Properties

Label 560.4.q.b.81.1
Level $560$
Weight $4$
Character 560.81
Analytic conductor $33.041$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(81,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 560.81
Dual form 560.4.q.b.401.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{3} +(-2.50000 - 4.33013i) q^{5} +(14.0000 + 12.1244i) q^{7} +(11.5000 + 19.9186i) q^{9} +O(q^{10})\) \(q+(-1.00000 + 1.73205i) q^{3} +(-2.50000 - 4.33013i) q^{5} +(14.0000 + 12.1244i) q^{7} +(11.5000 + 19.9186i) q^{9} +(-22.5000 + 38.9711i) q^{11} +59.0000 q^{13} +10.0000 q^{15} +(27.0000 - 46.7654i) q^{17} +(-60.5000 - 104.789i) q^{19} +(-35.0000 + 12.1244i) q^{21} +(34.5000 + 59.7558i) q^{23} +(-12.5000 + 21.6506i) q^{25} -100.000 q^{27} -162.000 q^{29} +(-44.0000 + 76.2102i) q^{31} +(-45.0000 - 77.9423i) q^{33} +(17.5000 - 90.9327i) q^{35} +(129.500 + 224.301i) q^{37} +(-59.0000 + 102.191i) q^{39} +195.000 q^{41} +286.000 q^{43} +(57.5000 - 99.5929i) q^{45} +(22.5000 + 38.9711i) q^{47} +(49.0000 + 339.482i) q^{49} +(54.0000 + 93.5307i) q^{51} +(-298.500 + 517.017i) q^{53} +225.000 q^{55} +242.000 q^{57} +(-180.000 + 311.769i) q^{59} +(-196.000 - 339.482i) q^{61} +(-80.5000 + 418.290i) q^{63} +(-147.500 - 255.477i) q^{65} +(-140.000 + 242.487i) q^{67} -138.000 q^{69} -48.0000 q^{71} +(-334.000 + 578.505i) q^{73} +(-25.0000 - 43.3013i) q^{75} +(-787.500 + 272.798i) q^{77} +(391.000 + 677.232i) q^{79} +(-210.500 + 364.597i) q^{81} -768.000 q^{83} -270.000 q^{85} +(162.000 - 280.592i) q^{87} +(597.000 + 1034.03i) q^{89} +(826.000 + 715.337i) q^{91} +(-88.0000 - 152.420i) q^{93} +(-302.500 + 523.945i) q^{95} +902.000 q^{97} -1035.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 5 q^{5} + 28 q^{7} + 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - 5 q^{5} + 28 q^{7} + 23 q^{9} - 45 q^{11} + 118 q^{13} + 20 q^{15} + 54 q^{17} - 121 q^{19} - 70 q^{21} + 69 q^{23} - 25 q^{25} - 200 q^{27} - 324 q^{29} - 88 q^{31} - 90 q^{33} + 35 q^{35} + 259 q^{37} - 118 q^{39} + 390 q^{41} + 572 q^{43} + 115 q^{45} + 45 q^{47} + 98 q^{49} + 108 q^{51} - 597 q^{53} + 450 q^{55} + 484 q^{57} - 360 q^{59} - 392 q^{61} - 161 q^{63} - 295 q^{65} - 280 q^{67} - 276 q^{69} - 96 q^{71} - 668 q^{73} - 50 q^{75} - 1575 q^{77} + 782 q^{79} - 421 q^{81} - 1536 q^{83} - 540 q^{85} + 324 q^{87} + 1194 q^{89} + 1652 q^{91} - 176 q^{93} - 605 q^{95} + 1804 q^{97} - 2070 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 1.73205i −0.192450 + 0.333333i −0.946062 0.323987i \(-0.894977\pi\)
0.753612 + 0.657320i \(0.228310\pi\)
\(4\) 0 0
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) 14.0000 + 12.1244i 0.755929 + 0.654654i
\(8\) 0 0
\(9\) 11.5000 + 19.9186i 0.425926 + 0.737725i
\(10\) 0 0
\(11\) −22.5000 + 38.9711i −0.616728 + 1.06820i 0.373351 + 0.927690i \(0.378209\pi\)
−0.990079 + 0.140514i \(0.955125\pi\)
\(12\) 0 0
\(13\) 59.0000 1.25874 0.629371 0.777105i \(-0.283312\pi\)
0.629371 + 0.777105i \(0.283312\pi\)
\(14\) 0 0
\(15\) 10.0000 0.172133
\(16\) 0 0
\(17\) 27.0000 46.7654i 0.385204 0.667192i −0.606594 0.795012i \(-0.707465\pi\)
0.991797 + 0.127820i \(0.0407979\pi\)
\(18\) 0 0
\(19\) −60.5000 104.789i −0.730508 1.26528i −0.956666 0.291186i \(-0.905950\pi\)
0.226158 0.974091i \(-0.427383\pi\)
\(20\) 0 0
\(21\) −35.0000 + 12.1244i −0.363696 + 0.125988i
\(22\) 0 0
\(23\) 34.5000 + 59.7558i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) −100.000 −0.712778
\(28\) 0 0
\(29\) −162.000 −1.03733 −0.518666 0.854977i \(-0.673571\pi\)
−0.518666 + 0.854977i \(0.673571\pi\)
\(30\) 0 0
\(31\) −44.0000 + 76.2102i −0.254924 + 0.441541i −0.964875 0.262710i \(-0.915384\pi\)
0.709951 + 0.704251i \(0.248717\pi\)
\(32\) 0 0
\(33\) −45.0000 77.9423i −0.237379 0.411152i
\(34\) 0 0
\(35\) 17.5000 90.9327i 0.0845154 0.439155i
\(36\) 0 0
\(37\) 129.500 + 224.301i 0.575396 + 0.996616i 0.995998 + 0.0893706i \(0.0284856\pi\)
−0.420602 + 0.907245i \(0.638181\pi\)
\(38\) 0 0
\(39\) −59.0000 + 102.191i −0.242245 + 0.419581i
\(40\) 0 0
\(41\) 195.000 0.742778 0.371389 0.928477i \(-0.378882\pi\)
0.371389 + 0.928477i \(0.378882\pi\)
\(42\) 0 0
\(43\) 286.000 1.01429 0.507146 0.861860i \(-0.330700\pi\)
