Properties

Label 560.4.g.f.449.7
Level $560$
Weight $4$
Character 560.449
Analytic conductor $33.041$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(449,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.449");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.7
Root \(-2.67516i\) of defining polynomial
Character \(\chi\) \(=\) 560.449
Dual form 560.4.g.f.449.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49396i q^{3} +(6.35505 + 9.19855i) q^{5} +7.00000i q^{7} +20.7802 q^{9} +57.5880 q^{11} -45.5159i q^{13} +(-22.9408 + 15.8492i) q^{15} -92.0051i q^{17} +125.177 q^{19} -17.4577 q^{21} -158.496i q^{23} +(-44.2268 + 116.914i) q^{25} +119.162i q^{27} +40.1708 q^{29} -49.5590 q^{31} +143.622i q^{33} +(-64.3899 + 44.4853i) q^{35} -231.307i q^{37} +113.515 q^{39} +169.556 q^{41} +147.428i q^{43} +(132.059 + 191.147i) q^{45} -67.0327i q^{47} -49.0000 q^{49} +229.457 q^{51} +268.647i q^{53} +(365.974 + 529.726i) q^{55} +312.187i q^{57} -240.843 q^{59} +90.4579 q^{61} +145.461i q^{63} +(418.681 - 289.256i) q^{65} -406.498i q^{67} +395.283 q^{69} -330.782 q^{71} +546.255i q^{73} +(-291.580 - 110.300i) q^{75} +403.116i q^{77} -25.3087 q^{79} +263.879 q^{81} -376.255i q^{83} +(846.314 - 584.697i) q^{85} +100.184i q^{87} -1026.44 q^{89} +318.612 q^{91} -123.598i q^{93} +(795.506 + 1151.45i) q^{95} +942.660i q^{97} +1196.69 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 6 q^{5} - 46 q^{9} - 84 q^{11} - 8 q^{15} - 72 q^{19} + 140 q^{21} - 362 q^{25} + 88 q^{29} - 120 q^{31} + 28 q^{35} - 212 q^{39} - 852 q^{41} - 510 q^{45} - 490 q^{49} - 1276 q^{51} + 1136 q^{55}+ \cdots + 5304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.49396i 0.479963i 0.970777 + 0.239982i \(0.0771414\pi\)
−0.970777 + 0.239982i \(0.922859\pi\)
\(4\) 0 0
\(5\) 6.35505 + 9.19855i 0.568413 + 0.822744i
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) 20.7802 0.769635
\(10\) 0 0
\(11\) 57.5880 1.57849 0.789247 0.614076i \(-0.210471\pi\)
0.789247 + 0.614076i \(0.210471\pi\)
\(12\) 0 0
\(13\) 45.5159i 0.971066i −0.874218 0.485533i \(-0.838626\pi\)
0.874218 0.485533i \(-0.161374\pi\)
\(14\) 0 0
\(15\) −22.9408 + 15.8492i −0.394887 + 0.272817i
\(16\) 0 0
\(17\) 92.0051i 1.31262i −0.754492 0.656309i \(-0.772117\pi\)
0.754492 0.656309i \(-0.227883\pi\)
\(18\) 0 0
\(19\) 125.177 1.51145 0.755726 0.654888i \(-0.227284\pi\)
0.755726 + 0.654888i \(0.227284\pi\)
\(20\) 0 0
\(21\) −17.4577 −0.181409
\(22\) 0 0
\(23\) 158.496i 1.43690i −0.695578 0.718451i \(-0.744851\pi\)
0.695578 0.718451i \(-0.255149\pi\)
\(24\) 0 0
\(25\) −44.2268 + 116.914i −0.353814 + 0.935316i
\(26\) 0 0
\(27\) 119.162i 0.849360i
\(28\) 0 0
\(29\) 40.1708 0.257225 0.128613 0.991695i \(-0.458948\pi\)
0.128613 + 0.991695i \(0.458948\pi\)
\(30\) 0 0
\(31\) −49.5590 −0.287131 −0.143566 0.989641i \(-0.545857\pi\)
−0.143566 + 0.989641i \(0.545857\pi\)
\(32\) 0 0
\(33\) 143.622i 0.757619i
\(34\) 0 0
\(35\) −64.3899 + 44.4853i −0.310968 + 0.214840i
\(36\) 0 0
\(37\) 231.307i 1.02775i −0.857866 0.513874i \(-0.828210\pi\)
0.857866 0.513874i \(-0.171790\pi\)
\(38\) 0 0
\(39\) 113.515 0.466076
\(40\) 0 0
\(41\) 169.556 0.645859 0.322929 0.946423i \(-0.395332\pi\)
0.322929 + 0.946423i \(0.395332\pi\)
\(42\) 0 0
\(43\) 147.428i 0.522849i 0.965224 + 0.261425i \(0.0841923\pi\)
−0.965224 + 0.261425i \(0.915808\pi\)
\(44\) 0 0
\(45\) 132.059 + 191.147i 0.437470 + 0.633213i
\(46\) 0 0
\(47\) 67.0327i 0.208037i −0.994575 0.104018i \(-0.966830\pi\)
0.994575 0.104018i \(-0.0331701\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 229.457 0.630008
