(97\) 65075.0 0.702239 0.351119 0.936331i \(-0.385801\pi\)
0.351119 + 0.936331i \(0.385801\pi\)
\(98\) 0 0
\(99\) 10126.0 0.103836
\(100\) 0 0
\(101\) −149250. −1.45583 −0.727915 0.685667i \(-0.759511\pi\)
−0.727915 + 0.685667i \(0.759511\pi\)
\(102\) 0 0
\(103\) −194315. −1.80473 −0.902367 0.430968i \(-0.858172\pi\)
−0.902367 + 0.430968i \(0.858172\pi\)
\(104\) 0 0
\(105\) 13475.0 0.119277
\(106\) 0 0
\(107\) −40538.0 −0.342297 −0.171148 0.985245i \(-0.554748\pi\)
−0.171148 + 0.985245i \(0.554748\pi\)
\(108\) 0 0
\(109\) −87651.0 −0.706628 −0.353314 0.935505i \(-0.614945\pi\)
−0.353314 + 0.935505i \(0.614945\pi\)
\(110\) 0 0
\(111\) −47278.0 −0.364210
\(112\) 0 0
\(113\) −76314.0 −0.562222 −0.281111 0.959675i \(-0.590703\pi\)
−0.281111 + 0.959675i \(0.590703\pi\)
\(114\) 0 0
\(115\) −79250.0 −0.558798
\(116\) 0 0
\(117\) 10126.0 0.0683870
\(118\) 0 0
\(119\) −8673.00 −0.0561438
\(120\) 0 0
\(121\) −154162. −0.957225
\(122\) 0 0
\(123\) −25916.0 −0.154456
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) 183128. 1.00750 0.503750 0.863849i \(-0.331953\pi\)
0.503750 + 0.863849i \(0.331953\pi\)
\(128\) 0 0
\(129\) 96118.0 0.508546
\(130\) 0 0
\(131\) −216190. −1.10067 −0.550335 0.834944i \(-0.685500\pi\)
−0.550335 + 0.834944i \(0.685500\pi\)
\(132\) 0 0
\(133\) 102018. 0.500089
\(134\) 0 0
\(135\) −100375. −0.474014
\(136\) 0 0
\(137\) −119844. −0.545525 −0.272763 0.962081i \(-0.587937\pi\)
−0.272763 + 0.962081i \(0.587937\pi\)
\(138\) 0 0
\(139\) −259298. −1.13831 −0.569157 0.822229i \(-0.692730\pi\)
−0.569157 + 0.822229i \(0.692730\pi\)
\(140\) 0 0
\(141\) −40051.0 −0.169655
\(142\) 0 0
\(143\) 6889.00 0.0281719
\(144\) 0 0
\(145\) 217025. 0.857215
\(146\) 0 0
\(147\) −26411.0 −0.100807
\(148\) 0 0
\(149\) −88518.0 −0.326637 −0.163319 0.986573i \(-0.552220\pi\)
−0.163319 + 0.986573i \(0.552220\pi\)
\(150\) 0 0
\(151\) −115053. −0.410635 −0.205317 0.978695i \(-0.565823\pi\)
−0.205317 + 0.978695i \(0.565823\pi\)
\(152\) 0 0
\(153\) 21594.0 0.0745769
\(154\) 0 0
\(155\) 40900.0 0.136740
\(156\) 0 0
\(157\) −324370. −1.05025 −0.525124 0.851026i \(-0.675981\pi\)
−0.525124 + 0.851026i \(0.675981\pi\)
\(158\) 0 0
\(159\) −365948. −1.14796
\(160\) 0 0
\(161\) 155330. 0.472270
\(162\) 0 0
\(163\) −236470. −0.697119 −0.348560 0.937287i \(-0.613329\pi\)
−0.348560 + 0.937287i \(0.613329\pi\)
\(164\) 0 0
\(165\) −22825.0 −0.0652681
\(166\) 0 0
\(167\) 332853. 0.923552 0.461776 0.886997i \(-0.347212\pi\)
0.461776 + 0.886997i \(0.347212\pi\)
\(168\) 0 0
\(169\) −364404. −0.981446
\(170\) 0 0
\(171\) −254004. −0.664279
\(172\) 0 0
\(173\) −435681. −1.10676 −0.553380 0.832929i \(-0.686662\pi\)
−0.553380 + 0.832929i \(0.686662\pi\)
\(174\) 0 0
\(175\) 30625.0 0.0755929
\(176\) 0 0
\(177\) −340648. −0.817283
\(178\) 0 0
\(179\) 727852. 1.69789 0.848947 0.528478i \(-0.177237\pi\)
0.848947 + 0.528478i \(0.177237\pi\)
\(180\) 0 0
\(181\) 287292. 0.651819 0.325910 0.945401i \(-0.394330\pi\)
0.325910 + 0.945401i \(0.394330\pi\)
\(182\) 0 0
\(183\) −50160.0 −0.110721
\(184\) 0 0
\(185\) −107450. −0.230822
\(186\) 0 0
\(187\) 14691.0 0.0307218
\(188\) 0 0
\(189\) 196735. 0.400615
\(190\) 0 0
\(191\) 454581. 0.901629 0.450814 0.892618i \(-0.351134\pi\)
0.450814 + 0.892618i \(0.351134\pi\)
\(192\) 0 0
\(193\) −398780. −0.770620 −0.385310 0.922787i \(-0.625905\pi\)
−0.385310 + 0.922787i \(0.625905\pi\)
\(194\) 0 0
\(195\) −22825.0 −0.0429857
\(196\) 0 0
\(197\) −959776. −1.76199 −0.880997 0.473122i \(-0.843127\pi\)
−0.880997 + 0.473122i \(0.843127\pi\)
\(198\) 0 0
\(199\) −342024. −0.612243 −0.306122 0.951992i \(-0.599031\pi\)
−0.306122 + 0.951992i \(0.599031\pi\)