0.507146 + 0.861860i \(0.330700\pi\)
\(44\) 0 0
\(45\) 57.5000 99.5929i 0.190480 0.329921i
\(46\) 0 0
\(47\) 22.5000 + 38.9711i 0.0698290 + 0.120947i 0.898826 0.438306i \(-0.144421\pi\)
−0.828997 + 0.559253i \(0.811088\pi\)
\(48\) 0 0
\(49\) 49.0000 + 339.482i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) 54.0000 + 93.5307i 0.148265 + 0.256802i
\(52\) 0 0
\(53\) −298.500 + 517.017i −0.773625 + 1.33996i 0.161939 + 0.986801i \(0.448225\pi\)
−0.935564 + 0.353157i \(0.885108\pi\)
\(54\) 0 0
\(55\) 225.000 0.551618
\(56\) 0 0
\(57\) 242.000 0.562345
\(58\) 0 0
\(59\) −180.000 + 311.769i −0.397187 + 0.687947i −0.993378 0.114895i \(-0.963347\pi\)
0.596191 + 0.802843i \(0.296680\pi\)
\(60\) 0 0
\(61\) −196.000 339.482i −0.411397 0.712561i 0.583646 0.812009i \(-0.301626\pi\)
−0.995043 + 0.0994477i \(0.968292\pi\)
\(62\) 0 0
\(63\) −80.5000 + 418.290i −0.160985 + 0.836502i
\(64\) 0 0
\(65\) −147.500 255.477i −0.281463 0.487509i
\(66\) 0 0
\(67\) −140.000 + 242.487i −0.255279 + 0.442157i −0.964971 0.262355i \(-0.915501\pi\)
0.709692 + 0.704512i \(0.248834\pi\)
\(68\) 0 0
\(69\) −138.000 −0.240772
\(70\) 0 0
\(71\) −48.0000 −0.0802331 −0.0401166 0.999195i \(-0.512773\pi\)
−0.0401166 + 0.999195i \(0.512773\pi\)
\(72\) 0 0
\(73\) −334.000 + 578.505i −0.535503 + 0.927519i 0.463635 + 0.886026i \(0.346545\pi\)
−0.999139 + 0.0414929i \(0.986789\pi\)
\(74\) 0 0
\(75\) −25.0000 43.3013i −0.0384900 0.0666667i
\(76\) 0 0
\(77\) −787.500 + 272.798i −1.16551 + 0.403743i
\(78\) 0 0
\(79\) 391.000 + 677.232i 0.556847 + 0.964488i 0.997757 + 0.0669365i \(0.0213225\pi\)
−0.440910 + 0.897551i \(0.645344\pi\)
\(80\) 0 0
\(81\) −210.500 + 364.597i −0.288752 + 0.500133i
\(82\) 0 0
\(83\) −768.000 −1.01565 −0.507825 0.861460i \(-0.669550\pi\)
−0.507825 + 0.861460i \(0.669550\pi\)
\(84\) 0 0
\(85\) −270.000 −0.344537
\(86\) 0 0
\(87\) 162.000 280.592i 0.199635 0.345778i
\(88\) 0 0
\(89\) 597.000 + 1034.03i 0.711032 + 1.23154i 0.964470 + 0.264192i \(0.0851054\pi\)
−0.253438 + 0.967352i \(0.581561\pi\)
\(90\) 0 0
\(91\) 826.000 + 715.337i 0.951520 + 0.824041i
\(92\) 0 0
\(93\) −88.0000 152.420i −0.0981202 0.169949i
\(94\) 0 0
\(95\) −302.500 + 523.945i −0.326693 + 0.565849i
\(96\) 0 0
\(97\) 902.000 0.944167 0.472084 0.881554i \(-0.343502\pi\)
0.472084 + 0.881554i \(0.343502\pi\)
\(98\) 0 0
\(99\) −1035.00 −1.05072
\(100\) 0 0
\(101\) −342.000 + 592.361i −0.336933 + 0.583586i −0.983854 0.178971i \(-0.942723\pi\)
0.646921 + 0.762557i \(0.276056\pi\)
\(102\) 0 0
\(103\) −758.000 1312.89i −0.725126 1.25595i −0.958922 0.283669i \(-0.908448\pi\)
0.233796 0.972286i \(-0.424885\pi\)
\(104\) 0 0
\(105\) 140.000 + 121.244i 0.130120 + 0.112687i
\(106\) 0 0
\(107\) −366.000 633.931i −0.330678 0.572751i 0.651967 0.758247i \(-0.273944\pi\)
−0.982645 + 0.185496i \(0.940611\pi\)
\(108\) 0 0
\(109\) 800.000 1385.64i 0.702992 1.21762i −0.264420 0.964408i \(-0.585180\pi\)
0.967411 0.253210i \(-0.0814863\pi\)
\(110\) 0 0
\(111\) −518.000 −0.442940
\(112\) 0 0
\(113\) −1392.00 −1.15883 −0.579417 0.815031i \(-0.696720\pi\)
−0.579417 + 0.815031i \(0.696720\pi\)
\(114\) 0 0
\(115\) 172.500 298.779i 0.139876 0.242272i
\(116\) 0 0
\(117\) 678.500 + 1175.20i 0.536131 + 0.928606i
\(118\) 0 0
\(119\) 945.000 327.358i 0.727966 0.252175i
\(120\) 0 0
\(121\) −347.000 601.022i −0.260706 0.451556i
\(122\) 0 0
\(123\) −195.000 + 337.750i −0.142948 + 0.247593i
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −803.000 −0.561061 −0.280530 0.959845i \(-0.590510\pi\)
−0.280530 + 0.959845i \(0.590510\pi\)
\(128\) 0 0
\(129\) −286.000 + 495.367i −0.195201 + 0.338098i
\(130\) 0 0
\(131\) 1009.50 + 1748.51i 0.673286 + 1.16617i 0.976967 + 0.213391i \(0.0684509\pi\)
−0.303681 + 0.952774i \(0.598216\pi\)
\(132\) 0 0
\(133\) 423.500 2200.57i 0.276106 1.43469i
\(134\) 0 0
\(135\) 250.000 + 433.013i 0.159382 + 0.276058i
\(136\) 0 0
\(137\) −30.0000 + 51.9615i −0.0187086 + 0.0324042i −0.875228 0.483710i \(-0.839289\pi\)
0.856520 + 0.516115i \(0.172622\pi\)
\(138\) 0 0
\(139\) 1708.00 1.04224 0.521118 0.853485i \(-0.325515\pi\)
0.521118 + 0.853485i \(0.325515\pi\)
\(140\) 0 0
\(141\) −90.0000 −0.0537544