\(52\) 0 0
\(53\) 268.647i 0.696254i 0.937447 + 0.348127i \(0.113182\pi\)
−0.937447 + 0.348127i \(0.886818\pi\)
\(54\) 0 0
\(55\) 365.974 + 529.726i 0.897236 + 1.29870i
\(56\) 0 0
\(57\) 312.187i 0.725441i
\(58\) 0 0
\(59\) −240.843 −0.531442 −0.265721 0.964050i \(-0.585610\pi\)
−0.265721 + 0.964050i \(0.585610\pi\)
\(60\) 0 0
\(61\) 90.4579 0.189868 0.0949340 0.995484i \(-0.469736\pi\)
0.0949340 + 0.995484i \(0.469736\pi\)
\(62\) 0 0
\(63\) 145.461i 0.290895i
\(64\) 0 0
\(65\) 418.681 289.256i 0.798938 0.551966i
\(66\) 0 0
\(67\) 406.498i 0.741218i −0.928789 0.370609i \(-0.879149\pi\)
0.928789 0.370609i \(-0.120851\pi\)
\(68\) 0 0
\(69\) 395.283 0.689660
\(70\) 0 0
\(71\) −330.782 −0.552910 −0.276455 0.961027i \(-0.589160\pi\)
−0.276455 + 0.961027i \(0.589160\pi\)
\(72\) 0 0
\(73\) 546.255i 0.875812i 0.899021 + 0.437906i \(0.144280\pi\)
−0.899021 + 0.437906i \(0.855720\pi\)
\(74\) 0 0
\(75\) −291.580 110.300i −0.448917 0.169818i
\(76\) 0 0
\(77\) 403.116i 0.596615i
\(78\) 0 0
\(79\) −25.3087 −0.0360436 −0.0180218 0.999838i \(-0.505737\pi\)
−0.0180218 + 0.999838i \(0.505737\pi\)
\(80\) 0 0
\(81\) 263.879 0.361974
\(82\) 0 0
\(83\) 376.255i 0.497582i −0.968557 0.248791i \(-0.919967\pi\)
0.968557 0.248791i \(-0.0800333\pi\)
\(84\) 0 0
\(85\) 846.314 584.697i 1.07995 0.746109i
\(86\) 0 0
\(87\) 100.184i 0.123459i
\(88\) 0 0
\(89\) −1026.44 −1.22250 −0.611248 0.791439i \(-0.709332\pi\)
−0.611248 + 0.791439i \(0.709332\pi\)
\(90\) 0 0
\(91\) 318.612 0.367028
\(92\) 0 0
\(93\) 123.598i 0.137812i
\(94\) 0 0
\(95\) 795.506 + 1151.45i 0.859128 + 1.24354i
\(96\) 0 0
\(97\) 942.660i 0.986728i 0.869823 + 0.493364i \(0.164233\pi\)
−0.869823 + 0.493364i \(0.835767\pi\)
\(98\) 0 0
\(99\) 1196.69 1.21487
\(100\) 0 0
\(101\) −604.617 −0.595659 −0.297830 0.954619i \(-0.596263\pi\)
−0.297830 + 0.954619i \(0.596263\pi\)
\(102\) 0 0
\(103\) 300.967i 0.287914i 0.989584 + 0.143957i \(0.0459828\pi\)
−0.989584 + 0.143957i \(0.954017\pi\)
\(104\) 0 0
\(105\) −110.945 160.586i −0.103115 0.149253i
\(106\) 0 0
\(107\) 1511.66i 1.36577i 0.730525 + 0.682886i \(0.239276\pi\)
−0.730525 + 0.682886i \(0.760724\pi\)
\(108\) 0 0
\(109\) 1767.09 1.55281 0.776406 0.630233i \(-0.217041\pi\)
0.776406 + 0.630233i \(0.217041\pi\)
\(110\) 0 0
\(111\) 576.871 0.493281
\(112\) 0 0
\(113\) 1045.27i 0.870182i 0.900387 + 0.435091i \(0.143284\pi\)
−0.900387 + 0.435091i \(0.856716\pi\)
\(114\) 0 0
\(115\) 1457.94 1007.25i 1.18220 0.816753i
\(116\) 0 0
\(117\) 945.828i 0.747366i
\(118\) 0 0
\(119\) 644.036 0.496123
\(120\) 0 0
\(121\) 1985.38 1.49164
\(122\) 0 0
\(123\) 422.866i 0.309988i
\(124\) 0 0
\(125\) −1356.51 + 336.174i −0.970638 + 0.240547i
\(126\) 0 0
\(127\) 260.727i 0.182171i 0.995843 + 0.0910857i \(0.0290337\pi\)
−0.995843 + 0.0910857i \(0.970966\pi\)
\(128\) 0 0
\(129\) −367.679 −0.250948
\(130\) 0 0
\(131\) 723.522 0.482553 0.241276 0.970456i \(-0.422434\pi\)
0.241276 + 0.970456i \(0.422434\pi\)
\(132\) 0 0
\(133\) 876.240i 0.571275i
\(134\) 0 0
\(135\) −1096.12 + 757.279i −0.698805 + 0.482787i
\(136\) 0 0
\(137\) 773.693i 0.482490i −0.970464 0.241245i \(-0.922444\pi\)
0.970464 0.241245i \(-0.0775557\pi\)
\(138\) 0 0
\(139\) −2952.97 −1.80192 −0.900961 0.433899i \(-0.857137\pi\)
−0.900961 + 0.433899i \(0.857137\pi\)
\(140\) 0 0
\(141\) 167.177 0.0998499
\(142\) 0 0
\(143\) 2621.17i 1.53282i
\(144\) 0 0
\(145\) 255.287 + 369.513i 0.146210 + 0.211630i
\(146\) 0 0
\(147\) 122.204i 0.0685662i
\(148\) 0 0
\(149\) −2514.00 −1.38225 −0.691124 0.722736i \(-0.742884\pi\)
−0.691124 + 0.722736i \(0.742884\pi\)
\(150\) 0 0