\(200\) 0 0
\(201\) 415668. 0.725699
\(202\) 0 0
\(203\) −425369. −0.724479
\(204\) 0 0
\(205\) −58900.0 −0.0978883
\(206\) 0 0
\(207\) −386740. −0.627326
\(208\) 0 0
\(209\) −172806. −0.273649
\(210\) 0 0
\(211\) 255043. 0.394373 0.197187 0.980366i \(-0.436820\pi\)
0.197187 + 0.980366i \(0.436820\pi\)
\(212\) 0 0
\(213\) −652344. −0.985207
\(214\) 0 0
\(215\) 218450. 0.322297
\(216\) 0 0
\(217\) −80164.0 −0.115566
\(218\) 0 0
\(219\) 98010.0 0.138089
\(220\) 0 0
\(221\) 14691.0 0.0202335
\(222\) 0 0
\(223\) 198381. 0.267139 0.133570 0.991039i \(-0.457356\pi\)
0.133570 + 0.991039i \(0.457356\pi\)
\(224\) 0 0
\(225\) −76250.0 −0.100412
\(226\) 0 0
\(227\) −544967. −0.701949 −0.350975 0.936385i \(-0.614150\pi\)
−0.350975 + 0.936385i \(0.614150\pi\)
\(228\) 0 0
\(229\) −1.45584e6 −1.83454 −0.917268 0.398271i \(-0.869610\pi\)
−0.917268 + 0.398271i \(0.869610\pi\)
\(230\) 0 0
\(231\) 44737.0 0.0551616
\(232\) 0 0
\(233\) −65544.0 −0.0790939 −0.0395470 0.999218i \(-0.512591\pi\)
−0.0395470 + 0.999218i \(0.512591\pi\)
\(234\) 0 0
\(235\) −91025.0 −0.107520
\(236\) 0 0
\(237\) 303479. 0.350960
\(238\) 0 0
\(239\) 621207. 0.703464 0.351732 0.936101i \(-0.385593\pi\)
0.351732 + 0.936101i \(0.385593\pi\)
\(240\) 0 0
\(241\) 1.02763e6 1.13971 0.569855 0.821745i \(-0.306999\pi\)
0.569855 + 0.821745i \(0.306999\pi\)
\(242\) 0 0
\(243\) −815936. −0.886422
\(244\) 0 0
\(245\) −60025.0 −0.0638877
\(246\) 0 0
\(247\) −172806. −0.180226
\(248\) 0 0
\(249\) 744436. 0.760902
\(250\) 0 0
\(251\) −1.79275e6 −1.79612 −0.898060 0.439873i \(-0.855024\pi\)
−0.898060 + 0.439873i \(0.855024\pi\)
\(252\) 0 0
\(253\) −263110. −0.258426
\(254\) 0 0
\(255\) −48675.0 −0.0468765
\(256\) 0 0
\(257\) 1.15843e6 1.09405 0.547025 0.837116i \(-0.315760\pi\)
0.547025 + 0.837116i \(0.315760\pi\)
\(258\) 0 0
\(259\) 210602. 0.195080
\(260\) 0 0
\(261\) 1.05908e6 0.962340
\(262\) 0 0
\(263\) 639534. 0.570130 0.285065 0.958508i \(-0.407985\pi\)
0.285065 + 0.958508i \(0.407985\pi\)
\(264\) 0 0
\(265\) −831700. −0.727532
\(266\) 0 0
\(267\) −117700. −0.101041
\(268\) 0 0
\(269\) 2.19619e6 1.85050 0.925252 0.379353i \(-0.123853\pi\)
0.925252 + 0.379353i \(0.123853\pi\)
\(270\) 0 0
\(271\) −1.38063e6 −1.14197 −0.570985 0.820960i \(-0.693439\pi\)
−0.570985 + 0.820960i \(0.693439\pi\)
\(272\) 0 0
\(273\) 44737.0 0.0363296
\(274\) 0 0
\(275\) −51875.0 −0.0413644
\(276\) 0 0
\(277\) 2.12298e6 1.66244 0.831222 0.555941i \(-0.187642\pi\)
0.831222 + 0.555941i \(0.187642\pi\)
\(278\) 0 0
\(279\) 199592. 0.153509
\(280\) 0 0
\(281\) 1.19699e6 0.904323 0.452162 0.891936i \(-0.350653\pi\)
0.452162 + 0.891936i \(0.350653\pi\)
\(282\) 0 0
\(283\) −281449. −0.208898 −0.104449 0.994530i \(-0.533308\pi\)
−0.104449 + 0.994530i \(0.533308\pi\)
\(284\) 0 0
\(285\) 572550. 0.417543
\(286\) 0 0
\(287\) 115444. 0.0827307
\(288\) 0 0
\(289\) −1.38853e6 −0.977935
\(290\) 0 0
\(291\) −715825. −0.495535
\(292\) 0 0
\(293\) −2.71466e6 −1.84734 −0.923669 0.383190i \(-0.874825\pi\)
−0.923669 + 0.383190i \(0.874825\pi\)
\(294\) 0 0
\(295\) −774200. −0.517962
\(296\) 0 0
\(297\) −333245. −0.219216
\(298\) 0 0
\(299\) −263110. −0.170200
\(300\) 0 0
\(301\) −428162. −0.272390
\(302\) 0 0
\(303\) 1.64175e6 1.02731
\(304\) 0 0
\(305\) −114000. −0.0701706
\(306\) 0 0
\(307\) 2.68381e6 1.62519 0.812597 0.582826i \(-0.198053\pi\)
0.812597 + 0.582826i \(0.198053\pi\)
\(308\) 0 0
\(309\) 2.13746e6 1.27351
\(310\) 0 0
\(311\) −25542.0 −0.0149746 −0.00748728 0.999972i \(-0.502383\pi\)
−0.00748728 + 0.999972i \(0.502383\pi\)
\(312\) 0 0
\(313\) −975975. −0.563090 −0.281545 0.959548i \(-0.590847\pi\)
−0.281545 + 0.959548i \(0.590847\pi\)
