Properties

Label 560.4.g.f.449.5
Level $560$
Weight $4$
Character 560.449
Analytic conductor $33.041$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(449,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.449");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.5
Root \(4.31366i\) of defining polynomial
Character \(\chi\) \(=\) 560.449
Dual form 560.4.g.f.449.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.93939i q^{3} +(-2.32771 - 10.9353i) q^{5} +7.00000i q^{7} +23.2388 q^{9} -25.5420 q^{11} -64.1014i q^{13} +(-21.2079 + 4.51433i) q^{15} +27.6952i q^{17} +0.792436 q^{19} +13.5757 q^{21} -108.606i q^{23} +(-114.164 + 50.9086i) q^{25} -97.4324i q^{27} +234.000 q^{29} -129.204 q^{31} +49.5357i q^{33} +(76.5474 - 16.2940i) q^{35} -38.3108i q^{37} -124.317 q^{39} -403.216 q^{41} -172.895i q^{43} +(-54.0931 - 254.124i) q^{45} +206.943i q^{47} -49.0000 q^{49} +53.7117 q^{51} +144.031i q^{53} +(59.4542 + 279.310i) q^{55} -1.53684i q^{57} -679.086 q^{59} -574.717 q^{61} +162.671i q^{63} +(-700.971 + 149.209i) q^{65} +515.640i q^{67} -210.630 q^{69} -556.612 q^{71} -173.243i q^{73} +(98.7314 + 221.407i) q^{75} -178.794i q^{77} +79.3290 q^{79} +438.488 q^{81} -1043.56i q^{83} +(302.856 - 64.4663i) q^{85} -453.817i q^{87} -652.060 q^{89} +448.710 q^{91} +250.576i q^{93} +(-1.84456 - 8.66556i) q^{95} -515.714i q^{97} -593.564 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 6 q^{5} - 46 q^{9} - 84 q^{11} - 8 q^{15} - 72 q^{19} + 140 q^{21} - 362 q^{25} + 88 q^{29} - 120 q^{31} + 28 q^{35} - 212 q^{39} - 852 q^{41} - 510 q^{45} - 490 q^{49} - 1276 q^{51} + 1136 q^{55}+ \cdots + 5304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.93939i 0.373235i −0.982433 0.186617i \(-0.940247\pi\)
0.982433 0.186617i \(-0.0597525\pi\)
\(4\) 0 0
\(5\) −2.32771 10.9353i −0.208197 0.978087i
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) 23.2388 0.860696
\(10\) 0 0
\(11\) −25.5420 −0.700108 −0.350054 0.936730i \(-0.613837\pi\)
−0.350054 + 0.936730i \(0.613837\pi\)
\(12\) 0 0
\(13\) 64.1014i 1.36758i −0.729679 0.683790i \(-0.760330\pi\)
0.729679 0.683790i \(-0.239670\pi\)
\(14\) 0 0
\(15\) −21.2079 + 4.51433i −0.365056 + 0.0777063i
\(16\) 0 0
\(17\) 27.6952i 0.395122i 0.980291 + 0.197561i \(0.0633020\pi\)
−0.980291 + 0.197561i \(0.936698\pi\)
\(18\) 0 0
\(19\) 0.792436 0.00956828 0.00478414 0.999989i \(-0.498477\pi\)
0.00478414 + 0.999989i \(0.498477\pi\)
\(20\) 0 0
\(21\) 13.5757 0.141070
\(22\) 0 0
\(23\) 108.606i 0.984609i −0.870423 0.492305i \(-0.836155\pi\)
0.870423 0.492305i \(-0.163845\pi\)
\(24\) 0 0
\(25\) −114.164 + 50.9086i −0.913308 + 0.407269i
\(26\) 0 0
\(27\) 97.4324i 0.694477i
\(28\) 0 0
\(29\) 234.000 1.49837 0.749186 0.662360i \(-0.230445\pi\)
0.749186 + 0.662360i \(0.230445\pi\)
\(30\) 0 0
\(31\) −129.204 −0.748570 −0.374285 0.927314i \(-0.622112\pi\)
−0.374285 + 0.927314i \(0.622112\pi\)
\(32\) 0 0
\(33\) 49.5357i 0.261305i
\(34\) 0 0
\(35\) 76.5474 16.2940i 0.369682 0.0786909i
\(36\) 0 0
\(37\) 38.3108i 0.170223i −0.996371 0.0851116i \(-0.972875\pi\)
0.996371 0.0851116i \(-0.0271247\pi\)
\(38\) 0 0
\(39\) −124.317 −0.510429
\(40\) 0 0
\(41\) −403.216 −1.53590 −0.767949 0.640511i \(-0.778722\pi\)
−0.767949 + 0.640511i \(0.778722\pi\)
\(42\) 0 0
\(43\) 172.895i 0.613167i −0.951844 0.306584i \(-0.900814\pi\)
0.951844 0.306584i \(-0.0991859\pi\)
\(44\) 0 0