\(151\) −101.052 −0.0544605 −0.0272302 0.999629i \(-0.508669\pi\)
−0.0272302 + 0.999629i \(0.508669\pi\)
\(152\) 0 0
\(153\) 1911.88i 1.01024i
\(154\) 0 0
\(155\) −314.950 455.872i −0.163209 0.236235i
\(156\) 0 0
\(157\) 2338.35i 1.18867i −0.804219 0.594333i \(-0.797416\pi\)
0.804219 0.594333i \(-0.202584\pi\)
\(158\) 0 0
\(159\) −669.995 −0.334176
\(160\) 0 0
\(161\) 1109.47 0.543098
\(162\) 0 0
\(163\) 1325.20i 0.636798i 0.947957 + 0.318399i \(0.103145\pi\)
−0.947957 + 0.318399i \(0.896855\pi\)
\(164\) 0 0
\(165\) −1321.12 + 912.726i −0.623326 + 0.430640i
\(166\) 0 0
\(167\) 2086.20i 0.966675i 0.875434 + 0.483338i \(0.160576\pi\)
−0.875434 + 0.483338i \(0.839424\pi\)
\(168\) 0 0
\(169\) 125.299 0.0570317
\(170\) 0 0
\(171\) 2601.20 1.16327
\(172\) 0 0
\(173\) 1918.19i 0.842990i 0.906831 + 0.421495i \(0.138495\pi\)
−0.906831 + 0.421495i \(0.861505\pi\)
\(174\) 0 0
\(175\) −818.401 309.587i −0.353516 0.133729i
\(176\) 0 0
\(177\) 600.652i 0.255072i
\(178\) 0 0
\(179\) 629.046 0.262665 0.131333 0.991338i \(-0.458074\pi\)
0.131333 + 0.991338i \(0.458074\pi\)
\(180\) 0 0
\(181\) −2800.85 −1.15020 −0.575099 0.818084i \(-0.695036\pi\)
−0.575099 + 0.818084i \(0.695036\pi\)
\(182\) 0 0
\(183\) 225.599i 0.0911296i
\(184\) 0 0
\(185\) 2127.69 1469.97i 0.845573 0.584185i
\(186\) 0 0
\(187\) 5298.39i 2.07196i
\(188\) 0 0
\(189\) −834.133 −0.321028
\(190\) 0 0
\(191\) −740.255 −0.280434 −0.140217 0.990121i \(-0.544780\pi\)
−0.140217 + 0.990121i \(0.544780\pi\)
\(192\) 0 0
\(193\) 4082.57i 1.52264i 0.648375 + 0.761321i \(0.275449\pi\)
−0.648375 + 0.761321i \(0.724551\pi\)
\(194\) 0 0
\(195\) 721.393 + 1044.17i 0.264923 + 0.383461i
\(196\) 0 0
\(197\) 3414.89i 1.23503i −0.786559 0.617515i \(-0.788140\pi\)
0.786559 0.617515i \(-0.211860\pi\)
\(198\) 0 0
\(199\) −3392.44 −1.20846 −0.604231 0.796809i \(-0.706520\pi\)
−0.604231 + 0.796809i \(0.706520\pi\)
\(200\) 0 0
\(201\) 1013.79 0.355757
\(202\) 0 0
\(203\) 281.196i 0.0972220i
\(204\) 0 0
\(205\) 1077.54 + 1559.67i 0.367114 + 0.531376i
\(206\) 0 0
\(207\) 3293.58i 1.10589i
\(208\) 0 0
\(209\) 7208.70 2.38582
\(210\) 0 0
\(211\) −3398.04 −1.10867 −0.554337 0.832292i \(-0.687028\pi\)
−0.554337 + 0.832292i \(0.687028\pi\)
\(212\) 0 0
\(213\) 824.958i 0.265376i
\(214\) 0 0
\(215\) −1356.12 + 936.910i −0.430171 + 0.297194i
\(216\) 0 0
\(217\) 346.913i 0.108525i
\(218\) 0 0
\(219\) −1362.34 −0.420358
\(220\) 0 0
\(221\) −4187.70 −1.27464
\(222\) 0 0
\(223\) 182.611i 0.0548365i −0.999624 0.0274183i \(-0.991271\pi\)
0.999624 0.0274183i \(-0.00872860\pi\)
\(224\) 0 0
\(225\) −919.040 + 2429.50i −0.272308 + 0.719852i
\(226\) 0 0
\(227\) 3152.33i 0.921707i −0.887476 0.460854i \(-0.847543\pi\)
0.887476 0.460854i \(-0.152457\pi\)
\(228\) 0 0
\(229\) −6012.35 −1.73497 −0.867483 0.497466i \(-0.834264\pi\)
−0.867483 + 0.497466i \(0.834264\pi\)
\(230\) 0 0
\(231\) −1005.36 −0.286353
\(232\) 0 0
\(233\) 940.660i 0.264484i −0.991217 0.132242i \(-0.957782\pi\)
0.991217 0.132242i \(-0.0422175\pi\)
\(234\) 0 0
\(235\) 616.604 425.996i 0.171161 0.118251i
\(236\) 0 0
\(237\) 63.1188i 0.0172996i
\(238\) 0 0
\(239\) 5158.82 1.39622 0.698109 0.715991i \(-0.254025\pi\)
0.698109 + 0.715991i \(0.254025\pi\)
\(240\) 0 0
\(241\) −463.836 −0.123976 −0.0619882 0.998077i \(-0.519744\pi\)
−0.0619882 + 0.998077i \(0.519744\pi\)
\(242\) 0 0
\(243\) 3875.47i 1.02309i
\(244\) 0 0
\(245\) −311.397 450.729i −0.0812018 0.117535i
\(246\) 0 0
\(247\) 5697.55i 1.46772i
\(248\) 0 0
\(249\) 938.365 0.238821
\(250\) 0 0
\(251\) −2290.25 −0.575934 −0.287967 0.957640i \(-0.592979\pi\)
−0.287967 + 0.957640i \(0.592979\pi\)