\(142\) 0 0
\(143\) −1327.50 + 2299.30i −0.776302 + 1.34459i
\(144\) 0 0
\(145\) 405.000 + 701.481i 0.231955 + 0.401757i
\(146\) 0 0
\(147\) −637.000 254.611i −0.357407 0.142857i
\(148\) 0 0
\(149\) 543.000 + 940.504i 0.298552 + 0.517108i 0.975805 0.218643i \(-0.0701629\pi\)
−0.677253 + 0.735751i \(0.736830\pi\)
\(150\) 0 0
\(151\) −1433.00 + 2482.03i −0.772291 + 1.33765i 0.164014 + 0.986458i \(0.447556\pi\)
−0.936305 + 0.351189i \(0.885778\pi\)
\(152\) 0 0
\(153\) 1242.00 0.656273
\(154\) 0 0
\(155\) 440.000 0.228011
\(156\) 0 0
\(157\) 114.500 198.320i 0.0582044 0.100813i −0.835455 0.549559i \(-0.814796\pi\)
0.893659 + 0.448746i \(0.148129\pi\)
\(158\) 0 0
\(159\) −597.000 1034.03i −0.297768 0.515750i
\(160\) 0 0
\(161\) −241.500 + 1254.87i −0.118217 + 0.614271i
\(162\) 0 0
\(163\) −614.000 1063.48i −0.295044 0.511031i 0.679951 0.733258i \(-0.262001\pi\)
−0.974995 + 0.222226i \(0.928668\pi\)
\(164\) 0 0
\(165\) −225.000 + 389.711i −0.106159 + 0.183873i
\(166\) 0 0
\(167\) 1929.00 0.893835 0.446918 0.894575i \(-0.352522\pi\)
0.446918 + 0.894575i \(0.352522\pi\)
\(168\) 0 0
\(169\) 1284.00 0.584433
\(170\) 0 0
\(171\) 1391.50 2410.15i 0.622285 1.07783i
\(172\) 0 0
\(173\) 349.500 + 605.352i 0.153595 + 0.266035i 0.932547 0.361049i \(-0.117581\pi\)
−0.778951 + 0.627084i \(0.784248\pi\)
\(174\) 0 0
\(175\) −437.500 + 151.554i −0.188982 + 0.0654654i
\(176\) 0 0
\(177\) −360.000 623.538i −0.152877 0.264791i
\(178\) 0 0
\(179\) 1558.50 2699.40i 0.650770 1.12717i −0.332167 0.943221i \(-0.607780\pi\)
0.982936 0.183945i \(-0.0588870\pi\)
\(180\) 0 0
\(181\) −1798.00 −0.738366 −0.369183 0.929357i \(-0.620362\pi\)
−0.369183 + 0.929357i \(0.620362\pi\)
\(182\) 0 0
\(183\) 784.000 0.316694
\(184\) 0 0
\(185\) 647.500 1121.50i 0.257325 0.445700i
\(186\) 0 0
\(187\) 1215.00 + 2104.44i 0.475132 + 0.822952i
\(188\) 0 0
\(189\) −1400.00 1212.44i −0.538810 0.466623i
\(190\) 0 0
\(191\) −1194.00 2068.07i −0.452329 0.783457i 0.546201 0.837654i \(-0.316073\pi\)
−0.998530 + 0.0541974i \(0.982740\pi\)
\(192\) 0 0
\(193\) −136.000 + 235.559i −0.0507228 + 0.0878544i −0.890272 0.455429i \(-0.849486\pi\)
0.839549 + 0.543284i \(0.182819\pi\)
\(194\) 0 0
\(195\) 590.000 0.216671
\(196\) 0 0
\(197\) −2109.00 −0.762741 −0.381371 0.924422i \(-0.624548\pi\)
−0.381371 + 0.924422i \(0.624548\pi\)
\(198\) 0 0
\(199\) 712.000 1233.22i 0.253630 0.439300i −0.710893 0.703301i \(-0.751709\pi\)
0.964522 + 0.264001i \(0.0850422\pi\)
\(200\) 0 0
\(201\) −280.000 484.974i −0.0982571 0.170186i
\(202\) 0 0
\(203\) −2268.00 1964.15i −0.784150 0.679094i
\(204\) 0 0
\(205\) −487.500 844.375i −0.166090 0.287677i
\(206\) 0 0
\(207\) −793.500 + 1374.38i −0.266435 + 0.461479i
\(208\) 0 0
\(209\) 5445.00 1.80210
\(210\) 0 0
\(211\) 3625.00 1.18273 0.591363 0.806405i \(-0.298590\pi\)
0.591363 + 0.806405i \(0.298590\pi\)
\(212\) 0 0
\(213\) 48.0000 83.1384i 0.0154409 0.0267444i
\(214\) 0 0
\(215\) −715.000 1238.42i −0.226803 0.392834i
\(216\) 0 0
\(217\) −1540.00 + 533.472i −0.481760 + 0.166887i
\(218\) 0 0
\(219\) −668.000 1157.01i −0.206115 0.357002i
\(220\) 0 0
\(221\) 1593.00 2759.16i 0.484872 0.839823i
\(222\) 0 0
\(223\) 4960.00 1.48944 0.744722 0.667374i \(-0.232582\pi\)
0.744722 + 0.667374i \(0.232582\pi\)
\(224\) 0 0
\(225\) −575.000 −0.170370
\(226\) 0 0
\(227\) −750.000 + 1299.04i −0.219292 + 0.379825i −0.954592 0.297917i \(-0.903708\pi\)
0.735300 + 0.677742i \(0.237041\pi\)
\(228\) 0 0
\(229\) −3046.00 5275.83i −0.878975 1.52243i −0.852467 0.522781i \(-0.824894\pi\)
−0.0265085 0.999649i \(-0.508439\pi\)
\(230\) 0 0
\(231\) 315.000 1636.79i 0.0897207 0.466202i
\(232\) 0 0
\(233\) −69.0000 119.512i −0.0194006 0.0336028i 0.856162 0.516707i \(-0.172842\pi\)
−0.875563 + 0.483104i \(0.839509\pi\)
\(234\) 0 0
\(235\) 112.500 194.856i 0.0312285 0.0540893i
\(236\) 0 0
\(237\) −1564.00 −0.428661
\(238\) 0 0
\(239\) 5502.00 1.48910 0.744550 0.667567i \(-0.232664\pi\)
0.744550 + 0.667567i \(0.232664\pi\)
\(240\) 0 0
\(241\) −1775.50 + 3075.26i −0.474564 + 0.821970i −0.999576 0.0291256i \(-0.990728\pi\)
0.525011 + 0.851095i \(0.324061\pi\)
\(242\) 0 0
\(243\) −1771.00 3067.46i −0.467530 0.809785i