\(45\) −54.0931 254.124i −0.179194 0.841835i
\(46\) 0 0
\(47\) 206.943i 0.642250i 0.947037 + 0.321125i \(0.104061\pi\)
−0.947037 + 0.321125i \(0.895939\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 53.7117 0.147473
\(52\) 0 0
\(53\) 144.031i 0.373287i 0.982428 + 0.186643i \(0.0597609\pi\)
−0.982428 + 0.186643i \(0.940239\pi\)
\(54\) 0 0
\(55\) 59.4542 + 279.310i 0.145760 + 0.684767i
\(56\) 0 0
\(57\) 1.53684i 0.00357122i
\(58\) 0 0
\(59\) −679.086 −1.49846 −0.749232 0.662307i \(-0.769577\pi\)
−0.749232 + 0.662307i \(0.769577\pi\)
\(60\) 0 0
\(61\) −574.717 −1.20631 −0.603155 0.797624i \(-0.706090\pi\)
−0.603155 + 0.797624i \(0.706090\pi\)
\(62\) 0 0
\(63\) 162.671i 0.325312i
\(64\) 0 0
\(65\) −700.971 + 149.209i −1.33761 + 0.284725i
\(66\) 0 0
\(67\) 515.640i 0.940230i 0.882605 + 0.470115i \(0.155788\pi\)
−0.882605 + 0.470115i \(0.844212\pi\)
\(68\) 0 0
\(69\) −210.630 −0.367491
\(70\) 0 0
\(71\) −556.612 −0.930391 −0.465195 0.885208i \(-0.654016\pi\)
−0.465195 + 0.885208i \(0.654016\pi\)
\(72\) 0 0
\(73\) 173.243i 0.277762i −0.990309 0.138881i \(-0.955650\pi\)
0.990309 0.138881i \(-0.0443505\pi\)
\(74\) 0 0
\(75\) 98.7314 + 221.407i 0.152007 + 0.340879i
\(76\) 0 0
\(77\) 178.794i 0.264616i
\(78\) 0 0
\(79\) 79.3290 0.112977 0.0564887 0.998403i \(-0.482010\pi\)
0.0564887 + 0.998403i \(0.482010\pi\)
\(80\) 0 0
\(81\) 438.488 0.601493
\(82\) 0 0
\(83\) 1043.56i 1.38007i −0.723777 0.690034i \(-0.757596\pi\)
0.723777 0.690034i \(-0.242404\pi\)
\(84\) 0 0
\(85\) 302.856 64.4663i 0.386463 0.0822630i
\(86\) 0 0
\(87\) 453.817i 0.559245i
\(88\) 0 0
\(89\) −652.060 −0.776609 −0.388304 0.921531i \(-0.626939\pi\)
−0.388304 + 0.921531i \(0.626939\pi\)
\(90\) 0 0
\(91\) 448.710 0.516897
\(92\) 0 0
\(93\) 250.576i 0.279393i
\(94\) 0 0
\(95\) −1.84456 8.66556i −0.00199208 0.00935861i
\(96\) 0 0
\(97\) 515.714i 0.539823i −0.962885 0.269912i \(-0.913005\pi\)
0.962885 0.269912i \(-0.0869945\pi\)
\(98\) 0 0
\(99\) −593.564 −0.602580
\(100\) 0 0
\(101\) −536.339 −0.528394 −0.264197 0.964469i \(-0.585107\pi\)
−0.264197 + 0.964469i \(0.585107\pi\)
\(102\) 0 0
\(103\) 381.693i 0.365139i −0.983193 0.182570i \(-0.941559\pi\)
0.983193 0.182570i \(-0.0584415\pi\)
\(104\) 0 0
\(105\) −31.6003 148.455i −0.0293702 0.137978i
\(106\) 0 0
\(107\) 1381.12i 1.24783i −0.781492 0.623915i \(-0.785541\pi\)
0.781492 0.623915i \(-0.214459\pi\)
\(108\) 0 0
\(109\) 390.582 0.343220 0.171610 0.985165i \(-0.445103\pi\)
0.171610 + 0.985165i \(0.445103\pi\)
\(110\) 0 0
\(111\) −74.2995 −0.0635333
\(112\) 0 0
\(113\) 1643.15i 1.36792i 0.729521 + 0.683958i \(0.239743\pi\)
−0.729521 + 0.683958i \(0.760257\pi\)
\(114\) 0 0
\(115\) −1187.65 + 252.804i −0.963033 + 0.204992i
\(116\) 0 0
\(117\) 1489.64i 1.17707i
\(118\) 0 0
\(119\) −193.866 −0.149342
\(120\) 0 0
\(121\) −678.609 −0.509849
\(122\) 0 0
\(123\) 781.992i 0.573251i
\(124\) 0 0
\(125\) 822.443 + 1129.92i 0.588492 + 0.808503i
\(126\) 0 0
\(127\) 192.032i 0.134174i −0.997747 0.0670869i \(-0.978630\pi\)
0.997747 0.0670869i \(-0.0213705\pi\)
\(128\) 0 0
\(129\) −335.310 −0.228856
\(130\) 0 0
\(131\) −2082.90 −1.38919 −0.694594 0.719402i \(-0.744416\pi\)
−0.694594 + 0.719402i \(0.744416\pi\)
\(132\) 0 0
\(133\) 5.54705i 0.00361647i
\(134\) 0 0
\(135\) −1065.46 + 226.794i −0.679259 + 0.144588i
\(136\) 0 0
\(137\) 78.1709i 0.0487488i 0.999703 + 0.0243744i \(0.00775939\pi\)