\(252\) 0 0
\(253\) 9127.48i 2.26814i
\(254\) 0 0
\(255\) 1458.21 + 2110.67i 0.358105 + 0.518335i
\(256\) 0 0
\(257\) 802.202i 0.194708i 0.995250 + 0.0973541i \(0.0310379\pi\)
−0.995250 + 0.0973541i \(0.968962\pi\)
\(258\) 0 0
\(259\) 1619.15 0.388452
\(260\) 0 0
\(261\) 834.756 0.197970
\(262\) 0 0
\(263\) 286.978i 0.0672845i 0.999434 + 0.0336423i \(0.0107107\pi\)
−0.999434 + 0.0336423i \(0.989289\pi\)
\(264\) 0 0
\(265\) −2471.16 + 1707.26i −0.572839 + 0.395760i
\(266\) 0 0
\(267\) 2559.90i 0.586753i
\(268\) 0 0
\(269\) −3561.22 −0.807180 −0.403590 0.914940i \(-0.632238\pi\)
−0.403590 + 0.914940i \(0.632238\pi\)
\(270\) 0 0
\(271\) −1928.81 −0.432349 −0.216175 0.976355i \(-0.569358\pi\)
−0.216175 + 0.976355i \(0.569358\pi\)
\(272\) 0 0
\(273\) 794.605i 0.176160i
\(274\) 0 0
\(275\) −2546.93 + 6732.87i −0.558494 + 1.47639i
\(276\) 0 0
\(277\) 6588.69i 1.42916i −0.699556 0.714578i \(-0.746619\pi\)
0.699556 0.714578i \(-0.253381\pi\)
\(278\) 0 0
\(279\) −1029.84 −0.220986
\(280\) 0 0
\(281\) 815.552 0.173138 0.0865689 0.996246i \(-0.472410\pi\)
0.0865689 + 0.996246i \(0.472410\pi\)
\(282\) 0 0
\(283\) 6513.49i 1.36815i 0.729411 + 0.684076i \(0.239794\pi\)
−0.729411 + 0.684076i \(0.760206\pi\)
\(284\) 0 0
\(285\) −2871.67 + 1983.96i −0.596852 + 0.412350i
\(286\) 0 0
\(287\) 1186.89i 0.244112i
\(288\) 0 0
\(289\) −3551.94 −0.722967
\(290\) 0 0
\(291\) −2350.96 −0.473593
\(292\) 0 0
\(293\) 435.520i 0.0868373i 0.999057 + 0.0434186i \(0.0138249\pi\)
−0.999057 + 0.0434186i \(0.986175\pi\)
\(294\) 0 0
\(295\) −1530.57 2215.40i −0.302078 0.437240i
\(296\) 0 0
\(297\) 6862.29i 1.34071i
\(298\) 0 0
\(299\) −7214.10 −1.39533
\(300\) 0 0
\(301\) −1031.99 −0.197618
\(302\) 0 0
\(303\) 1507.89i 0.285895i
\(304\) 0 0
\(305\) 574.864 + 832.082i 0.107923 + 0.156213i
\(306\) 0 0
\(307\) 4915.99i 0.913910i −0.889490 0.456955i \(-0.848940\pi\)
0.889490 0.456955i \(-0.151060\pi\)
\(308\) 0 0
\(309\) −750.601 −0.138188
\(310\) 0 0
\(311\) 1831.11 0.333868 0.166934 0.985968i \(-0.446613\pi\)
0.166934 + 0.985968i \(0.446613\pi\)
\(312\) 0 0
\(313\) 2442.96i 0.441163i −0.975369 0.220582i \(-0.929204\pi\)
0.975369 0.220582i \(-0.0707955\pi\)
\(314\) 0 0
\(315\) −1338.03 + 924.412i −0.239332 + 0.165348i
\(316\) 0 0
\(317\) 1666.19i 0.295214i −0.989046 0.147607i \(-0.952843\pi\)
0.989046 0.147607i \(-0.0471570\pi\)
\(318\) 0 0
\(319\) 2313.36 0.406029
\(320\) 0 0
\(321\) −3770.02 −0.655521
\(322\) 0 0
\(323\) 11516.9i 1.98396i
\(324\) 0 0
\(325\) 5321.47 + 2013.02i 0.908253 + 0.343577i
\(326\) 0 0
\(327\) 4407.05i 0.745292i
\(328\) 0 0
\(329\) 469.229 0.0786305
\(330\) 0 0
\(331\) 5466.38 0.907732 0.453866 0.891070i \(-0.350044\pi\)
0.453866 + 0.891070i \(0.350044\pi\)
\(332\) 0 0
\(333\) 4806.60i 0.790991i
\(334\) 0 0
\(335\) 3739.19 2583.31i 0.609833 0.421318i
\(336\) 0 0
\(337\) 10650.5i 1.72157i −0.508970 0.860784i \(-0.669973\pi\)
0.508970 0.860784i \(-0.330027\pi\)
\(338\) 0 0
\(339\) −2606.86 −0.417655
\(340\) 0 0
\(341\) −2854.01 −0.453235
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 2512.04 + 3636.04i 0.392011 + 0.567413i
\(346\) 0 0
\(347\) 4019.13i 0.621782i 0.950446 + 0.310891i \(0.100627\pi\)
−0.950446 + 0.310891i \(0.899373\pi\)
\(348\) 0 0
\(349\) −10544.9 −1.61735 −0.808674 0.588256i \(-0.799815\pi\)
−0.808674 + 0.588256i \(0.799815\pi\)
\(350\) 0 0
\(351\) 5423.76 0.824784
\(352\) 0 0
\(353\) 2959.98i 0.446300i 0.974784 + 0.223150i \(0.0716340\pi\)
−0.974784 + 0.223150i \(0.928366\pi\)
\(354\) 0 0
\(355\) −2102.14 3042.72i −0.314281 0.454903i
\(356\) 0 0
\(357\) 1606.20i 0.238121i