\(244\) 0 0
\(245\) 1347.50 1060.88i 0.351382 0.276642i
\(246\) 0 0
\(247\) −3569.50 6182.56i −0.919522 1.59266i
\(248\) 0 0
\(249\) 768.000 1330.22i 0.195462 0.338550i
\(250\) 0 0
\(251\) −7065.00 −1.77665 −0.888324 0.459216i \(-0.848130\pi\)
−0.888324 + 0.459216i \(0.848130\pi\)
\(252\) 0 0
\(253\) −3105.00 −0.771580
\(254\) 0 0
\(255\) 270.000 467.654i 0.0663061 0.114846i
\(256\) 0 0
\(257\) 2040.00 + 3533.38i 0.495143 + 0.857613i 0.999984 0.00559954i \(-0.00178240\pi\)
−0.504842 + 0.863212i \(0.668449\pi\)
\(258\) 0 0
\(259\) −906.500 + 4710.31i −0.217479 + 1.13006i
\(260\) 0 0
\(261\) −1863.00 3226.81i −0.441827 0.765267i
\(262\) 0 0
\(263\) −1644.00 + 2847.49i −0.385450 + 0.667619i −0.991832 0.127555i \(-0.959287\pi\)
0.606381 + 0.795174i \(0.292620\pi\)
\(264\) 0 0
\(265\) 2985.00 0.691951
\(266\) 0 0
\(267\) −2388.00 −0.547353
\(268\) 0 0
\(269\) 1632.00 2826.71i 0.369906 0.640697i −0.619644 0.784883i \(-0.712723\pi\)
0.989551 + 0.144186i \(0.0460564\pi\)
\(270\) 0 0
\(271\) −1376.00 2383.30i −0.308436 0.534226i 0.669585 0.742736i \(-0.266472\pi\)
−0.978020 + 0.208510i \(0.933139\pi\)
\(272\) 0 0
\(273\) −2065.00 + 715.337i −0.457800 + 0.158587i
\(274\) 0 0
\(275\) −562.500 974.279i −0.123346 0.213641i
\(276\) 0 0
\(277\) 2345.00 4061.66i 0.508655 0.881016i −0.491295 0.870993i \(-0.663476\pi\)
0.999950 0.0100228i \(-0.00319040\pi\)
\(278\) 0 0
\(279\) −2024.00 −0.434314
\(280\) 0 0
\(281\) 7821.00 1.66036 0.830181 0.557494i \(-0.188237\pi\)
0.830181 + 0.557494i \(0.188237\pi\)
\(282\) 0 0
\(283\) −329.000 + 569.845i −0.0691061 + 0.119695i −0.898508 0.438957i \(-0.855348\pi\)
0.829402 + 0.558652i \(0.188681\pi\)
\(284\) 0 0
\(285\) −605.000 1047.89i −0.125744 0.217795i
\(286\) 0 0
\(287\) 2730.00 + 2364.25i 0.561487 + 0.486262i
\(288\) 0 0
\(289\) 998.500 + 1729.45i 0.203236 + 0.352016i
\(290\) 0 0
\(291\) −902.000 + 1562.31i −0.181705 + 0.314722i
\(292\) 0 0
\(293\) −5997.00 −1.19573 −0.597864 0.801597i \(-0.703984\pi\)
−0.597864 + 0.801597i \(0.703984\pi\)
\(294\) 0 0
\(295\) 1800.00 0.355254
\(296\) 0 0
\(297\) 2250.00 3897.11i 0.439590 0.761392i
\(298\) 0 0
\(299\) 2035.50 + 3525.59i 0.393699 + 0.681907i
\(300\) 0 0
\(301\) 4004.00 + 3467.57i 0.766733 + 0.664011i
\(302\) 0 0
\(303\) −684.000 1184.72i −0.129686 0.224622i
\(304\) 0 0
\(305\) −980.000 + 1697.41i −0.183982 + 0.318667i
\(306\) 0 0
\(307\) 6226.00 1.15745 0.578724 0.815523i \(-0.303551\pi\)
0.578724 + 0.815523i \(0.303551\pi\)
\(308\) 0 0
\(309\) 3032.00 0.558202
\(310\) 0 0
\(311\) 2340.00 4053.00i 0.426653 0.738985i −0.569920 0.821700i \(-0.693026\pi\)
0.996573 + 0.0827149i \(0.0263591\pi\)
\(312\) 0 0
\(313\) −514.000 890.274i −0.0928211 0.160771i 0.815876 0.578227i \(-0.196255\pi\)
−0.908697 + 0.417456i \(0.862922\pi\)
\(314\) 0 0
\(315\) 2012.50 697.150i 0.359973 0.124698i
\(316\) 0 0
\(317\) −4311.00 7466.87i −0.763817 1.32297i −0.940870 0.338768i \(-0.889990\pi\)
0.177053 0.984201i \(-0.443344\pi\)
\(318\) 0 0
\(319\) 3645.00 6313.33i 0.639752 1.10808i
\(320\) 0 0
\(321\) 1464.00 0.254556
\(322\) 0 0
\(323\) −6534.00 −1.12558
\(324\) 0 0
\(325\) −737.500 + 1277.39i −0.125874 + 0.218021i
\(326\) 0 0
\(327\) 1600.00 + 2771.28i 0.270582 + 0.468661i
\(328\) 0 0
\(329\) −157.500 + 818.394i −0.0263929 + 0.137141i
\(330\) 0 0
\(331\) −999.500 1731.18i −0.165974 0.287476i 0.771027 0.636803i \(-0.219744\pi\)
−0.937001 + 0.349327i \(0.886410\pi\)
\(332\) 0 0
\(333\) −2978.50 + 5158.91i −0.490153 + 0.848969i
\(334\) 0 0
\(335\) 1400.00 0.228329
\(336\) 0 0
\(337\) 5114.00 0.826639 0.413319 0.910586i \(-0.364369\pi\)
0.413319 + 0.910586i \(0.364369\pi\)
\(338\) 0 0
\(339\) 1392.00 2411.01i 0.223018 0.386278i
\(340\) 0 0
\(341\) −1980.00 3429.46i −0.314437 0.544621i
\(342\) 0 0
\(343\) −3430.00 + 5346.84i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 345.000 + 597.558i 0.0538382 + 0.0932505i
\(346\) 0 0
\(347\) 2160.00 3741.23i 0.334164 0.578789i −0.649160 0.760652i \(-0.724879\pi\)
0.983324 + 0.181863i \(0.0582128\pi\)
\(348\) 0 0
\(349\) 7922.00 1.21506 0.607529 0.794298i \(-0.292161\pi\)
0.607529 + 0.794298i \(0.292161\pi\)
\(350\) 0 0
\(351\) −5900.00 −0.897204
\(352\) 0 0