\(314\) 0 0
\(315\) 149450. 0.0848632
\(316\) 0 0
\(317\) −1.45540e6 −0.813457 −0.406729 0.913549i \(-0.633331\pi\)
−0.406729 + 0.913549i \(0.633331\pi\)
\(318\) 0 0
\(319\) 720523. 0.396434
\(320\) 0 0
\(321\) 445918. 0.241542
\(322\) 0 0
\(323\) −368514. −0.196539
\(324\) 0 0
\(325\) −51875.0 −0.0272427
\(326\) 0 0
\(327\) 964161. 0.498632
\(328\) 0 0
\(329\) 178409. 0.0908714
\(330\) 0 0
\(331\) 2.98186e6 1.49595 0.747975 0.663727i \(-0.231026\pi\)
0.747975 + 0.663727i \(0.231026\pi\)
\(332\) 0 0
\(333\) −524356. −0.259129
\(334\) 0 0
\(335\) 944700. 0.459920
\(336\) 0 0
\(337\) −928698. −0.445451 −0.222725 0.974881i \(-0.571495\pi\)
−0.222725 + 0.974881i \(0.571495\pi\)
\(338\) 0 0
\(339\) 839454. 0.396732
\(340\) 0 0
\(341\) 135788. 0.0632376
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 871750. 0.394316
\(346\) 0 0
\(347\) −1.75435e6 −0.782156 −0.391078 0.920357i \(-0.627898\pi\)
−0.391078 + 0.920357i \(0.627898\pi\)
\(348\) 0 0
\(349\) −1.78606e6 −0.784934 −0.392467 0.919766i \(-0.628378\pi\)
−0.392467 + 0.919766i \(0.628378\pi\)
\(350\) 0 0
\(351\) −333245. −0.144376
\(352\) 0 0
\(353\) 1.23308e6 0.526687 0.263344 0.964702i \(-0.415175\pi\)
0.263344 + 0.964702i \(0.415175\pi\)
\(354\) 0 0
\(355\) −1.48260e6 −0.624386
\(356\) 0 0
\(357\) 95403.0 0.0396179
\(358\) 0 0
\(359\) 1.69914e6 0.695812 0.347906 0.937529i \(-0.386893\pi\)
0.347906 + 0.937529i \(0.386893\pi\)
\(360\) 0 0
\(361\) 1.85862e6 0.750626
\(362\) 0 0
\(363\) 1.69578e6 0.675466
\(364\) 0 0
\(365\) 222750. 0.0875156
\(366\) 0 0
\(367\) −1.82938e6 −0.708989 −0.354494 0.935058i \(-0.615347\pi\)
−0.354494 + 0.935058i \(0.615347\pi\)
\(368\) 0 0
\(369\) −287432. −0.109893
\(370\) 0 0
\(371\) 1.63013e6 0.614877
\(372\) 0 0
\(373\) −1.03316e6 −0.384501 −0.192250 0.981346i \(-0.561579\pi\)
−0.192250 + 0.981346i \(0.561579\pi\)
\(374\) 0 0
\(375\) 171875. 0.0631153
\(376\) 0 0
\(377\) 720523. 0.261093
\(378\) 0 0
\(379\) −1.25601e6 −0.449155 −0.224577 0.974456i \(-0.572100\pi\)
−0.224577 + 0.974456i \(0.572100\pi\)
\(380\) 0 0
\(381\) −2.01441e6 −0.710943
\(382\) 0 0
\(383\) −3.64322e6 −1.26908 −0.634539 0.772891i \(-0.718810\pi\)
−0.634539 + 0.772891i \(0.718810\pi\)
\(384\) 0 0
\(385\) 101675. 0.0349593
\(386\) 0 0
\(387\) 1.06604e6 0.361822
\(388\) 0 0
\(389\) 3.67368e6 1.23091 0.615457 0.788171i \(-0.288972\pi\)
0.615457 + 0.788171i \(0.288972\pi\)
\(390\) 0 0
\(391\) −561090. −0.185605
\(392\) 0 0
\(393\) 2.37809e6 0.776689
\(394\) 0 0
\(395\) 689725. 0.222425
\(396\) 0 0
\(397\) −5.64367e6 −1.79716 −0.898578 0.438815i \(-0.855398\pi\)
−0.898578 + 0.438815i \(0.855398\pi\)
\(398\) 0 0
\(399\) −1.12220e6 −0.352888
\(400\) 0 0
\(401\) −4.22249e6 −1.31132 −0.655658 0.755058i \(-0.727609\pi\)
−0.655658 + 0.755058i \(0.727609\pi\)
\(402\) 0 0
\(403\) 135788. 0.0416484
\(404\) 0 0
\(405\) 362975. 0.109961
\(406\) 0 0
\(407\) −356734. −0.106748
\(408\) 0 0
\(409\) 606470. 0.179267 0.0896336 0.995975i \(-0.471430\pi\)
0.0896336 + 0.995975i \(0.471430\pi\)
\(410\) 0 0
\(411\) 1.31828e6 0.384950
\(412\) 0 0
\(413\) 1.51743e6 0.437758
\(414\) 0 0
\(415\) 1.69190e6 0.482230
\(416\) 0 0
\(417\) 2.85228e6 0.803252
\(418\) 0 0
\(419\) 726668. 0.202209 0.101105 0.994876i \(-0.467762\pi\)
0.101105 + 0.994876i \(0.467762\pi\)
\(420\) 0 0
\(421\) −149315. −0.0410580 −0.0205290 0.999789i \(-0.506535\pi\)
−0.0205290 + 0.999789i \(0.506535\pi\)
\(422\) 0 0
\(423\) −444202. −0.120706
\(424\) 0 0
\(425\) −110625. −0.0297085
\(426\) 0 0
\(427\) 223440. 0.0593050
\(428\) 0 0
\(429\) −75779.0 −0.0198795
\(430\) 0 0
\(431\) 5.70872e6 1.48029 0.740143 0.672449i \(-0.234758\pi\)
0.740143 + 0.672449i \(0.234758\pi\)