\(358\) 0 0
\(359\) 2170.17 0.319045 0.159523 0.987194i \(-0.449005\pi\)
0.159523 + 0.987194i \(0.449005\pi\)
\(360\) 0 0
\(361\) 8810.30 1.28449
\(362\) 0 0
\(363\) 4951.46i 0.715934i
\(364\) 0 0
\(365\) −5024.76 + 3471.48i −0.720569 + 0.497823i
\(366\) 0 0
\(367\) 1252.20i 0.178105i −0.996027 0.0890523i \(-0.971616\pi\)
0.996027 0.0890523i \(-0.0283838\pi\)
\(368\) 0 0
\(369\) 3523.40 0.497076
\(370\) 0 0
\(371\) −1880.53 −0.263159
\(372\) 0 0
\(373\) 4646.02i 0.644938i 0.946580 + 0.322469i \(0.104513\pi\)
−0.946580 + 0.322469i \(0.895487\pi\)
\(374\) 0 0
\(375\) −838.406 3383.08i −0.115454 0.465870i
\(376\) 0 0
\(377\) 1828.41i 0.249783i
\(378\) 0 0
\(379\) 1434.84 0.194466 0.0972331 0.995262i \(-0.469001\pi\)
0.0972331 + 0.995262i \(0.469001\pi\)
\(380\) 0 0
\(381\) −650.242 −0.0874355
\(382\) 0 0
\(383\) 13216.7i 1.76330i 0.471905 + 0.881649i \(0.343566\pi\)
−0.471905 + 0.881649i \(0.656434\pi\)
\(384\) 0 0
\(385\) −3708.08 + 2561.82i −0.490861 + 0.339123i
\(386\) 0 0
\(387\) 3063.57i 0.402403i
\(388\) 0 0
\(389\) 7755.01 1.01078 0.505391 0.862890i \(-0.331348\pi\)
0.505391 + 0.862890i \(0.331348\pi\)
\(390\) 0 0
\(391\) −14582.5 −1.88610
\(392\) 0 0
\(393\) 1804.44i 0.231607i
\(394\) 0 0
\(395\) −160.838 232.803i −0.0204876 0.0296547i
\(396\) 0 0
\(397\) 3560.83i 0.450158i 0.974341 + 0.225079i \(0.0722640\pi\)
−0.974341 + 0.225079i \(0.927736\pi\)
\(398\) 0 0
\(399\) −2185.31 −0.274191
\(400\) 0 0
\(401\) −5430.61 −0.676288 −0.338144 0.941094i \(-0.609799\pi\)
−0.338144 + 0.941094i \(0.609799\pi\)
\(402\) 0 0
\(403\) 2255.73i 0.278823i
\(404\) 0 0
\(405\) 1676.96 + 2427.31i 0.205751 + 0.297812i
\(406\) 0 0
\(407\) 13320.5i 1.62229i
\(408\) 0 0
\(409\) 9698.79 1.17255 0.586277 0.810111i \(-0.300593\pi\)
0.586277 + 0.810111i \(0.300593\pi\)
\(410\) 0 0
\(411\) 1929.56 0.231577
\(412\) 0 0
\(413\) 1685.90i 0.200866i
\(414\) 0 0
\(415\) 3461.00 2391.12i 0.409383 0.282832i
\(416\) 0 0
\(417\) 7364.58i 0.864856i
\(418\) 0 0
\(419\) 13830.9 1.61261 0.806307 0.591498i \(-0.201463\pi\)
0.806307 + 0.591498i \(0.201463\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) 0 0
\(423\) 1392.95i 0.160112i
\(424\) 0 0
\(425\) 10756.7 + 4069.09i 1.22771 + 0.464423i
\(426\) 0 0
\(427\) 633.205i 0.0717634i
\(428\) 0 0
\(429\) 6537.10 0.735698
\(430\) 0 0
\(431\) −8174.07 −0.913530 −0.456765 0.889588i \(-0.650992\pi\)
−0.456765 + 0.889588i \(0.650992\pi\)
\(432\) 0 0
\(433\) 14222.8i 1.57853i 0.614051 + 0.789267i \(0.289539\pi\)
−0.614051 + 0.789267i \(0.710461\pi\)
\(434\) 0 0
\(435\) −921.552 + 636.677i −0.101575 + 0.0701755i
\(436\) 0 0
\(437\) 19840.1i 2.17181i
\(438\) 0 0
\(439\) 5537.38 0.602016 0.301008 0.953622i \(-0.402677\pi\)
0.301008 + 0.953622i \(0.402677\pi\)
\(440\) 0 0
\(441\) −1018.23 −0.109948
\(442\) 0 0
\(443\) 3974.09i 0.426218i −0.977028 0.213109i \(-0.931641\pi\)
0.977028 0.213109i \(-0.0683589\pi\)
\(444\) 0 0
\(445\) −6523.06 9441.74i −0.694882 1.00580i
\(446\) 0 0
\(447\) 6269.82i 0.663428i
\(448\) 0 0
\(449\) 15243.1 1.60216 0.801078 0.598559i \(-0.204260\pi\)
0.801078 + 0.598559i \(0.204260\pi\)
\(450\) 0 0
\(451\) 9764.40 1.01948
\(452\) 0 0
\(453\) 252.021i 0.0261390i
\(454\) 0 0
\(455\) 2024.79 + 2930.77i 0.208623 + 0.301970i
\(456\) 0 0
\(457\) 10768.9i 1.10229i 0.834410 + 0.551145i \(0.185809\pi\)
−0.834410 + 0.551145i \(0.814191\pi\)
\(458\) 0 0
\(459\) 10963.5 1.11489
\(460\) 0 0
\(461\) −332.605 −0.0336029 −0.0168015 0.999859i \(-0.505348\pi\)
−0.0168015 + 0.999859i \(0.505348\pi\)
\(462\) 0 0
\(463\) 8205.35i 0.823618i 0.911270 + 0.411809i \(0.135103\pi\)