\(353\) −414.000 + 717.069i −0.0624221 + 0.108118i −0.895548 0.444966i \(-0.853216\pi\)
0.833125 + 0.553084i \(0.186549\pi\)
\(354\) 0 0
\(355\) 120.000 + 207.846i 0.0179407 + 0.0310742i
\(356\) 0 0
\(357\) −378.000 + 1964.15i −0.0560389 + 0.291187i
\(358\) 0 0
\(359\) −675.000 1169.13i −0.0992344 0.171879i 0.812134 0.583472i \(-0.198306\pi\)
−0.911368 + 0.411593i \(0.864973\pi\)
\(360\) 0 0
\(361\) −3891.00 + 6739.41i −0.567284 + 0.982564i
\(362\) 0 0
\(363\) 1388.00 0.200692
\(364\) 0 0
\(365\) 3340.00 0.478969
\(366\) 0 0
\(367\) 1400.50 2425.74i 0.199198 0.345020i −0.749071 0.662490i \(-0.769500\pi\)
0.948268 + 0.317470i \(0.102833\pi\)
\(368\) 0 0
\(369\) 2242.50 + 3884.12i 0.316368 + 0.547966i
\(370\) 0 0
\(371\) −10447.5 + 3619.12i −1.46201 + 0.506456i
\(372\) 0 0
\(373\) −3301.00 5717.50i −0.458229 0.793675i 0.540639 0.841255i \(-0.318183\pi\)
−0.998867 + 0.0475795i \(0.984849\pi\)
\(374\) 0 0
\(375\) −125.000 + 216.506i −0.0172133 + 0.0298142i
\(376\) 0 0
\(377\) −9558.00 −1.30573
\(378\) 0 0
\(379\) 8305.00 1.12559 0.562796 0.826596i \(-0.309726\pi\)
0.562796 + 0.826596i \(0.309726\pi\)
\(380\) 0 0
\(381\) 803.000 1390.84i 0.107976 0.187020i
\(382\) 0 0
\(383\) 472.500 + 818.394i 0.0630382 + 0.109185i 0.895822 0.444413i \(-0.146588\pi\)
−0.832784 + 0.553598i \(0.813254\pi\)
\(384\) 0 0
\(385\) 3150.00 + 2727.98i 0.416984 + 0.361119i
\(386\) 0 0
\(387\) 3289.00 + 5696.72i 0.432014 + 0.748270i
\(388\) 0 0
\(389\) −6018.00 + 10423.5i −0.784382 + 1.35859i 0.144985 + 0.989434i \(0.453687\pi\)
−0.929367 + 0.369156i \(0.879647\pi\)
\(390\) 0 0
\(391\) 3726.00 0.481923
\(392\) 0 0
\(393\) −4038.00 −0.518296
\(394\) 0 0
\(395\) 1955.00 3386.16i 0.249030 0.431332i
\(396\) 0 0
\(397\) 1349.00 + 2336.54i 0.170540 + 0.295384i 0.938609 0.344983i \(-0.112115\pi\)
−0.768069 + 0.640367i \(0.778782\pi\)
\(398\) 0 0
\(399\) 3388.00 + 2934.09i 0.425093 + 0.368141i
\(400\) 0 0
\(401\) −3526.50 6108.08i −0.439165 0.760655i 0.558461 0.829531i \(-0.311392\pi\)
−0.997625 + 0.0688756i \(0.978059\pi\)
\(402\) 0 0
\(403\) −2596.00 + 4496.40i −0.320883 + 0.555786i
\(404\) 0 0
\(405\) 2105.00 0.258267
\(406\) 0 0
\(407\) −11655.0 −1.41945
\(408\) 0 0
\(409\) 5435.00 9413.70i 0.657074 1.13809i −0.324295 0.945956i \(-0.605127\pi\)
0.981369 0.192130i \(-0.0615396\pi\)
\(410\) 0 0
\(411\) −60.0000 103.923i −0.00720093 0.0124724i
\(412\) 0 0
\(413\) −6300.00 + 2182.38i −0.750612 + 0.260020i
\(414\) 0 0
\(415\) 1920.00 + 3325.54i 0.227106 + 0.393360i
\(416\) 0 0
\(417\) −1708.00 + 2958.34i −0.200578 + 0.347412i
\(418\) 0 0
\(419\) 9729.00 1.13435 0.567175 0.823597i \(-0.308036\pi\)
0.567175 + 0.823597i \(0.308036\pi\)
\(420\) 0 0
\(421\) −12550.0 −1.45285 −0.726425 0.687246i \(-0.758819\pi\)
−0.726425 + 0.687246i \(0.758819\pi\)
\(422\) 0 0
\(423\) −517.500 + 896.336i −0.0594840 + 0.103029i
\(424\) 0 0
\(425\) 675.000 + 1169.13i 0.0770407 + 0.133438i
\(426\) 0 0
\(427\) 1372.00 7129.12i 0.155494 0.807968i
\(428\) 0 0
\(429\) −2655.00 4598.59i −0.298799 0.517534i
\(430\) 0 0
\(431\) 1494.00 2587.68i 0.166969 0.289198i −0.770384 0.637580i \(-0.779935\pi\)
0.937353 + 0.348382i \(0.113269\pi\)
\(432\) 0 0
\(433\) 16616.0 1.84414 0.922072 0.387019i \(-0.126495\pi\)
0.922072 + 0.387019i \(0.126495\pi\)
\(434\) 0 0
\(435\) −1620.00 −0.178559
\(436\) 0 0
\(437\) 4174.50 7230.45i 0.456964 0.791485i
\(438\) 0 0
\(439\) 3673.00 + 6361.82i 0.399323 + 0.691647i 0.993642 0.112581i \(-0.0359119\pi\)
−0.594320 + 0.804229i \(0.702579\pi\)
\(440\) 0 0
\(441\) −6198.50 + 4880.05i −0.669312 + 0.526947i
\(442\) 0 0
\(443\) 6.00000 + 10.3923i 0.000643496 + 0.00111457i 0.866347 0.499443i \(-0.166462\pi\)
−0.865703 + 0.500557i \(0.833129\pi\)
\(444\) 0 0
\(445\) 2985.00 5170.17i 0.317983 0.550763i
\(446\) 0 0
\(447\) −2172.00 −0.229826
\(448\) 0 0
\(449\) 9669.00 1.01628 0.508138 0.861275i \(-0.330334\pi\)
0.508138 + 0.861275i \(0.330334\pi\)
\(450\) 0 0
\(451\) −4387.50 + 7599.37i −0.458092 + 0.793438i
\(452\) 0 0
\(453\) −2866.00 4964.06i −0.297255 0.514860i
\(454\) 0 0
\(455\) 1032.50 5365.03i 0.106383 0.552783i
\(456\) 0 0
\(457\) 4817.00 + 8343.29i 0.493063 + 0.854010i 0.999968 0.00799181i \(-0.00254390\pi\)