−0.999703 + 0.0243744i \(0.992241\pi\)
\(138\) 0 0
\(139\) 1393.67 0.850426 0.425213 0.905093i \(-0.360199\pi\)
0.425213 + 0.905093i \(0.360199\pi\)
\(140\) 0 0
\(141\) 401.342 0.239710
\(142\) 0 0
\(143\) 1637.28i 0.957454i
\(144\) 0 0
\(145\) −544.685 2558.88i −0.311956 1.46554i
\(146\) 0 0
\(147\) 95.0299i 0.0533193i
\(148\) 0 0
\(149\) −32.5002 −0.0178693 −0.00893463 0.999960i \(-0.502844\pi\)
−0.00893463 + 0.999960i \(0.502844\pi\)
\(150\) 0 0
\(151\) −466.762 −0.251553 −0.125777 0.992059i \(-0.540142\pi\)
−0.125777 + 0.992059i \(0.540142\pi\)
\(152\) 0 0
\(153\) 643.602i 0.340080i
\(154\) 0 0
\(155\) 300.749 + 1412.89i 0.155850 + 0.732167i
\(156\) 0 0
\(157\) 1673.50i 0.850701i −0.905029 0.425351i \(-0.860151\pi\)
0.905029 0.425351i \(-0.139849\pi\)
\(158\) 0 0
\(159\) 279.332 0.139324
\(160\) 0 0
\(161\) 760.245 0.372147
\(162\) 0 0
\(163\) 1869.36i 0.898279i −0.893462 0.449139i \(-0.851731\pi\)
0.893462 0.449139i \(-0.148269\pi\)
\(164\) 0 0
\(165\) 541.690 115.305i 0.255579 0.0544028i
\(166\) 0 0
\(167\) 46.5250i 0.0215581i 0.999942 + 0.0107791i \(0.00343115\pi\)
−0.999942 + 0.0107791i \(0.996569\pi\)
\(168\) 0 0
\(169\) −1911.99 −0.870275
\(170\) 0 0
\(171\) 18.4152 0.00823538
\(172\) 0 0
\(173\) 2496.28i 1.09704i 0.836137 + 0.548521i \(0.184809\pi\)
−0.836137 + 0.548521i \(0.815191\pi\)
\(174\) 0 0
\(175\) −356.360 799.145i −0.153933 0.345198i
\(176\) 0 0
\(177\) 1317.01i 0.559279i
\(178\) 0 0
\(179\) 2975.70 1.24254 0.621269 0.783598i \(-0.286618\pi\)
0.621269 + 0.783598i \(0.286618\pi\)
\(180\) 0 0
\(181\) 966.273 0.396809 0.198405 0.980120i \(-0.436424\pi\)
0.198405 + 0.980120i \(0.436424\pi\)
\(182\) 0 0
\(183\) 1114.60i 0.450237i
\(184\) 0 0
\(185\) −418.942 + 89.1764i −0.166493 + 0.0354399i
\(186\) 0 0
\(187\) 707.389i 0.276628i
\(188\) 0 0
\(189\) 682.027 0.262488
\(190\) 0 0
\(191\) 1545.50 0.585488 0.292744 0.956191i \(-0.405432\pi\)
0.292744 + 0.956191i \(0.405432\pi\)
\(192\) 0 0
\(193\) 2304.05i 0.859322i −0.902990 0.429661i \(-0.858633\pi\)
0.902990 0.429661i \(-0.141367\pi\)
\(194\) 0 0
\(195\) 289.375 + 1359.45i 0.106270 + 0.499244i
\(196\) 0 0
\(197\) 222.021i 0.0802960i 0.999194 + 0.0401480i \(0.0127829\pi\)
−0.999194 + 0.0401480i \(0.987217\pi\)
\(198\) 0 0
\(199\) 3580.56 1.27547 0.637736 0.770255i \(-0.279871\pi\)
0.637736 + 0.770255i \(0.279871\pi\)
\(200\) 0 0
\(201\) 1000.02 0.350927
\(202\) 0 0
\(203\) 1638.00i 0.566331i
\(204\) 0 0
\(205\) 938.570 + 4409.31i 0.319769 + 1.50224i
\(206\) 0 0
\(207\) 2523.88i 0.847449i
\(208\) 0 0
\(209\) −20.2404 −0.00669883
\(210\) 0 0
\(211\) 4181.04 1.36415 0.682073 0.731284i \(-0.261079\pi\)
0.682073 + 0.731284i \(0.261079\pi\)
\(212\) 0 0
\(213\) 1079.49i 0.347254i
\(214\) 0 0
\(215\) −1890.66 + 402.449i −0.599731 + 0.127659i
\(216\) 0 0
\(217\) 904.426i 0.282933i
\(218\) 0 0
\(219\) −335.986 −0.103670
\(220\) 0 0
\(221\) 1775.30 0.540361
\(222\) 0 0
\(223\) 2361.52i 0.709145i −0.935028 0.354573i \(-0.884626\pi\)
0.935028 0.354573i \(-0.115374\pi\)
\(224\) 0 0
\(225\) −2653.02 + 1183.05i −0.786081 + 0.350534i
\(226\) 0 0
\(227\) 586.877i 0.171596i 0.996313 + 0.0857982i \(0.0273440\pi\)
−0.996313 + 0.0857982i \(0.972656\pi\)
\(228\) 0 0
\(229\) 4619.55 1.33305 0.666526 0.745482i \(-0.267781\pi\)
0.666526 + 0.745482i \(0.267781\pi\)
\(230\) 0 0
\(231\) −346.750 −0.0987639
\(232\) 0 0