\(432\) 0 0
\(433\) −1.66009e6 −0.425513 −0.212757 0.977105i \(-0.568244\pi\)
−0.212757 + 0.977105i \(0.568244\pi\)
\(434\) 0 0
\(435\) −2.38728e6 −0.604894
\(436\) 0 0
\(437\) 6.59994e6 1.65324
\(438\) 0 0
\(439\) 6.06987e6 1.50321 0.751603 0.659616i \(-0.229281\pi\)
0.751603 + 0.659616i \(0.229281\pi\)
\(440\) 0 0
\(441\) −292922. −0.0717225
\(442\) 0 0
\(443\) −6.52331e6 −1.57928 −0.789639 0.613572i \(-0.789732\pi\)
−0.789639 + 0.613572i \(0.789732\pi\)
\(444\) 0 0
\(445\) −267500. −0.0640359
\(446\) 0 0
\(447\) 973698. 0.230492
\(448\) 0 0
\(449\) 7.47982e6 1.75096 0.875478 0.483259i \(-0.160547\pi\)
0.875478 + 0.483259i \(0.160547\pi\)
\(450\) 0 0
\(451\) −195548. −0.0452702
\(452\) 0 0
\(453\) 1.26558e6 0.289764
\(454\) 0 0
\(455\) 101675. 0.0230243
\(456\) 0 0
\(457\) 6.18223e6 1.38470 0.692349 0.721563i \(-0.256576\pi\)
0.692349 + 0.721563i \(0.256576\pi\)
\(458\) 0 0
\(459\) −710655. −0.157444
\(460\) 0 0
\(461\) −1.01935e6 −0.223394 −0.111697 0.993742i \(-0.535629\pi\)
−0.111697 + 0.993742i \(0.535629\pi\)
\(462\) 0 0
\(463\) −1.30513e6 −0.282944 −0.141472 0.989942i \(-0.545184\pi\)
−0.141472 + 0.989942i \(0.545184\pi\)
\(464\) 0 0
\(465\) −449900. −0.0964903
\(466\) 0 0
\(467\) 2.73130e6 0.579531 0.289766 0.957098i \(-0.406423\pi\)
0.289766 + 0.957098i \(0.406423\pi\)
\(468\) 0 0
\(469\) −1.85161e6 −0.388703
\(470\) 0 0
\(471\) 3.56807e6 0.741107
\(472\) 0 0
\(473\) 725254. 0.149052
\(474\) 0 0
\(475\) 1.30125e6 0.264622
\(476\) 0 0
\(477\) −4.05870e6 −0.816753
\(478\) 0 0
\(479\) 322322. 0.0641876 0.0320938 0.999485i \(-0.489782\pi\)
0.0320938 + 0.999485i \(0.489782\pi\)
\(480\) 0 0
\(481\) −356734. −0.0703043
\(482\) 0 0
\(483\) −1.70863e6 −0.333258
\(484\) 0 0
\(485\) −1.62688e6 −0.314051
\(486\) 0 0
\(487\) 2.87469e6 0.549249 0.274624 0.961552i \(-0.411446\pi\)
0.274624 + 0.961552i \(0.411446\pi\)
\(488\) 0 0
\(489\) 2.60117e6 0.491922
\(490\) 0 0
\(491\) 5.97817e6 1.11909 0.559544 0.828801i \(-0.310976\pi\)
0.559544 + 0.828801i \(0.310976\pi\)
\(492\) 0 0
\(493\) 1.53654e6 0.284725
\(494\) 0 0
\(495\) −253150. −0.0464371
\(496\) 0 0
\(497\) 2.90590e6 0.527702
\(498\) 0 0
\(499\) 4.91507e6 0.883647 0.441823 0.897102i \(-0.354332\pi\)
0.441823 + 0.897102i \(0.354332\pi\)
\(500\) 0 0
\(501\) −3.66138e6 −0.651705
\(502\) 0 0
\(503\) −6.65935e6 −1.17358 −0.586789 0.809740i \(-0.699608\pi\)
−0.586789 + 0.809740i \(0.699608\pi\)
\(504\) 0 0
\(505\) 3.73125e6 0.651067
\(506\) 0 0
\(507\) 4.00844e6 0.692558
\(508\) 0 0
\(509\) −1.11240e6 −0.190312 −0.0951559 0.995462i \(-0.530335\pi\)
−0.0951559 + 0.995462i \(0.530335\pi\)
\(510\) 0 0
\(511\) −436590. −0.0739642
\(512\) 0 0
\(513\) 8.35923e6 1.40240
\(514\) 0 0
\(515\) 4.85788e6 0.807102
\(516\) 0 0
\(517\) −302203. −0.0497247
\(518\) 0 0
\(519\) 4.79249e6 0.780985
\(520\) 0 0
\(521\) 2.31725e6 0.374007 0.187003 0.982359i \(-0.440122\pi\)
0.187003 + 0.982359i \(0.440122\pi\)
\(522\) 0 0
\(523\) −269108. −0.0430202 −0.0215101 0.999769i \(-0.506847\pi\)
−0.0215101 + 0.999769i \(0.506847\pi\)
\(524\) 0 0
\(525\) −336875. −0.0533422
\(526\) 0 0
\(527\) 289572. 0.0454182
\(528\) 0 0
\(529\) 3.61256e6 0.561275
\(530\) 0 0
\(531\) −3.77810e6 −0.581483
\(532\) 0 0
\(533\) −195548. −0.0298150
\(534\) 0 0
\(535\) 1.01345e6 0.153080
\(536\) 0 0
\(537\) −8.00637e6 −1.19812
\(538\) 0 0
\(539\) −199283. −0.0295460
\(540\) 0 0
\(541\) −1.13145e7 −1.66205 −0.831024 0.556236i \(-0.812245\pi\)
−0.831024 + 0.556236i \(0.812245\pi\)
\(542\) 0 0
\(543\) −3.16021e6 −0.459956
\(544\) 0 0
\(545\) 2.19128e6 0.316013
\(546\) 0 0
\(547\) 920240. 0.131502 0.0657511 0.997836i \(-0.479056\pi\)
