Defining parameters
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 26 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(560))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 492 | 60 | 432 |
Cusp forms | 468 | 60 | 408 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(7\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(6\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(9\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(9\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(6\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(8\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(7\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(8\) |
Plus space | \(+\) | \(27\) | ||
Minus space | \(-\) | \(33\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(560))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(560))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(560)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(280))\)\(^{\oplus 2}\)