\(233\) 5120.44i 1.43971i −0.694127 0.719853i \(-0.744209\pi\)
0.694127 0.719853i \(-0.255791\pi\)
\(234\) 0 0
\(235\) 2262.99 481.703i 0.628176 0.133714i
\(236\) 0 0
\(237\) 153.850i 0.0421671i
\(238\) 0 0
\(239\) 1127.51 0.305158 0.152579 0.988291i \(-0.451242\pi\)
0.152579 + 0.988291i \(0.451242\pi\)
\(240\) 0 0
\(241\) −3549.53 −0.948736 −0.474368 0.880327i \(-0.657323\pi\)
−0.474368 + 0.880327i \(0.657323\pi\)
\(242\) 0 0
\(243\) 3481.07i 0.918975i
\(244\) 0 0
\(245\) 114.058 + 535.832i 0.0297424 + 0.139727i
\(246\) 0 0
\(247\) 50.7963i 0.0130854i
\(248\) 0 0
\(249\) −2023.87 −0.515090
\(250\) 0 0
\(251\) −4717.19 −1.18624 −0.593120 0.805114i \(-0.702104\pi\)
−0.593120 + 0.805114i \(0.702104\pi\)
\(252\) 0 0
\(253\) 2774.02i 0.689333i
\(254\) 0 0
\(255\) −125.025 587.355i −0.0307034 0.144242i
\(256\) 0 0
\(257\) 6260.31i 1.51948i −0.650224 0.759742i \(-0.725325\pi\)
0.650224 0.759742i \(-0.274675\pi\)
\(258\) 0 0
\(259\) 268.176 0.0643383
\(260\) 0 0
\(261\) 5437.88 1.28964
\(262\) 0 0
\(263\) 5753.04i 1.34885i 0.738344 + 0.674425i \(0.235608\pi\)
−0.738344 + 0.674425i \(0.764392\pi\)
\(264\) 0 0
\(265\) 1575.03 335.262i 0.365107 0.0777170i
\(266\) 0 0
\(267\) 1264.60i 0.289858i
\(268\) 0 0
\(269\) 7059.21 1.60003 0.800014 0.599982i \(-0.204826\pi\)
0.800014 + 0.599982i \(0.204826\pi\)
\(270\) 0 0
\(271\) 8534.52 1.91305 0.956523 0.291658i \(-0.0942069\pi\)
0.956523 + 0.291658i \(0.0942069\pi\)
\(272\) 0 0
\(273\) 870.222i 0.192924i
\(274\) 0 0
\(275\) 2915.96 1300.30i 0.639415 0.285132i
\(276\) 0 0
\(277\) 1313.94i 0.285008i 0.989794 + 0.142504i \(0.0455154\pi\)
−0.989794 + 0.142504i \(0.954485\pi\)
\(278\) 0 0
\(279\) −3002.54 −0.644291
\(280\) 0 0
\(281\) −247.229 −0.0524856 −0.0262428 0.999656i \(-0.508354\pi\)
−0.0262428 + 0.999656i \(0.508354\pi\)
\(282\) 0 0
\(283\) 9074.90i 1.90617i 0.302697 + 0.953087i \(0.402113\pi\)
−0.302697 + 0.953087i \(0.597887\pi\)
\(284\) 0 0
\(285\) −16.8059 + 3.57731i −0.00349296 + 0.000743515i
\(286\) 0 0
\(287\) 2822.51i 0.580515i
\(288\) 0 0
\(289\) 4145.98 0.843879
\(290\) 0 0
\(291\) −1000.17 −0.201481
\(292\) 0 0
\(293\) 2740.72i 0.546466i −0.961948 0.273233i \(-0.911907\pi\)
0.961948 0.273233i \(-0.0880930\pi\)
\(294\) 0 0
\(295\) 1580.71 + 7426.04i 0.311975 + 1.46563i
\(296\) 0 0
\(297\) 2488.61i 0.486209i
\(298\) 0 0
\(299\) −6961.83 −1.34653
\(300\) 0 0
\(301\) 1210.26 0.231755
\(302\) 0 0
\(303\) 1040.17i 0.197215i
\(304\) 0 0
\(305\) 1337.77 + 6284.73i 0.251150 + 1.17988i
\(306\) 0 0
\(307\) 6985.46i 1.29864i −0.760517 0.649318i \(-0.775054\pi\)
0.760517 0.649318i \(-0.224946\pi\)
\(308\) 0 0
\(309\) −740.250 −0.136283
\(310\) 0 0
\(311\) 356.841 0.0650630 0.0325315 0.999471i \(-0.489643\pi\)
0.0325315 + 0.999471i \(0.489643\pi\)
\(312\) 0 0
\(313\) 6630.12i 1.19731i 0.801009 + 0.598653i \(0.204297\pi\)
−0.801009 + 0.598653i \(0.795703\pi\)
\(314\) 0 0
\(315\) 1778.87 378.652i 0.318184 0.0677289i
\(316\) 0 0
\(317\) 2494.05i 0.441891i −0.975286 0.220946i \(-0.929086\pi\)
0.975286 0.220946i \(-0.0709144\pi\)
\(318\) 0 0
\(319\) −5976.83 −1.04902
\(320\) 0 0
\(321\) −2678.52 −0.465734
\(322\) 0 0
\(323\) 21.9467i 0.00378063i
\(324\) 0 0
\(325\) 3263.31 + 7318.05i 0.556973 + 1.24902i
\(326\) 0 0
\(327\) 757.489i 0.128102i
\(328\) 0 0
\(329\) −1448.60 −0.242748
\(330\) 0 0
\(331\) 4682.47 0.777558 0.388779 0.921331i \(-0.372897\pi\)