−0.911270 + 0.411809i \(0.864897\pi\)
\(464\) 0 0
\(465\) 1136.93 785.473i 0.113384 0.0783343i
\(466\) 0 0
\(467\) 167.628i 0.0166100i −0.999966 0.00830501i \(-0.997356\pi\)
0.999966 0.00830501i \(-0.00264360\pi\)
\(468\) 0 0
\(469\) 2845.49 0.280154
\(470\) 0 0
\(471\) 5831.75 0.570515
\(472\) 0 0
\(473\) 8490.07i 0.825315i
\(474\) 0 0
\(475\) −5536.18 + 14635.0i −0.534773 + 1.41368i
\(476\) 0 0
\(477\) 5582.52i 0.535862i
\(478\) 0 0
\(479\) 6628.58 0.632292 0.316146 0.948711i \(-0.397611\pi\)
0.316146 + 0.948711i \(0.397611\pi\)
\(480\) 0 0
\(481\) −10528.2 −0.998010
\(482\) 0 0
\(483\) 2766.98i 0.260667i
\(484\) 0 0
\(485\) −8671.11 + 5990.65i −0.811824 + 0.560868i
\(486\) 0 0
\(487\) 20641.6i 1.92065i −0.278875 0.960327i \(-0.589961\pi\)
0.278875 0.960327i \(-0.410039\pi\)
\(488\) 0 0
\(489\) −3305.01 −0.305640
\(490\) 0 0
\(491\) 16710.8 1.53594 0.767972 0.640484i \(-0.221266\pi\)
0.767972 + 0.640484i \(0.221266\pi\)
\(492\) 0 0
\(493\) 3695.92i 0.337639i
\(494\) 0 0
\(495\) 7605.01 + 11007.8i 0.690545 + 0.999523i
\(496\) 0 0
\(497\) 2315.47i 0.208980i
\(498\) 0 0
\(499\) −13728.7 −1.23162 −0.615812 0.787893i \(-0.711172\pi\)
−0.615812 + 0.787893i \(0.711172\pi\)
\(500\) 0 0
\(501\) −5202.90 −0.463969
\(502\) 0 0
\(503\) 19523.7i 1.73065i 0.501209 + 0.865326i \(0.332889\pi\)
−0.501209 + 0.865326i \(0.667111\pi\)
\(504\) 0 0
\(505\) −3842.37 5561.60i −0.338580 0.490075i
\(506\) 0 0
\(507\) 312.490i 0.0273731i
\(508\) 0 0
\(509\) 8688.17 0.756574 0.378287 0.925688i \(-0.376513\pi\)
0.378287 + 0.925688i \(0.376513\pi\)
\(510\) 0 0
\(511\) −3823.78 −0.331026
\(512\) 0 0
\(513\) 14916.3i 1.28377i
\(514\) 0 0
\(515\) −2768.46 + 1912.66i −0.236880 + 0.163654i
\(516\) 0 0
\(517\) 3860.28i 0.328385i
\(518\) 0 0
\(519\) −4783.89 −0.404604
\(520\) 0 0
\(521\) 6771.36 0.569402 0.284701 0.958616i \(-0.408106\pi\)
0.284701 + 0.958616i \(0.408106\pi\)
\(522\) 0 0
\(523\) 1365.89i 0.114200i 0.998368 + 0.0570998i \(0.0181853\pi\)
−0.998368 + 0.0570998i \(0.981815\pi\)
\(524\) 0 0
\(525\) 772.099 2041.06i 0.0641851 0.169675i
\(526\) 0 0
\(527\) 4559.68i 0.376894i
\(528\) 0 0
\(529\) −12954.0 −1.06469
\(530\) 0 0
\(531\) −5004.75 −0.409016
\(532\) 0 0
\(533\) 7717.51i 0.627171i
\(534\) 0 0
\(535\) −13905.1 + 9606.67i −1.12368 + 0.776322i
\(536\) 0 0
\(537\) 1568.82i 0.126070i
\(538\) 0 0
\(539\) −2821.81 −0.225499
\(540\) 0 0
\(541\) −23250.1 −1.84769 −0.923844 0.382770i \(-0.874970\pi\)
−0.923844 + 0.382770i \(0.874970\pi\)
\(542\) 0 0
\(543\) 6985.22i 0.552052i
\(544\) 0 0
\(545\) 11229.9 + 16254.7i 0.882638 + 1.27757i
\(546\) 0 0
\(547\) 11552.7i 0.903033i −0.892263 0.451516i \(-0.850883\pi\)
0.892263 0.451516i \(-0.149117\pi\)
\(548\) 0 0
\(549\) 1879.73 0.146129
\(550\) 0 0
\(551\) 5028.47 0.388784
\(552\) 0 0
\(553\) 177.161i 0.0136232i
\(554\) 0 0
\(555\) 3666.04 + 5306.38i 0.280387 + 0.405844i
\(556\) 0 0
\(557\) 16406.2i 1.24803i 0.781413 + 0.624014i \(0.214499\pi\)
−0.781413 + 0.624014i \(0.785501\pi\)
\(558\) 0 0
\(559\) 6710.31 0.507721
\(560\) 0 0
\(561\) 13214.0 0.994465
\(562\) 0 0
\(563\) 13631.9i 1.02045i −0.860040 0.510227i \(-0.829561\pi\)
0.860040 0.510227i \(-0.170439\pi\)
\(564\) 0 0
\(565\) −9614.95 + 6642.72i −0.715936 + 0.494622i
\(566\) 0 0
\(567\) 1847.15i 0.136813i
\(568\) 0 0
\(569\) 3086.83 0.227428 0.113714 0.993514i \(-0.463725\pi\)
0.113714 + 0.993514i \(0.463725\pi\)
\(570\) 0 0
\(571\) 3258.06 0.238784 0.119392 0.992847i \(-0.461905\pi\)
0.119392 + 0.992847i \(0.461905\pi\)
\(572\) 0 0
\(573\) 1846.17i 0.134598i
\(574\) 0 0
\(575\) 18530.5 + 7009.78i 1.34396 + 0.508396i