0.0657511 + 0.997836i \(0.479056\pi\)
\(548\) 0 0
\(549\) −556320. −0.0787760
\(550\) 0 0
\(551\) −1.80738e7 −2.53613
\(552\) 0 0
\(553\) −1.35186e6 −0.187983
\(554\) 0 0
\(555\) 1.18195e6 0.162880
\(556\) 0 0
\(557\) 217416. 0.0296930 0.0148465 0.999890i \(-0.495274\pi\)
0.0148465 + 0.999890i \(0.495274\pi\)
\(558\) 0 0
\(559\) 725254. 0.0981659
\(560\) 0 0
\(561\) −161601. −0.0216789
\(562\) 0 0
\(563\) 7.58971e6 1.00915 0.504573 0.863369i \(-0.331650\pi\)
0.504573 + 0.863369i \(0.331650\pi\)
\(564\) 0 0
\(565\) 1.90785e6 0.251433
\(566\) 0 0
\(567\) −711431. −0.0929341
\(568\) 0 0
\(569\) 1.06524e7 1.37933 0.689664 0.724130i \(-0.257758\pi\)
0.689664 + 0.724130i \(0.257758\pi\)
\(570\) 0 0
\(571\) 4.60492e6 0.591061 0.295530 0.955333i \(-0.404504\pi\)
0.295530 + 0.955333i \(0.404504\pi\)
\(572\) 0 0
\(573\) −5.00039e6 −0.636235
\(574\) 0 0
\(575\) 1.98125e6 0.249902
\(576\) 0 0
\(577\) 1.08802e7 1.36049 0.680246 0.732983i \(-0.261873\pi\)
0.680246 + 0.732983i \(0.261873\pi\)
\(578\) 0 0
\(579\) 4.38658e6 0.543788
\(580\) 0 0
\(581\) −3.31612e6 −0.407559
\(582\) 0 0
\(583\) −2.76124e6 −0.336460
\(584\) 0 0
\(585\) −253150. −0.0305836
\(586\) 0 0
\(587\) −1.61205e7 −1.93100 −0.965500 0.260403i \(-0.916145\pi\)
−0.965500 + 0.260403i \(0.916145\pi\)
\(588\) 0 0
\(589\) −3.40615e6 −0.404553
\(590\) 0 0
\(591\) 1.05575e7 1.24335
\(592\) 0 0
\(593\) 5.91061e6 0.690233 0.345117 0.938560i \(-0.387839\pi\)
0.345117 + 0.938560i \(0.387839\pi\)
\(594\) 0 0
\(595\) 216825. 0.0251083
\(596\) 0 0
\(597\) 3.76226e6 0.432030
\(598\) 0 0
\(599\) −1.66052e7 −1.89094 −0.945471 0.325707i \(-0.894398\pi\)
−0.945471 + 0.325707i \(0.894398\pi\)
\(600\) 0 0
\(601\) 6.63144e6 0.748896 0.374448 0.927248i \(-0.377832\pi\)
0.374448 + 0.927248i \(0.377832\pi\)
\(602\) 0 0
\(603\) 4.61014e6 0.516322
\(604\) 0 0
\(605\) 3.85405e6 0.428084
\(606\) 0 0
\(607\) −7.31847e6 −0.806211 −0.403105 0.915154i \(-0.632069\pi\)
−0.403105 + 0.915154i \(0.632069\pi\)
\(608\) 0 0
\(609\) 4.67906e6 0.511229
\(610\) 0 0
\(611\) −302203. −0.0327488
\(612\) 0 0
\(613\) −1.26540e7 −1.36012 −0.680061 0.733155i \(-0.738047\pi\)
−0.680061 + 0.733155i \(0.738047\pi\)
\(614\) 0 0
\(615\) 647900. 0.0690749
\(616\) 0 0
\(617\) −6.39256e6 −0.676023 −0.338012 0.941142i \(-0.609754\pi\)
−0.338012 + 0.941142i \(0.609754\pi\)
\(618\) 0 0
\(619\) 7.70898e6 0.808668 0.404334 0.914611i \(-0.367503\pi\)
0.404334 + 0.914611i \(0.367503\pi\)
\(620\) 0 0
\(621\) 1.27276e7 1.32439
\(622\) 0 0
\(623\) 524300. 0.0541202
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 1.90087e6 0.193100
\(628\) 0 0
\(629\) −760746. −0.0766678
\(630\) 0 0
\(631\) −1.16280e7 −1.16260 −0.581302 0.813688i \(-0.697457\pi\)
−0.581302 + 0.813688i \(0.697457\pi\)
\(632\) 0 0
\(633\) −2.80547e6 −0.278289
\(634\) 0 0
\(635\) −4.57820e6 −0.450568
\(636\) 0 0
\(637\) −199283. −0.0194591
\(638\) 0 0
\(639\) −7.23509e6 −0.700957
\(640\) 0 0
\(641\) −1.15719e7 −1.11239 −0.556197 0.831051i \(-0.687740\pi\)
−0.556197 + 0.831051i \(0.687740\pi\)
\(642\) 0 0
\(643\) 4.51688e6 0.430836 0.215418 0.976522i \(-0.430889\pi\)
0.215418 + 0.976522i \(0.430889\pi\)
\(644\) 0 0
\(645\) −2.40295e6 −0.227429
\(646\) 0 0
\(647\) −6.71774e6 −0.630902 −0.315451 0.948942i \(-0.602156\pi\)
−0.315451 + 0.948942i \(0.602156\pi\)
\(648\) 0 0
\(649\) −2.57034e6 −0.239541
\(650\) 0 0
\(651\) 881804. 0.0815492
\(652\) 0 0
\(653\) −1.26522e7 −1.16114 −0.580569 0.814211i \(-0.697170\pi\)
−0.580569 + 0.814211i \(0.697170\pi\)
\(654\) 0 0
\(655\) 5.40475e6 0.492235
\(656\) 0 0
\(657\) 1.08702e6 0.0982481
\(658\) 0 0
\(659\) 1.20321e7 1.07927 0.539633 0.841900i \(-0.318563\pi\)