0.388779 + 0.921331i \(0.372897\pi\)
\(332\) 0 0
\(333\) 890.297i 0.146510i
\(334\) 0 0
\(335\) 5638.70 1200.26i 0.919627 0.195753i
\(336\) 0 0
\(337\) 3596.60i 0.581363i 0.956820 + 0.290681i \(0.0938820\pi\)
−0.956820 + 0.290681i \(0.906118\pi\)
\(338\) 0 0
\(339\) 3186.70 0.510554
\(340\) 0 0
\(341\) 3300.12 0.524080
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 490.285 + 2303.31i 0.0765103 + 0.359438i
\(346\) 0 0
\(347\) 1899.51i 0.293865i −0.989147 0.146932i \(-0.953060\pi\)
0.989147 0.146932i \(-0.0469400\pi\)
\(348\) 0 0
\(349\) 1037.55 0.159137 0.0795683 0.996829i \(-0.474646\pi\)
0.0795683 + 0.996829i \(0.474646\pi\)
\(350\) 0 0
\(351\) −6245.56 −0.949752
\(352\) 0 0
\(353\) 4087.08i 0.616242i 0.951347 + 0.308121i \(0.0997001\pi\)
−0.951347 + 0.308121i \(0.900300\pi\)
\(354\) 0 0
\(355\) 1295.63 + 6086.75i 0.193704 + 0.910003i
\(356\) 0 0
\(357\) 375.982i 0.0557397i
\(358\) 0 0
\(359\) 3472.67 0.510530 0.255265 0.966871i \(-0.417837\pi\)
0.255265 + 0.966871i \(0.417837\pi\)
\(360\) 0 0
\(361\) −6858.37 −0.999908
\(362\) 0 0
\(363\) 1316.08i 0.190293i
\(364\) 0 0
\(365\) −1894.48 + 403.260i −0.271675 + 0.0578290i
\(366\) 0 0
\(367\) 8769.14i 1.24726i −0.781719 0.623631i \(-0.785657\pi\)
0.781719 0.623631i \(-0.214343\pi\)
\(368\) 0 0
\(369\) −9370.25 −1.32194
\(370\) 0 0
\(371\) −1008.22 −0.141089
\(372\) 0 0
\(373\) 11368.9i 1.57817i −0.614284 0.789085i \(-0.710555\pi\)
0.614284 0.789085i \(-0.289445\pi\)
\(374\) 0 0
\(375\) 2191.35 1595.03i 0.301762 0.219646i
\(376\) 0 0
\(377\) 14999.8i 2.04914i
\(378\) 0 0
\(379\) −12137.4 −1.64500 −0.822501 0.568764i \(-0.807422\pi\)
−0.822501 + 0.568764i \(0.807422\pi\)
\(380\) 0 0
\(381\) −372.424 −0.0500784
\(382\) 0 0
\(383\) 9869.61i 1.31675i −0.752692 0.658373i \(-0.771245\pi\)
0.752692 0.658373i \(-0.228755\pi\)
\(384\) 0 0
\(385\) −1955.17 + 416.180i −0.258817 + 0.0550921i
\(386\) 0 0
\(387\) 4017.86i 0.527751i
\(388\) 0 0
\(389\) −57.1166 −0.00744454 −0.00372227 0.999993i \(-0.501185\pi\)
−0.00372227 + 0.999993i \(0.501185\pi\)
\(390\) 0 0
\(391\) 3007.88 0.389041
\(392\) 0 0
\(393\) 4039.54i 0.518494i
\(394\) 0 0
\(395\) −184.655 867.490i −0.0235215 0.110502i
\(396\) 0 0
\(397\) 7436.17i 0.940078i −0.882646 0.470039i \(-0.844240\pi\)
0.882646 0.470039i \(-0.155760\pi\)
\(398\) 0 0
\(399\) 10.7579 0.00134979
\(400\) 0 0
\(401\) −12465.0 −1.55230 −0.776149 0.630550i \(-0.782829\pi\)
−0.776149 + 0.630550i \(0.782829\pi\)
\(402\) 0 0
\(403\) 8282.15i 1.02373i
\(404\) 0 0
\(405\) −1020.67 4795.02i −0.125229 0.588312i
\(406\) 0 0
\(407\) 978.533i 0.119175i
\(408\) 0 0
\(409\) 1708.72 0.206578 0.103289 0.994651i \(-0.467063\pi\)
0.103289 + 0.994651i \(0.467063\pi\)
\(410\) 0 0
\(411\) 151.604 0.0181948
\(412\) 0 0
\(413\) 4753.60i 0.566366i
\(414\) 0 0
\(415\) −11411.7 + 2429.10i −1.34983 + 0.287325i
\(416\) 0 0
\(417\) 2702.86i 0.317409i
\(418\) 0 0
\(419\) 10618.8 1.23810 0.619050 0.785352i \(-0.287518\pi\)
0.619050 + 0.785352i \(0.287518\pi\)
\(420\) 0 0
\(421\) 13273.5 1.53661 0.768304 0.640085i \(-0.221101\pi\)
0.768304 + 0.640085i \(0.221101\pi\)
\(422\) 0 0
\(423\) 4809.10i 0.552781i
\(424\) 0 0
\(425\) −1409.92 3161.78i −0.160921 0.360868i
\(426\) 0 0
\(427\) 4023.02i 0.455943i
\(428\) 0 0
\(429\) 3175.31 0.357355
\(430\) 0 0
\(431\) −7918.20 −0.884934 −0.442467 0.896785i \(-0.645897\pi\)
−0.442467 + 0.896785i \(0.645897\pi\)