−0.506905 + 0.862002i \(0.669211\pi\)
\(458\) 0 0
\(459\) −2700.00 + 4676.54i −0.274565 + 0.475560i
\(460\) 0 0
\(461\) −342.000 −0.0345521 −0.0172761 0.999851i \(-0.505499\pi\)
−0.0172761 + 0.999851i \(0.505499\pi\)
\(462\) 0 0
\(463\) −2411.00 −0.242006 −0.121003 0.992652i \(-0.538611\pi\)
−0.121003 + 0.992652i \(0.538611\pi\)
\(464\) 0 0
\(465\) −440.000 + 762.102i −0.0438807 + 0.0760035i
\(466\) 0 0
\(467\) −603.000 1044.43i −0.0597506 0.103491i 0.834603 0.550852i \(-0.185697\pi\)
−0.894353 + 0.447361i \(0.852364\pi\)
\(468\) 0 0
\(469\) −4900.00 + 1697.41i −0.482433 + 0.167120i
\(470\) 0 0
\(471\) 229.000 + 396.640i 0.0224029 + 0.0388030i
\(472\) 0 0
\(473\) −6435.00 + 11145.7i −0.625543 + 1.08347i
\(474\) 0 0
\(475\) 3025.00 0.292203
\(476\) 0 0
\(477\) −13731.0 −1.31803
\(478\) 0 0
\(479\) −216.000 + 374.123i −0.0206039 + 0.0356871i −0.876144 0.482050i \(-0.839892\pi\)
0.855540 + 0.517737i \(0.173226\pi\)
\(480\) 0 0
\(481\) 7640.50 + 13233.7i 0.724276 + 1.25448i
\(482\) 0 0
\(483\) −1932.00 1673.16i −0.182006 0.157622i
\(484\) 0 0
\(485\) −2255.00 3905.77i −0.211122 0.365674i
\(486\) 0 0
\(487\) −5948.00 + 10302.2i −0.553449 + 0.958602i 0.444574 + 0.895742i \(0.353355\pi\)
−0.998022 + 0.0628592i \(0.979978\pi\)
\(488\) 0 0
\(489\) 2456.00 0.227125
\(490\) 0 0
\(491\) 12276.0 1.12833 0.564163 0.825663i \(-0.309199\pi\)
0.564163 + 0.825663i \(0.309199\pi\)
\(492\) 0 0
\(493\) −4374.00 + 7575.99i −0.399584 + 0.692100i
\(494\) 0 0
\(495\) 2587.50 + 4481.68i 0.234948 + 0.406943i
\(496\) 0 0
\(497\) −672.000 581.969i −0.0606505 0.0525249i
\(498\) 0 0
\(499\) −5438.00 9418.89i −0.487852 0.844985i 0.512050 0.858956i \(-0.328886\pi\)
−0.999902 + 0.0139706i \(0.995553\pi\)
\(500\) 0 0
\(501\) −1929.00 + 3341.13i −0.172019 + 0.297945i
\(502\) 0 0
\(503\) −12000.0 −1.06372 −0.531862 0.846831i \(-0.678508\pi\)
−0.531862 + 0.846831i \(0.678508\pi\)
\(504\) 0 0
\(505\) 3420.00 0.301362
\(506\) 0 0
\(507\) −1284.00 + 2223.95i −0.112474 + 0.194811i
\(508\) 0 0
\(509\) 5841.00 + 10116.9i 0.508640 + 0.880990i 0.999950 + 0.0100055i \(0.00318492\pi\)
−0.491310 + 0.870985i \(0.663482\pi\)
\(510\) 0 0
\(511\) −11690.0 + 4049.53i −1.01201 + 0.350569i
\(512\) 0 0
\(513\) 6050.00 + 10478.9i 0.520690 + 0.901862i
\(514\) 0 0
\(515\) −3790.00 + 6564.47i −0.324286 + 0.561680i
\(516\) 0 0
\(517\) −2025.00 −0.172262
\(518\) 0 0
\(519\) −1398.00 −0.118238
\(520\) 0 0
\(521\) −4804.50 + 8321.64i −0.404010 + 0.699765i −0.994206 0.107495i \(-0.965717\pi\)
0.590196 + 0.807260i \(0.299050\pi\)
\(522\) 0 0
\(523\) 10594.0 + 18349.3i 0.885742 + 1.53415i 0.844860 + 0.534987i \(0.179683\pi\)
0.0408820 + 0.999164i \(0.486983\pi\)
\(524\) 0 0
\(525\) 175.000 909.327i 0.0145479 0.0755929i
\(526\) 0 0
\(527\) 2376.00 + 4115.35i 0.196395 + 0.340166i
\(528\) 0 0
\(529\) 3703.00 6413.78i 0.304348 0.527146i
\(530\) 0 0
\(531\) −8280.00 −0.676688
\(532\) 0 0
\(533\) 11505.0 0.934966
\(534\) 0 0
\(535\) −1830.00 + 3169.65i −0.147884 + 0.256142i
\(536\) 0 0
\(537\) 3117.00 + 5398.80i 0.250481 + 0.433846i
\(538\) 0 0
\(539\) −14332.5 5728.76i −1.14535 0.457802i
\(540\) 0 0
\(541\) −4036.00 6990.56i −0.320742 0.555541i 0.659900 0.751354i \(-0.270599\pi\)
−0.980641 + 0.195813i \(0.937265\pi\)
\(542\) 0 0
\(543\) 1798.00 3114.23i 0.142099 0.246122i
\(544\) 0 0
\(545\) −8000.00 −0.628775
\(546\) 0 0
\(547\) −344.000 −0.0268892 −0.0134446 0.999910i \(-0.504280\pi\)
−0.0134446 + 0.999910i \(0.504280\pi\)
\(548\) 0 0
\(549\) 4508.00 7808.09i 0.350449 0.606996i
\(550\) 0 0
\(551\) 9801.00 + 16975.8i 0.757780 + 1.31251i
\(552\) 0 0
\(553\) −2737.00 + 14221.9i −0.210468 + 1.09363i
\(554\) 0 0
\(555\) 1295.00 + 2243.01i 0.0990445 + 0.171550i
\(556\) 0 0
\(557\) −9181.50 + 15902.8i −0.698443 + 1.20974i 0.270563 + 0.962702i \(0.412790\pi\)
−0.969006 + 0.247036i \(0.920543\pi\)
\(558\) 0 0
\(559\) 16874.0 1.27673
\(560\) 0 0
\(561\) −4860.00 −0.365756
\(562\) 0 0
\(563\) −3147.00 + 5450.76i −0.235578 + 0.408033i −0.959440 0.281912i \(-0.909032\pi\)
0.723863 + 0.689944i \(0.242365\pi\)
\(564\) 0 0
\(565\) 3480.00 + 6027.54i 0.259123 + 0.448815i
\(566\) 0 0