0.539633 + 0.841900i \(0.318563\pi\)
\(660\) 0 0
\(661\) −2.14150e7 −1.90640 −0.953199 0.302343i \(-0.902231\pi\)
−0.953199 + 0.302343i \(0.902231\pi\)
\(662\) 0 0
\(663\) −161601. −0.0142778
\(664\) 0 0
\(665\) −2.55045e6 −0.223647
\(666\) 0 0
\(667\) −2.75188e7 −2.39505
\(668\) 0 0
\(669\) −2.18219e6 −0.188507
\(670\) 0 0
\(671\) −378480. −0.0324516
\(672\) 0 0
\(673\) −2.18091e7 −1.85610 −0.928048 0.372462i \(-0.878514\pi\)
−0.928048 + 0.372462i \(0.878514\pi\)
\(674\) 0 0
\(675\) 2.50938e6 0.211985
\(676\) 0 0
\(677\) −1.71852e7 −1.44106 −0.720531 0.693423i \(-0.756102\pi\)
−0.720531 + 0.693423i \(0.756102\pi\)
\(678\) 0 0
\(679\) 3.18867e6 0.265421
\(680\) 0 0
\(681\) 5.99464e6 0.495331
\(682\) 0 0
\(683\) −2.63085e6 −0.215796 −0.107898 0.994162i \(-0.534412\pi\)
−0.107898 + 0.994162i \(0.534412\pi\)
\(684\) 0 0
\(685\) 2.99610e6 0.243966
\(686\) 0 0
\(687\) 1.60143e7 1.29454
\(688\) 0 0
\(689\) −2.76124e6 −0.221593
\(690\) 0 0
\(691\) −1.29911e7 −1.03503 −0.517513 0.855675i \(-0.673142\pi\)
−0.517513 + 0.855675i \(0.673142\pi\)
\(692\) 0 0
\(693\) 496174. 0.0392465
\(694\) 0 0
\(695\) 6.48245e6 0.509070
\(696\) 0 0
\(697\) −417012. −0.0325137
\(698\) 0 0
\(699\) 720984. 0.0558127
\(700\) 0 0
\(701\) −9.03664e6 −0.694564 −0.347282 0.937761i \(-0.612895\pi\)
−0.347282 + 0.937761i \(0.612895\pi\)
\(702\) 0 0
\(703\) 8.94844e6 0.682903
\(704\) 0 0
\(705\) 1.00127e6 0.0758718
\(706\) 0 0
\(707\) −7.31325e6 −0.550252
\(708\) 0 0
\(709\) 1.41423e7 1.05658 0.528292 0.849063i \(-0.322833\pi\)
0.528292 + 0.849063i \(0.322833\pi\)
\(710\) 0 0
\(711\) 3.36586e6 0.249702
\(712\) 0 0
\(713\) −5.18612e6 −0.382049
\(714\) 0 0
\(715\) −172225. −0.0125989
\(716\) 0 0
\(717\) −6.83328e6 −0.496399
\(718\) 0 0
\(719\) −6.27347e6 −0.452570 −0.226285 0.974061i \(-0.572658\pi\)
−0.226285 + 0.974061i \(0.572658\pi\)
\(720\) 0 0
\(721\) −9.52144e6 −0.682125
\(722\) 0 0
\(723\) −1.13039e7 −0.804236
\(724\) 0 0
\(725\) −5.42562e6 −0.383358
\(726\) 0 0
\(727\) 5.20530e6 0.365267 0.182633 0.983181i \(-0.441538\pi\)
0.182633 + 0.983181i \(0.441538\pi\)
\(728\) 0 0
\(729\) 1.25034e7 0.871384
\(730\) 0 0
\(731\) 1.54663e6 0.107051
\(732\) 0 0
\(733\) −2.80490e7 −1.92822 −0.964111 0.265499i \(-0.914463\pi\)
−0.964111 + 0.265499i \(0.914463\pi\)
\(734\) 0 0
\(735\) 660275. 0.0450823
\(736\) 0 0
\(737\) 3.13640e6 0.212698
\(738\) 0 0
\(739\) 4.42340e6 0.297952 0.148976 0.988841i \(-0.452402\pi\)
0.148976 + 0.988841i \(0.452402\pi\)
\(740\) 0 0
\(741\) 1.90087e6 0.127176
\(742\) 0 0
\(743\) 2.08246e7 1.38390 0.691950 0.721945i \(-0.256752\pi\)
0.691950 + 0.721945i \(0.256752\pi\)
\(744\) 0 0
\(745\) 2.21295e6 0.146077
\(746\) 0 0
\(747\) 8.25647e6 0.541369
\(748\) 0 0
\(749\) −1.98636e6 −0.129376
\(750\) 0 0
\(751\) −2.13899e7 −1.38391 −0.691957 0.721939i \(-0.743251\pi\)
−0.691957 + 0.721939i \(0.743251\pi\)
\(752\) 0 0
\(753\) 1.97202e7 1.26743
\(754\) 0 0
\(755\) 2.87632e6 0.183641
\(756\) 0 0
\(757\) 1.99739e7 1.26685 0.633423 0.773806i \(-0.281649\pi\)
0.633423 + 0.773806i \(0.281649\pi\)
\(758\) 0 0
\(759\) 2.89421e6 0.182358
\(760\) 0 0
\(761\) 1.52078e7 0.951932 0.475966 0.879464i \(-0.342098\pi\)
0.475966 + 0.879464i \(0.342098\pi\)
\(762\) 0 0
\(763\) −4.29490e6 −0.267080
\(764\) 0 0
\(765\) −539850. −0.0333518
\(766\) 0 0
\(767\) −2.57034e6 −0.157762
\(768\) 0 0
\(769\) −1.75417e7 −1.06969 −0.534843 0.844951i \(-0.679629\pi\)
−0.534843 + 0.844951i \(0.679629\pi\)
\(770\) 0 0
\(771\) −1.27427e7 −0.772016
\(772\) 0 0
\(773\) −2.01261e7 −1.21146 −0.605732 0.795669i \(-0.707119\pi\)
−0.605732 + 0.795669i \(0.707119\pi\)
\(774\) 0 0
\(775\) −1.02250e6 −0.0611518