\(432\) 0 0
\(433\) 4433.34i 0.492038i 0.969265 + 0.246019i \(0.0791226\pi\)
−0.969265 + 0.246019i \(0.920877\pi\)
\(434\) 0 0
\(435\) −4962.65 + 1056.35i −0.546990 + 0.116433i
\(436\) 0 0
\(437\) 86.0637i 0.00942102i
\(438\) 0 0
\(439\) 12958.4 1.40882 0.704408 0.709796i \(-0.251213\pi\)
0.704408 + 0.709796i \(0.251213\pi\)
\(440\) 0 0
\(441\) −1138.70 −0.122957
\(442\) 0 0
\(443\) 12040.4i 1.29133i 0.763621 + 0.645664i \(0.223420\pi\)
−0.763621 + 0.645664i \(0.776580\pi\)
\(444\) 0 0
\(445\) 1517.80 + 7130.50i 0.161687 + 0.759591i
\(446\) 0 0
\(447\) 63.0304i 0.00666943i
\(448\) 0 0
\(449\) −11586.3 −1.21780 −0.608899 0.793247i \(-0.708389\pi\)
−0.608899 + 0.793247i \(0.708389\pi\)
\(450\) 0 0
\(451\) 10298.9 1.07529
\(452\) 0 0
\(453\) 905.232i 0.0938886i
\(454\) 0 0
\(455\) −1044.47 4906.80i −0.107616 0.505570i
\(456\) 0 0
\(457\) 9734.34i 0.996396i −0.867063 0.498198i \(-0.833995\pi\)
0.867063 0.498198i \(-0.166005\pi\)
\(458\) 0 0
\(459\) 2698.41 0.274403
\(460\) 0 0
\(461\) −1343.41 −0.135724 −0.0678621 0.997695i \(-0.521618\pi\)
−0.0678621 + 0.997695i \(0.521618\pi\)
\(462\) 0 0
\(463\) 6613.72i 0.663857i 0.943305 + 0.331929i \(0.107699\pi\)
−0.943305 + 0.331929i \(0.892301\pi\)
\(464\) 0 0
\(465\) 2740.13 583.268i 0.273270 0.0581686i
\(466\) 0 0
\(467\) 14688.9i 1.45551i −0.685838 0.727755i \(-0.740564\pi\)
0.685838 0.727755i \(-0.259436\pi\)
\(468\) 0 0
\(469\) −3609.48 −0.355374
\(470\) 0 0
\(471\) −3245.57 −0.317511
\(472\) 0 0
\(473\) 4416.07i 0.429283i
\(474\) 0 0
\(475\) −90.4673 + 40.3418i −0.00873879 + 0.00389686i
\(476\) 0 0
\(477\) 3347.11i 0.321286i
\(478\) 0 0
\(479\) −15298.6 −1.45931 −0.729657 0.683813i \(-0.760320\pi\)
−0.729657 + 0.683813i \(0.760320\pi\)
\(480\) 0 0
\(481\) −2455.78 −0.232794
\(482\) 0 0
\(483\) 1474.41i 0.138898i
\(484\) 0 0
\(485\) −5639.52 + 1200.43i −0.527994 + 0.112389i
\(486\) 0 0
\(487\) 9653.80i 0.898266i −0.893465 0.449133i \(-0.851733\pi\)
0.893465 0.449133i \(-0.148267\pi\)
\(488\) 0 0
\(489\) −3625.41 −0.335269
\(490\) 0 0
\(491\) −20142.6 −1.85137 −0.925684 0.378297i \(-0.876510\pi\)
−0.925684 + 0.378297i \(0.876510\pi\)
\(492\) 0 0
\(493\) 6480.69i 0.592039i
\(494\) 0 0
\(495\) 1381.64 + 6490.83i 0.125455 + 0.589376i
\(496\) 0 0
\(497\) 3896.29i 0.351655i
\(498\) 0 0
\(499\) −1309.29 −0.117459 −0.0587293 0.998274i \(-0.518705\pi\)
−0.0587293 + 0.998274i \(0.518705\pi\)
\(500\) 0 0
\(501\) 90.2299 0.00804625
\(502\) 0 0
\(503\) 2186.17i 0.193791i −0.995295 0.0968953i \(-0.969109\pi\)
0.995295 0.0968953i \(-0.0308912\pi\)
\(504\) 0 0
\(505\) 1248.44 + 5865.06i 0.110010 + 0.516815i
\(506\) 0 0
\(507\) 3708.09i 0.324817i
\(508\) 0 0
\(509\) −3591.11 −0.312718 −0.156359 0.987700i \(-0.549976\pi\)
−0.156359 + 0.987700i \(0.549976\pi\)
\(510\) 0 0
\(511\) 1212.70 0.104984
\(512\) 0 0
\(513\) 77.2089i 0.00664495i
\(514\) 0 0
\(515\) −4173.94 + 888.470i −0.357138 + 0.0760207i
\(516\) 0 0
\(517\) 5285.73i 0.449644i
\(518\) 0 0
\(519\) 4841.24 0.409455
\(520\) 0 0
\(521\) −8605.34 −0.723621 −0.361811 0.932252i \(-0.617841\pi\)
−0.361811 + 0.932252i \(0.617841\pi\)
\(522\) 0 0
\(523\) 22536.4i 1.88423i −0.335297 0.942113i \(-0.608837\pi\)
0.335297 0.942113i \(-0.391163\pi\)
\(524\) 0 0
\(525\) −1549.85 + 691.120i −0.128840 + 0.0574532i
\(526\) 0 0
\(527\) 3578.32i 0.295776i
\(528\) 0 0
\(529\) 371.637 0.0305447
\(530\) 0 0