\(567\) −7367.50 + 2552.18i −0.545689 + 0.189032i
\(568\) 0 0
\(569\) −5866.50 10161.1i −0.432226 0.748637i 0.564839 0.825201i \(-0.308938\pi\)
−0.997065 + 0.0765642i \(0.975605\pi\)
\(570\) 0 0
\(571\) 526.000 911.059i 0.0385506 0.0667717i −0.846106 0.533014i \(-0.821059\pi\)
0.884657 + 0.466242i \(0.154393\pi\)
\(572\) 0 0
\(573\) 4776.00 0.348203
\(574\) 0 0
\(575\) −1725.00 −0.125109
\(576\) 0 0
\(577\) 6578.00 11393.4i 0.474603 0.822036i −0.524974 0.851118i \(-0.675925\pi\)
0.999577 + 0.0290821i \(0.00925844\pi\)
\(578\) 0 0
\(579\) −272.000 471.118i −0.0195232 0.0338152i
\(580\) 0 0
\(581\) −10752.0 9311.51i −0.767759 0.664899i
\(582\) 0 0
\(583\) −13432.5 23265.8i −0.954232 1.65278i
\(584\) 0 0
\(585\) 3392.50 5875.98i 0.239765 0.415285i
\(586\) 0 0
\(587\) 13368.0 0.939960 0.469980 0.882677i \(-0.344261\pi\)
0.469980 + 0.882677i \(0.344261\pi\)
\(588\) 0 0
\(589\) 10648.0 0.744895
\(590\) 0 0
\(591\) 2109.00 3652.90i 0.146790 0.254247i
\(592\) 0 0
\(593\) −13332.0 23091.7i −0.923237 1.59909i −0.794372 0.607431i \(-0.792200\pi\)
−0.128865 0.991662i \(-0.541133\pi\)
\(594\) 0 0
\(595\) −3780.00 3273.58i −0.260445 0.225552i
\(596\) 0 0
\(597\) 1424.00 + 2466.44i 0.0976222 + 0.169087i
\(598\) 0 0
\(599\) 3807.00 6593.92i 0.259682 0.449783i −0.706474 0.707739i \(-0.749715\pi\)
0.966157 + 0.257955i \(0.0830488\pi\)
\(600\) 0 0
\(601\) 6410.00 0.435057 0.217529 0.976054i \(-0.430200\pi\)
0.217529 + 0.976054i \(0.430200\pi\)
\(602\) 0 0
\(603\) −6440.00 −0.434921
\(604\) 0 0
\(605\) −1735.00 + 3005.11i −0.116591 + 0.201942i
\(606\) 0 0
\(607\) −10734.5 18592.7i −0.717792 1.24325i −0.961873 0.273498i \(-0.911819\pi\)
0.244080 0.969755i \(-0.421514\pi\)
\(608\) 0 0
\(609\) 5670.00 1964.15i 0.377274 0.130692i
\(610\) 0 0
\(611\) 1327.50 + 2299.30i 0.0878967 + 0.152242i
\(612\) 0 0
\(613\) −1868.50 + 3236.34i −0.123113 + 0.213237i −0.920994 0.389578i \(-0.872621\pi\)
0.797881 + 0.602815i \(0.205954\pi\)
\(614\) 0 0
\(615\) 1950.00 0.127856
\(616\) 0 0
\(617\) 18078.0 1.17957 0.589784 0.807561i \(-0.299213\pi\)
0.589784 + 0.807561i \(0.299213\pi\)
\(618\) 0 0
\(619\) 6143.50 10640.9i 0.398915 0.690940i −0.594678 0.803964i \(-0.702720\pi\)
0.993592 + 0.113024i \(0.0360537\pi\)
\(620\) 0 0
\(621\) −3450.00 5975.58i −0.222937 0.386138i
\(622\) 0 0
\(623\) −4179.00 + 21714.7i −0.268745 + 1.39644i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −5445.00 + 9431.02i −0.346814 + 0.600699i
\(628\) 0 0
\(629\) 13986.0 0.886579
\(630\) 0 0
\(631\) 9580.00 0.604396 0.302198 0.953245i \(-0.402280\pi\)
0.302198 + 0.953245i \(0.402280\pi\)
\(632\) 0 0
\(633\) −3625.00 + 6278.68i −0.227616 + 0.394242i
\(634\) 0 0
\(635\) 2007.50 + 3477.09i 0.125457 + 0.217298i
\(636\) 0 0
\(637\) 2891.00 + 20029.4i 0.179820 + 1.24583i
\(638\) 0 0
\(639\) −552.000 956.092i −0.0341734 0.0591900i
\(640\) 0 0
\(641\) −5389.50 + 9334.89i −0.332094 + 0.575204i −0.982922 0.184021i \(-0.941089\pi\)
0.650828 + 0.759225i \(0.274422\pi\)
\(642\) 0 0
\(643\) −8882.00 −0.544746 −0.272373 0.962192i \(-0.587809\pi\)
−0.272373 + 0.962192i \(0.587809\pi\)
\(644\) 0 0
\(645\) 2860.00 0.174593
\(646\) 0 0
\(647\) −5509.50 + 9542.73i −0.334777 + 0.579851i −0.983442 0.181223i \(-0.941994\pi\)
0.648665 + 0.761074i \(0.275328\pi\)
\(648\) 0 0
\(649\) −8100.00 14029.6i −0.489912 0.848552i
\(650\) 0 0
\(651\) 616.000 3200.83i 0.0370859 0.192704i
\(652\) 0 0
\(653\) −11161.5 19332.3i −0.668887 1.15855i −0.978216 0.207591i \(-0.933438\pi\)
0.309329 0.950955i \(-0.399896\pi\)
\(654\) 0 0
\(655\) 5047.50 8742.53i 0.301103 0.521525i
\(656\) 0 0
\(657\) −15364.0 −0.912339
\(658\) 0 0
\(659\) 11856.0 0.700826 0.350413 0.936595i \(-0.386041\pi\)
0.350413 + 0.936595i \(0.386041\pi\)
\(660\) 0 0
\(661\) 16622.0 28790.1i 0.978095 1.69411i 0.308777 0.951134i \(-0.400080\pi\)
0.669318 0.742976i \(-0.266586\pi\)
\(662\) 0 0
\(663\) 3186.00 + 5518.31i 0.186627 + 0.323248i
\(664\) 0 0
\(665\) −10587.5 + 3667.62i −0.617392 + 0.213871i
\(666\) 0 0
\(667\) −5589.00 9680.43i −0.324448 0.561961i
\(668\) 0 0
\(669\) −4960.00 + 8590.97i −0.286644 + 0.496482i
\(670\) 0 0
\(671\) 17640.0 1.01488
\(672\) 0 0
\(673\) −12322.0 −0.705763 −0.352881 0.935668i \(-0.614798\pi\)