\(776\) 0 0
\(777\) −2.31662e6 −0.137658
\(778\) 0 0
\(779\) 4.90519e6 0.289609
\(780\) 0 0
\(781\) −4.92223e6 −0.288758
\(782\) 0 0
\(783\) −3.48542e7 −2.03166
\(784\) 0 0
\(785\) 8.10925e6 0.469685
\(786\) 0 0
\(787\) −2.41718e7 −1.39114 −0.695571 0.718458i \(-0.744848\pi\)
−0.695571 + 0.718458i \(0.744848\pi\)
\(788\) 0 0
\(789\) −7.03487e6 −0.402313
\(790\) 0 0
\(791\) −3.73939e6 −0.212500
\(792\) 0 0
\(793\) −378480. −0.0213727
\(794\) 0 0
\(795\) 9.14870e6 0.513383
\(796\) 0 0
\(797\) −2.67019e7 −1.48901 −0.744503 0.667619i \(-0.767313\pi\)
−0.744503 + 0.667619i \(0.767313\pi\)
\(798\) 0 0
\(799\) −644457. −0.0357131
\(800\) 0 0
\(801\) −1.30540e6 −0.0718890
\(802\) 0 0
\(803\) 739530. 0.0404731
\(804\) 0 0
\(805\) −3.88325e6 −0.211206
\(806\) 0 0
\(807\) −2.41581e7 −1.30581
\(808\) 0 0
\(809\) 2.15124e7 1.15562 0.577812 0.816170i \(-0.303907\pi\)
0.577812 + 0.816170i \(0.303907\pi\)
\(810\) 0 0
\(811\) −3.50935e7 −1.87359 −0.936794 0.349882i \(-0.886222\pi\)
−0.936794 + 0.349882i \(0.886222\pi\)
\(812\) 0 0
\(813\) 1.51870e7 0.805832
\(814\) 0 0
\(815\) 5.91175e6 0.311761
\(816\) 0 0
\(817\) −1.81925e7 −0.953537
\(818\) 0 0
\(819\) 496174. 0.0258478
\(820\) 0 0
\(821\) −1.26329e7 −0.654100 −0.327050 0.945007i \(-0.606055\pi\)
−0.327050 + 0.945007i \(0.606055\pi\)
\(822\) 0 0
\(823\) −1.55348e7 −0.799475 −0.399737 0.916630i \(-0.630899\pi\)
−0.399737 + 0.916630i \(0.630899\pi\)
\(824\) 0 0
\(825\) 570625. 0.0291888
\(826\) 0 0
\(827\) 3.89597e7 1.98085 0.990426 0.138043i \(-0.0440813\pi\)
0.990426 + 0.138043i \(0.0440813\pi\)
\(828\) 0 0
\(829\) 1.35099e7 0.682757 0.341379 0.939926i \(-0.389106\pi\)
0.341379 + 0.939926i \(0.389106\pi\)
\(830\) 0 0
\(831\) −2.33528e7 −1.17310
\(832\) 0 0
\(833\) −424977. −0.0212204
\(834\) 0 0
\(835\) −8.32132e6 −0.413025
\(836\) 0 0
\(837\) −6.56854e6 −0.324082
\(838\) 0 0
\(839\) 250486. 0.0122851 0.00614255 0.999981i \(-0.498045\pi\)
0.00614255 + 0.999981i \(0.498045\pi\)
\(840\) 0 0
\(841\) 5.48486e7 2.67409
\(842\) 0 0
\(843\) −1.31669e7 −0.638136
\(844\) 0 0
\(845\) 9.11010e6 0.438916
\(846\) 0 0
\(847\) −7.55394e6 −0.361797
\(848\) 0 0
\(849\) 3.09594e6 0.147409
\(850\) 0 0
\(851\) 1.36247e7 0.644914
\(852\) 0 0
\(853\) 2.87228e7 1.35162 0.675809 0.737077i \(-0.263794\pi\)
0.675809 + 0.737077i \(0.263794\pi\)
\(854\) 0 0
\(855\) 6.35010e6 0.297074
\(856\) 0 0
\(857\) 1.61269e7 0.750066 0.375033 0.927011i \(-0.377631\pi\)
0.375033 + 0.927011i \(0.377631\pi\)
\(858\) 0 0
\(859\) 4.03773e7 1.86704 0.933521 0.358523i \(-0.116719\pi\)
0.933521 + 0.358523i \(0.116719\pi\)
\(860\) 0 0
\(861\) −1.26988e6 −0.0583789
\(862\) 0 0
\(863\) 2.57025e7 1.17476 0.587378 0.809312i \(-0.300160\pi\)
0.587378 + 0.809312i \(0.300160\pi\)
\(864\) 0 0
\(865\) 1.08920e7 0.494958
\(866\) 0 0
\(867\) 1.52738e7 0.690080
\(868\) 0 0
\(869\) 2.28989e6 0.102864
\(870\) 0 0
\(871\) 3.13640e6 0.140083
\(872\) 0 0
\(873\) −7.93915e6 −0.352564
\(874\) 0 0
\(875\) −765625. −0.0338062
\(876\) 0 0
\(877\) −1.75541e7 −0.770689 −0.385344 0.922773i \(-0.625917\pi\)
−0.385344 + 0.922773i \(0.625917\pi\)
\(878\) 0 0
\(879\) 2.98613e7 1.30358
\(880\) 0 0
\(881\) −2.13350e7 −0.926088 −0.463044 0.886335i \(-0.653243\pi\)
−0.463044 + 0.886335i \(0.653243\pi\)
\(882\) 0 0
\(883\) −3.95442e7 −1.70679 −0.853397 0.521261i \(-0.825462\pi\)
−0.853397 + 0.521261i \(0.825462\pi\)
\(884\) 0 0
\(885\) 8.51620e6 0.365500
\(886\) 0 0
\(887\) 3.42741e7 1.46271 0.731353 0.681999i \(-0.238889\pi\)
0.731353 + 0.681999i \(0.238889\pi\)
\(888\) 0 0
\(889\) 8.97327e6 0.380800
\(890\) 0 0
\(891\) 1.20508e6 0.0508535
\(892\) 0 0
\(893\) 7.58056e6 0.318107
\(894\) 0 0