\(531\) −15781.1 −1.28972
\(532\) 0 0
\(533\) 25846.7i 2.10046i
\(534\) 0 0
\(535\) −15103.0 + 3214.84i −1.22049 + 0.259794i
\(536\) 0 0
\(537\) 5771.03i 0.463758i
\(538\) 0 0
\(539\) 1251.56 0.100015
\(540\) 0 0
\(541\) 8782.44 0.697942 0.348971 0.937134i \(-0.386531\pi\)
0.348971 + 0.937134i \(0.386531\pi\)
\(542\) 0 0
\(543\) 1873.98i 0.148103i
\(544\) 0 0
\(545\) −909.161 4271.15i −0.0714572 0.335699i
\(546\) 0 0
\(547\) 22593.0i 1.76601i 0.469366 + 0.883004i \(0.344482\pi\)
−0.469366 + 0.883004i \(0.655518\pi\)
\(548\) 0 0
\(549\) −13355.7 −1.03827
\(550\) 0 0
\(551\) 185.430 0.0143368
\(552\) 0 0
\(553\) 555.303i 0.0427014i
\(554\) 0 0
\(555\) 172.947 + 812.490i 0.0132274 + 0.0621411i
\(556\) 0 0
\(557\) 7264.13i 0.552587i 0.961073 + 0.276294i \(0.0891062\pi\)
−0.961073 + 0.276294i \(0.910894\pi\)
\(558\) 0 0
\(559\) −11082.8 −0.838555
\(560\) 0 0
\(561\) −1371.90 −0.103247
\(562\) 0 0
\(563\) 3851.42i 0.288309i −0.989555 0.144154i \(-0.953954\pi\)
0.989555 0.144154i \(-0.0460462\pi\)
\(564\) 0 0
\(565\) 17968.4 3824.78i 1.33794 0.284796i
\(566\) 0 0
\(567\) 3069.42i 0.227343i
\(568\) 0 0
\(569\) −16580.3 −1.22158 −0.610792 0.791791i \(-0.709149\pi\)
−0.610792 + 0.791791i \(0.709149\pi\)
\(570\) 0 0
\(571\) −6385.86 −0.468021 −0.234010 0.972234i \(-0.575185\pi\)
−0.234010 + 0.972234i \(0.575185\pi\)
\(572\) 0 0
\(573\) 2997.32i 0.218525i
\(574\) 0 0
\(575\) 5529.00 + 12398.9i 0.401001 + 0.899252i
\(576\) 0 0
\(577\) 11059.1i 0.797912i 0.916970 + 0.398956i \(0.130627\pi\)
−0.916970 + 0.398956i \(0.869373\pi\)
\(578\) 0 0
\(579\) −4468.44 −0.320729
\(580\) 0 0
\(581\) 7304.92 0.521617
\(582\) 0 0
\(583\) 3678.84i 0.261341i
\(584\) 0 0
\(585\) −16289.7 + 3467.45i −1.15128 + 0.245062i
\(586\) 0 0
\(587\) 7871.25i 0.553461i −0.960948 0.276730i \(-0.910749\pi\)
0.960948 0.276730i \(-0.0892509\pi\)
\(588\) 0 0
\(589\) −102.386 −0.00716253
\(590\) 0 0
\(591\) 430.584 0.0299693
\(592\) 0 0
\(593\) 2018.06i 0.139750i −0.997556 0.0698750i \(-0.977740\pi\)
0.997556 0.0698750i \(-0.0222600\pi\)
\(594\) 0 0
\(595\) 451.264 + 2120.00i 0.0310925 + 0.146069i
\(596\) 0 0
\(597\) 6944.08i 0.476051i
\(598\) 0 0
\(599\) −1356.67 −0.0925409 −0.0462705 0.998929i \(-0.514734\pi\)
−0.0462705 + 0.998929i \(0.514734\pi\)
\(600\) 0 0
\(601\) 11178.7 0.758715 0.379358 0.925250i \(-0.376145\pi\)
0.379358 + 0.925250i \(0.376145\pi\)
\(602\) 0 0
\(603\) 11982.8i 0.809252i
\(604\) 0 0
\(605\) 1579.60 + 7420.82i 0.106149 + 0.498676i
\(606\) 0 0
\(607\) 9404.67i 0.628870i 0.949279 + 0.314435i \(0.101815\pi\)
−0.949279 + 0.314435i \(0.898185\pi\)
\(608\) 0 0
\(609\) 3176.72 0.211375
\(610\) 0 0
\(611\) 13265.3 0.878328
\(612\) 0 0
\(613\) 18938.0i 1.24779i −0.781507 0.623897i \(-0.785548\pi\)
0.781507 0.623897i \(-0.214452\pi\)
\(614\) 0 0
\(615\) 8551.35 1820.25i 0.560689 0.119349i
\(616\) 0 0
\(617\) 17716.9i 1.15600i −0.816036 0.578001i \(-0.803833\pi\)
0.816036 0.578001i \(-0.196167\pi\)
\(618\) 0 0
\(619\) −6240.33 −0.405202 −0.202601 0.979261i \(-0.564939\pi\)
−0.202601 + 0.979261i \(0.564939\pi\)
\(620\) 0 0
\(621\) −10581.8 −0.683788
\(622\) 0 0
\(623\) 4564.42i 0.293531i
\(624\) 0 0
\(625\) 10441.6 11623.8i 0.668264 0.743924i
\(626\) 0 0
\(627\) 39.2539i 0.00250024i
\(628\) 0 0
\(629\) 1061.03 0.0672589
\(630\) 0 0
\(631\) 25887.7 1.63323 0.816617 0.577179i \(-0.195847\pi\)