\(576\) 0 0
\(577\) 23758.4i 1.71417i −0.515178 0.857083i \(-0.672274\pi\)
0.515178 0.857083i \(-0.327726\pi\)
\(578\) 0 0
\(579\) −10181.8 −0.730812
\(580\) 0 0
\(581\) 2633.78 0.188068
\(582\) 0 0
\(583\) 15470.8i 1.09903i
\(584\) 0 0
\(585\) 8700.25 6010.78i 0.614891 0.424812i
\(586\) 0 0
\(587\) 596.893i 0.0419701i 0.999780 + 0.0209850i \(0.00668023\pi\)
−0.999780 + 0.0209850i \(0.993320\pi\)
\(588\) 0 0
\(589\) −6203.66 −0.433985
\(590\) 0 0
\(591\) 8516.60 0.592768
\(592\) 0 0
\(593\) 19496.3i 1.35012i 0.737765 + 0.675058i \(0.235881\pi\)
−0.737765 + 0.675058i \(0.764119\pi\)
\(594\) 0 0
\(595\) 4092.88 + 5924.20i 0.282003 + 0.408182i
\(596\) 0 0
\(597\) 8460.62i 0.580017i
\(598\) 0 0
\(599\) 3797.02 0.259001 0.129501 0.991579i \(-0.458663\pi\)
0.129501 + 0.991579i \(0.458663\pi\)
\(600\) 0 0
\(601\) 5789.33 0.392931 0.196466 0.980511i \(-0.437054\pi\)
0.196466 + 0.980511i \(0.437054\pi\)
\(602\) 0 0
\(603\) 8447.09i 0.570468i
\(604\) 0 0
\(605\) 12617.2 + 18262.6i 0.847869 + 1.22724i
\(606\) 0 0
\(607\) 18536.4i 1.23949i 0.784803 + 0.619745i \(0.212764\pi\)
−0.784803 + 0.619745i \(0.787236\pi\)
\(608\) 0 0
\(609\) −701.291 −0.0466630
\(610\) 0 0
\(611\) −3051.06 −0.202017
\(612\) 0 0
\(613\) 2163.47i 0.142548i 0.997457 + 0.0712738i \(0.0227064\pi\)
−0.997457 + 0.0712738i \(0.977294\pi\)
\(614\) 0 0
\(615\) −3889.76 + 2687.34i −0.255041 + 0.176201i
\(616\) 0 0
\(617\) 22964.9i 1.49843i −0.662327 0.749215i \(-0.730431\pi\)
0.662327 0.749215i \(-0.269569\pi\)
\(618\) 0 0
\(619\) −1386.67 −0.0900401 −0.0450200 0.998986i \(-0.514335\pi\)
−0.0450200 + 0.998986i \(0.514335\pi\)
\(620\) 0 0
\(621\) 18886.7 1.22045
\(622\) 0 0
\(623\) 7185.06i 0.462060i
\(624\) 0 0
\(625\) −11713.0 10341.5i −0.749631 0.661856i
\(626\) 0 0
\(627\) 17978.2i 1.14510i
\(628\) 0 0
\(629\) −21281.4 −1.34904
\(630\) 0 0
\(631\) −5969.39 −0.376605 −0.188303 0.982111i \(-0.560299\pi\)
−0.188303 + 0.982111i \(0.560299\pi\)
\(632\) 0 0
\(633\) 8474.57i 0.532123i
\(634\) 0 0
\(635\) −2398.31 + 1656.93i −0.149880 + 0.103548i
\(636\) 0 0
\(637\) 2230.28i 0.138724i
\(638\) 0 0
\(639\) −6873.70 −0.425539
\(640\) 0 0
\(641\) 30367.1 1.87118 0.935592 0.353084i \(-0.114867\pi\)
0.935592 + 0.353084i \(0.114867\pi\)
\(642\) 0 0
\(643\) 28592.2i 1.75360i −0.480851 0.876802i \(-0.659672\pi\)
0.480851 0.876802i \(-0.340328\pi\)
\(644\) 0 0
\(645\) −2336.62 3382.12i −0.142642 0.206466i
\(646\) 0 0
\(647\) 14507.9i 0.881555i −0.897616 0.440778i \(-0.854703\pi\)
0.897616 0.440778i \(-0.145297\pi\)
\(648\) 0 0
\(649\) −13869.7 −0.838877
\(650\) 0 0
\(651\) 865.188 0.0520882
\(652\) 0 0
\(653\) 6999.85i 0.419488i 0.977756 + 0.209744i \(0.0672630\pi\)
−0.977756 + 0.209744i \(0.932737\pi\)
\(654\) 0 0
\(655\) 4598.01 + 6655.35i 0.274289 + 0.397017i
\(656\) 0 0
\(657\) 11351.3i 0.674056i
\(658\) 0 0
\(659\) 7308.92 0.432041 0.216020 0.976389i \(-0.430692\pi\)
0.216020 + 0.976389i \(0.430692\pi\)
\(660\) 0 0
\(661\) −30097.2 −1.77102 −0.885512 0.464617i \(-0.846192\pi\)
−0.885512 + 0.464617i \(0.846192\pi\)
\(662\) 0 0
\(663\) 10444.0i 0.611779i
\(664\) 0 0
\(665\) −8060.14 + 5568.54i −0.470013 + 0.324720i
\(666\) 0 0
\(667\) 6366.92i 0.369608i
\(668\) 0 0
\(669\) 455.425 0.0263195
\(670\) 0 0
\(671\) 5209.29 0.299706
\(672\) 0 0
\(673\) 5400.26i 0.309309i −0.987969 0.154654i \(-0.950574\pi\)
0.987969 0.154654i \(-0.0494264\pi\)
\(674\) 0 0
\(675\) −13931.7 5270.15i −0.794419 0.300516i
\(676\) 0 0
\(677\) 6431.09i 0.365091i −0.983197 0.182546i \(-0.941566\pi\)
0.983197 0.182546i \(-0.0584338\pi\)
\(678\) 0 0