\(895\) −1.81963e7 −0.759321
\(896\) 0 0
\(897\) 2.89421e6 0.120102
\(898\) 0 0
\(899\) 1.42021e7 0.586076
\(900\) 0 0
\(901\) −5.88844e6 −0.241651
\(902\) 0 0
\(903\) 4.70978e6 0.192212
\(904\) 0 0
\(905\) −7.18230e6 −0.291502
\(906\) 0 0
\(907\) −3.72968e7 −1.50541 −0.752703 0.658361i \(-0.771250\pi\)
−0.752703 + 0.658361i \(0.771250\pi\)
\(908\) 0 0
\(909\) 1.82085e7 0.730911
\(910\) 0 0
\(911\) −2.83311e7 −1.13101 −0.565505 0.824745i \(-0.691319\pi\)
−0.565505 + 0.824745i \(0.691319\pi\)
\(912\) 0 0
\(913\) 5.61711e6 0.223016
\(914\) 0 0
\(915\) 1.25400e6 0.0495159
\(916\) 0 0
\(917\) −1.05933e7 −0.416014
\(918\) 0 0
\(919\) 9.27364e6 0.362211 0.181105 0.983464i \(-0.442032\pi\)
0.181105 + 0.983464i \(0.442032\pi\)
\(920\) 0 0
\(921\) −2.95219e7 −1.14682
\(922\) 0 0
\(923\) −4.92223e6 −0.190177
\(924\) 0 0
\(925\) 2.68625e6 0.103227
\(926\) 0 0
\(927\) 2.37064e7 0.906081
\(928\) 0 0
\(929\) 1.39068e7 0.528674 0.264337 0.964430i \(-0.414847\pi\)
0.264337 + 0.964430i \(0.414847\pi\)
\(930\) 0 0
\(931\) 4.99888e6 0.189016
\(932\) 0 0
\(933\) 280962. 0.0105668
\(934\) 0 0
\(935\) −367275. −0.0137392
\(936\) 0 0
\(937\) −1.93922e6 −0.0721570 −0.0360785 0.999349i \(-0.511487\pi\)
−0.0360785 + 0.999349i \(0.511487\pi\)
\(938\) 0 0
\(939\) 1.07357e7 0.397345
\(940\) 0 0
\(941\) −2.44080e7 −0.898582 −0.449291 0.893385i \(-0.648323\pi\)
−0.449291 + 0.893385i \(0.648323\pi\)
\(942\) 0 0
\(943\) 7.46852e6 0.273499
\(944\) 0 0
\(945\) −4.91838e6 −0.179160
\(946\) 0 0
\(947\) −36592.0 −0.00132590 −0.000662951 1.00000i \(-0.500211\pi\)
−0.000662951 1.00000i \(0.500211\pi\)
\(948\) 0 0
\(949\) 739530. 0.0266557
\(950\) 0 0
\(951\) 1.60094e7 0.574016
\(952\) 0 0
\(953\) 2.75598e7 0.982978 0.491489 0.870884i \(-0.336453\pi\)
0.491489 + 0.870884i \(0.336453\pi\)
\(954\) 0 0
\(955\) −1.13645e7 −0.403221
\(956\) 0 0
\(957\) −7.92575e6 −0.279744
\(958\) 0 0
\(959\) −5.87236e6 −0.206189
\(960\) 0 0
\(961\) −2.59527e7 −0.906512
\(962\) 0 0
\(963\) 4.94564e6 0.171853
\(964\) 0 0
\(965\) 9.96950e6 0.344632
\(966\) 0 0
\(967\) 1.42984e7 0.491725 0.245863 0.969305i \(-0.420929\pi\)
0.245863 + 0.969305i \(0.420929\pi\)
\(968\) 0 0
\(969\) 4.05365e6 0.138687
\(970\) 0 0
\(971\) −2.29801e7 −0.782176 −0.391088 0.920353i \(-0.627901\pi\)
−0.391088 + 0.920353i \(0.627901\pi\)
\(972\) 0 0
\(973\) −1.27056e7 −0.430242
\(974\) 0 0
\(975\) 570625. 0.0192238
\(976\) 0 0
\(977\) −2.07391e7 −0.695111 −0.347556 0.937659i \(-0.612988\pi\)
−0.347556 + 0.937659i \(0.612988\pi\)
\(978\) 0 0
\(979\) −888100. −0.0296146
\(980\) 0 0
\(981\) 1.06934e7 0.354768
\(982\) 0 0
\(983\) −2.95326e7 −0.974807 −0.487403 0.873177i \(-0.662056\pi\)
−0.487403 + 0.873177i \(0.662056\pi\)
\(984\) 0 0
\(985\) 2.39944e7 0.787987
\(986\) 0 0
\(987\) −1.96250e6 −0.0641234
\(988\) 0 0
\(989\) −2.76995e7 −0.900493
\(990\) 0 0
\(991\) 3.56883e7 1.15436 0.577181 0.816616i \(-0.304153\pi\)
0.577181 + 0.816616i \(0.304153\pi\)
\(992\) 0 0
\(993\) −3.28005e7 −1.05562
\(994\) 0 0
\(995\) 8.55060e6 0.273803
\(996\) 0 0
\(997\) 3.48937e7 1.11176 0.555878 0.831264i \(-0.312382\pi\)
0.555878 + 0.831264i \(0.312382\pi\)
\(998\) 0 0
\(999\) 1.72565e7 0.547064
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.6.a.a.1.1 1
4.3 odd 2 70.6.a.d.1.1 1
12.11 even 2 630.6.a.l.1.1 1
20.3 even 4 350.6.c.c.99.2 2
20.7 even 4 350.6.c.c.99.1 2
20.19 odd 2 350.6.a.h.1.1 1
28.27 even 2 490.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.d.1.1 1 4.3 odd 2
350.6.a.h.1.1 1 20.19 odd 2
350.6.c.c.99.1 2 20.7 even 4
350.6.c.c.99.2 2 20.3 even 4
490.6.a.c.1.1 1 28.27 even 2
560.6.a.a.1.1 1 1.1 even 1 trivial
630.6.a.l.1.1 1 12.11 even 2