−0.352881 + 0.935668i \(0.614798\pi\)
\(674\) 0 0
\(675\) 1250.00 2165.06i 0.0712778 0.123457i
\(676\) 0 0
\(677\) 6298.50 + 10909.3i 0.357564 + 0.619320i 0.987553 0.157285i \(-0.0502740\pi\)
−0.629989 + 0.776604i \(0.716941\pi\)
\(678\) 0 0
\(679\) 12628.0 + 10936.2i 0.713723 + 0.618103i
\(680\) 0 0
\(681\) −1500.00 2598.08i −0.0844055 0.146195i
\(682\) 0 0
\(683\) −4170.00 + 7222.65i −0.233617 + 0.404637i −0.958870 0.283846i \(-0.908390\pi\)
0.725253 + 0.688483i \(0.241723\pi\)
\(684\) 0 0
\(685\) 300.000 0.0167334
\(686\) 0 0
\(687\) 12184.0 0.676636
\(688\) 0 0
\(689\) −17611.5 + 30504.0i −0.973795 + 1.68666i
\(690\) 0 0
\(691\) −10100.0 17493.7i −0.556038 0.963086i −0.997822 0.0659643i \(-0.978988\pi\)
0.441784 0.897121i \(-0.354346\pi\)
\(692\) 0 0
\(693\) −14490.0 12548.7i −0.794271 0.687859i
\(694\) 0 0
\(695\) −4270.00 7395.86i −0.233051 0.403656i
\(696\) 0 0
\(697\) 5265.00 9119.25i 0.286121 0.495576i
\(698\) 0 0
\(699\) 276.000 0.0149346
\(700\) 0 0
\(701\) 474.000 0.0255388 0.0127694 0.999918i \(-0.495935\pi\)
0.0127694 + 0.999918i \(0.495935\pi\)
\(702\) 0 0
\(703\) 15669.5 27140.4i 0.840663 1.45607i
\(704\) 0 0
\(705\) 225.000 + 389.711i 0.0120198 + 0.0208190i
\(706\) 0 0
\(707\) −11970.0 + 4146.53i −0.636744 + 0.220575i
\(708\) 0 0
\(709\) 12563.0 + 21759.8i 0.665463 + 1.15262i 0.979160 + 0.203093i \(0.0650993\pi\)
−0.313696 + 0.949523i \(0.601567\pi\)
\(710\) 0 0
\(711\) −8993.00 + 15576.3i −0.474351 + 0.821601i
\(712\) 0 0
\(713\) −6072.00 −0.318932
\(714\) 0 0
\(715\) 13275.0 0.694345
\(716\) 0 0
\(717\) −5502.00 + 9529.74i −0.286577 + 0.496367i
\(718\) 0 0
\(719\) −3648.00 6318.52i −0.189218 0.327734i 0.755772 0.654835i \(-0.227262\pi\)
−0.944990 + 0.327100i \(0.893928\pi\)
\(720\) 0 0
\(721\) 5306.00 27570.8i 0.274072 1.42412i
\(722\) 0 0
\(723\) −3551.00 6150.51i −0.182660 0.316376i
\(724\) 0 0
\(725\) 2025.00 3507.40i 0.103733 0.179671i
\(726\) 0 0
\(727\) 15421.0 0.786703 0.393352 0.919388i \(-0.371316\pi\)
0.393352 + 0.919388i \(0.371316\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) 7722.00 13374.9i 0.390709 0.676728i
\(732\) 0 0
\(733\) 14583.5 + 25259.4i 0.734862 + 1.27282i 0.954784 + 0.297301i \(0.0960864\pi\)
−0.219922 + 0.975517i \(0.570580\pi\)
\(734\) 0 0
\(735\) 490.000 + 3394.82i 0.0245904 + 0.170367i
\(736\) 0 0
\(737\) −6300.00 10911.9i −0.314876 0.545381i
\(738\) 0 0
\(739\) −6690.50 + 11588.3i −0.333037 + 0.576836i −0.983106 0.183039i \(-0.941407\pi\)
0.650069 + 0.759875i \(0.274740\pi\)
\(740\) 0 0
\(741\) 14278.0 0.707848
\(742\) 0 0
\(743\) −5487.00 −0.270927 −0.135463 0.990782i \(-0.543252\pi\)
−0.135463 + 0.990782i \(0.543252\pi\)
\(744\) 0 0
\(745\) 2715.00 4702.52i 0.133517 0.231258i
\(746\) 0 0
\(747\) −8832.00 15297.5i −0.432592 0.749271i
\(748\) 0 0
\(749\) 2562.00 13312.5i 0.124985 0.649439i
\(750\) 0 0
\(751\) 3319.00 + 5748.68i 0.161268 + 0.279324i 0.935324 0.353793i \(-0.115108\pi\)
−0.774056 + 0.633117i \(0.781775\pi\)
\(752\) 0 0
\(753\) 7065.00 12236.9i 0.341916 0.592216i
\(754\) 0 0
\(755\) 14330.0 0.690758
\(756\) 0 0
\(757\) 14846.0 0.712797 0.356398 0.934334i \(-0.384005\pi\)
0.356398 + 0.934334i \(0.384005\pi\)
\(758\) 0 0
\(759\) 3105.00 5378.02i 0.148491 0.257193i
\(760\) 0 0
\(761\) 1825.50 + 3161.86i 0.0869571 + 0.150614i 0.906223 0.422799i \(-0.138952\pi\)
−0.819266 + 0.573413i \(0.805619\pi\)
\(762\) 0 0
\(763\) 28000.0 9699.48i 1.32853 0.460216i
\(764\) 0 0
\(765\) −3105.00 5378.02i −0.146747 0.254173i
\(766\) 0 0
\(767\) −10620.0 + 18394.4i −0.499956 + 0.865949i
\(768\) 0 0
\(769\) 29855.0 1.40000 0.699999 0.714144i \(-0.253184\pi\)
0.699999 + 0.714144i \(0.253184\pi\)
\(770\) 0 0
\(771\) −8160.00 −0.381161
\(772\) 0 0
\(773\) 3259.50 5645.62i 0.151664 0.262689i −0.780175 0.625561i \(-0.784870\pi\)
0.931839 + 0.362871i \(0.118204\pi\)
\(774\) 0 0
\(775\) −1100.00 1905.26i −0.0509847 0.0883081i
\(776\) 0 0
\(777\) −7252.00 6280.42i −0.334831 0.289973i
\(778\) 0 0
\(779\) −11797.5 20433.9i −0.542605 0.939819i
\(780\) 0 0
\(781\) 1080.00 1870.61i 0.0494820 0.0857053i
\(782\) 0 0
\(783\) 16200.0 0.739388
\(784\) 0 0
\(785\) −1145.00 −0.0520596