\(679\) −6598.62 −0.372948
\(680\) 0 0
\(681\) 7861.79 0.442385
\(682\) 0 0
\(683\) 20865.8i 1.16897i 0.811404 + 0.584486i \(0.198704\pi\)
−0.811404 + 0.584486i \(0.801296\pi\)
\(684\) 0 0
\(685\) 7116.86 4916.86i 0.396965 0.274253i
\(686\) 0 0
\(687\) 14994.6i 0.832720i
\(688\) 0 0
\(689\) 12227.7 0.676109
\(690\) 0 0
\(691\) −18450.3 −1.01575 −0.507873 0.861432i \(-0.669568\pi\)
−0.507873 + 0.861432i \(0.669568\pi\)
\(692\) 0 0
\(693\) 8376.81i 0.459176i
\(694\) 0 0
\(695\) −18766.2 27163.0i −1.02424 1.48252i
\(696\) 0 0
\(697\) 15600.0i 0.847766i
\(698\) 0 0
\(699\) 2345.97 0.126942
\(700\) 0 0
\(701\) 12639.3 0.680996 0.340498 0.940245i \(-0.389404\pi\)
0.340498 + 0.940245i \(0.389404\pi\)
\(702\) 0 0
\(703\) 28954.4i 1.55339i
\(704\) 0 0
\(705\) 1062.42 + 1537.79i 0.0567560 + 0.0821509i
\(706\) 0 0
\(707\) 4232.32i 0.225138i
\(708\) 0 0
\(709\) 23126.8 1.22503 0.612514 0.790460i \(-0.290158\pi\)
0.612514 + 0.790460i \(0.290158\pi\)
\(710\) 0 0
\(711\) −525.918 −0.0277404
\(712\) 0 0
\(713\) 7854.92i 0.412579i
\(714\) 0 0
\(715\) 24111.0 16657.7i 1.26112 0.871275i
\(716\) 0 0
\(717\) 12865.9i 0.670134i
\(718\) 0 0
\(719\) −24093.1 −1.24968 −0.624841 0.780752i \(-0.714836\pi\)
−0.624841 + 0.780752i \(0.714836\pi\)
\(720\) 0 0
\(721\) −2106.77 −0.108821
\(722\) 0 0
\(723\) 1156.79i 0.0595041i
\(724\) 0 0
\(725\) −1776.63 + 4696.55i −0.0910100 + 0.240587i
\(726\) 0 0
\(727\) 35983.4i 1.83570i 0.396931 + 0.917849i \(0.370075\pi\)
−0.396931 + 0.917849i \(0.629925\pi\)
\(728\) 0 0
\(729\) −2540.55 −0.129073
\(730\) 0 0
\(731\) 13564.1 0.686302
\(732\) 0 0
\(733\) 1451.50i 0.0731413i −0.999331 0.0365706i \(-0.988357\pi\)
0.999331 0.0365706i \(-0.0116434\pi\)
\(734\) 0 0
\(735\) 1124.10 776.613i 0.0564124 0.0389739i
\(736\) 0 0
\(737\) 23409.4i 1.17001i
\(738\) 0 0
\(739\) −5891.67 −0.293273 −0.146636 0.989190i \(-0.546845\pi\)
−0.146636 + 0.989190i \(0.546845\pi\)
\(740\) 0 0
\(741\) 14209.5 0.704451
\(742\) 0 0
\(743\) 7438.65i 0.367292i −0.982992 0.183646i \(-0.941210\pi\)
0.982992 0.183646i \(-0.0587900\pi\)
\(744\) 0 0
\(745\) −15976.6 23125.2i −0.785688 1.13724i
\(746\) 0 0
\(747\) 7818.64i 0.382957i
\(748\) 0 0
\(749\) −10581.6 −0.516214
\(750\) 0 0
\(751\) −20272.4 −0.985018 −0.492509 0.870307i \(-0.663920\pi\)
−0.492509 + 0.870307i \(0.663920\pi\)
\(752\) 0 0
\(753\) 5711.80i 0.276427i
\(754\) 0 0
\(755\) −642.193 929.537i −0.0309560 0.0448070i
\(756\) 0 0
\(757\) 10193.8i 0.489432i 0.969595 + 0.244716i \(0.0786947\pi\)
−0.969595 + 0.244716i \(0.921305\pi\)
\(758\) 0 0
\(759\) 22763.6 1.08862
\(760\) 0 0
\(761\) −41117.6 −1.95862 −0.979311 0.202362i \(-0.935138\pi\)
−0.979311 + 0.202362i \(0.935138\pi\)
\(762\) 0 0
\(763\) 12369.6i 0.586908i
\(764\) 0 0
\(765\) 17586.5 12150.1i 0.831167 0.574232i
\(766\) 0 0
\(767\) 10962.2i 0.516065i
\(768\) 0 0
\(769\) −11486.6 −0.538642 −0.269321 0.963050i \(-0.586799\pi\)
−0.269321 + 0.963050i \(0.586799\pi\)
\(770\) 0 0
\(771\) −2000.66 −0.0934527
\(772\) 0 0
\(773\) 21799.2i 1.01431i −0.861854 0.507156i \(-0.830697\pi\)
0.861854 0.507156i \(-0.169303\pi\)
\(774\) 0 0
\(775\) 2191.84 5794.17i 0.101591 0.268558i
\(776\) 0 0
\(777\) 4038.10i 0.186443i
\(778\) 0 0
\(779\) 21224.5 0.976185
\(780\) 0 0
\(781\) −19049.1 −0.872765
\(782\) 0 0
\(783\) 4786.83i 0.218477i
\(784\) 0 0
\(785\) 21509.4 14860.3i 0.977967 0.675652i
\(786\) 0 0
\(787\) 24080.3i 1.09068i −0.838214 0.545342i \(-0.816400\pi\)
0.838214 0.545342i \(-0.183600\pi\)
\(788\) 0 0
\(789\) −715.712 −0.0322941
\(790\) 0 0
\(791\) −7316.87 −0.328898
\(792\) 0 0
\(793\) 4117.28i 0.184374i
\(794\) 0 0