0.816617 + 0.577179i \(0.195847\pi\)
\(632\) 0 0
\(633\) 8108.65i 0.509147i
\(634\) 0 0
\(635\) −2099.94 + 446.994i −0.131234 + 0.0279345i
\(636\) 0 0
\(637\) 3140.97i 0.195369i
\(638\) 0 0
\(639\) −12935.0 −0.800783
\(640\) 0 0
\(641\) 18798.4 1.15834 0.579168 0.815208i \(-0.303378\pi\)
0.579168 + 0.815208i \(0.303378\pi\)
\(642\) 0 0
\(643\) 2287.70i 0.140308i 0.997536 + 0.0701541i \(0.0223491\pi\)
−0.997536 + 0.0701541i \(0.977651\pi\)
\(644\) 0 0
\(645\) 780.503 + 3666.73i 0.0476469 + 0.223841i
\(646\) 0 0
\(647\) 1769.31i 0.107510i 0.998554 + 0.0537548i \(0.0171189\pi\)
−0.998554 + 0.0537548i \(0.982881\pi\)
\(648\) 0 0
\(649\) 17345.2 1.04909
\(650\) 0 0
\(651\) −1754.03 −0.105600
\(652\) 0 0
\(653\) 3891.48i 0.233209i 0.993178 + 0.116604i \(0.0372010\pi\)
−0.993178 + 0.116604i \(0.962799\pi\)
\(654\) 0 0
\(655\) 4848.38 + 22777.2i 0.289224 + 1.35875i
\(656\) 0 0
\(657\) 4025.96i 0.239068i
\(658\) 0 0
\(659\) 20097.6 1.18800 0.594001 0.804465i \(-0.297548\pi\)
0.594001 + 0.804465i \(0.297548\pi\)
\(660\) 0 0
\(661\) −27167.9 −1.59865 −0.799326 0.600898i \(-0.794810\pi\)
−0.799326 + 0.600898i \(0.794810\pi\)
\(662\) 0 0
\(663\) 3442.99i 0.201681i
\(664\) 0 0
\(665\) 60.6589 12.9119i 0.00353722 0.000752937i
\(666\) 0 0
\(667\) 25414.0i 1.47531i
\(668\) 0 0
\(669\) −4579.91 −0.264678
\(670\) 0 0
\(671\) 14679.4 0.844548
\(672\) 0 0
\(673\) 25909.7i 1.48402i 0.670389 + 0.742010i \(0.266127\pi\)
−0.670389 + 0.742010i \(0.733873\pi\)
\(674\) 0 0
\(675\) 4960.15 + 11123.2i 0.282839 + 0.634271i
\(676\) 0 0
\(677\) 4359.22i 0.247472i −0.992315 0.123736i \(-0.960512\pi\)
0.992315 0.123736i \(-0.0394875\pi\)
\(678\) 0 0
\(679\) 3610.00 0.204034
\(680\) 0 0
\(681\) 1138.18 0.0640458
\(682\) 0 0
\(683\) 29721.9i 1.66512i −0.553937 0.832559i \(-0.686875\pi\)
0.553937 0.832559i \(-0.313125\pi\)
\(684\) 0 0
\(685\) 854.826 181.959i 0.0476806 0.0101493i
\(686\) 0 0
\(687\) 8959.10i 0.497541i
\(688\) 0 0
\(689\) 9232.60 0.510499
\(690\) 0 0
\(691\) 4929.13 0.271365 0.135682 0.990752i \(-0.456677\pi\)
0.135682 + 0.990752i \(0.456677\pi\)
\(692\) 0 0
\(693\) 4154.95i 0.227754i
\(694\) 0 0
\(695\) −3244.05 15240.2i −0.177056 0.831791i
\(696\) 0 0
\(697\) 11167.1i 0.606866i
\(698\) 0 0
\(699\) −9930.51 −0.537348
\(700\) 0 0
\(701\) −19358.8 −1.04304 −0.521520 0.853239i \(-0.674635\pi\)
−0.521520 + 0.853239i \(0.674635\pi\)
\(702\) 0 0
\(703\) 30.3589i 0.00162874i
\(704\) 0 0
\(705\) −934.208 4388.82i −0.0499068 0.234457i
\(706\) 0 0
\(707\) 3754.38i 0.199714i
\(708\) 0 0
\(709\) 17186.3 0.910359 0.455180 0.890400i \(-0.349575\pi\)
0.455180 + 0.890400i \(0.349575\pi\)
\(710\) 0 0
\(711\) 1843.51 0.0972392
\(712\) 0 0
\(713\) 14032.4i 0.737049i
\(714\) 0 0
\(715\) 17904.2 3811.10i 0.936473 0.199339i
\(716\) 0 0
\(717\) 2186.68i 0.113896i
\(718\) 0 0
\(719\) −15107.3 −0.783598 −0.391799 0.920051i \(-0.628147\pi\)
−0.391799 + 0.920051i \(0.628147\pi\)
\(720\) 0 0
\(721\) 2671.85 0.138010
\(722\) 0 0
\(723\) 6883.91i 0.354102i
\(724\) 0 0
\(725\) −26714.3 + 11912.6i −1.36848 + 0.610240i
\(726\) 0 0
\(727\) 15840.9i 0.808124i −0.914732 0.404062i \(-0.867598\pi\)
0.914732 0.404062i \(-0.132402\pi\)
\(728\) 0 0
\(729\) 5088.04 0.258499
\(730\) 0 0
\(731\) 4788.35 0.242276
\(732\) 0 0
\(733\) 27639.7i 1.39276i −0.717671 0.696382i \(-0.754792\pi\)
0.717671 0.696382i \(-0.245208\pi\)
\(734\) 0 0
\(735\) 1039.18 221.202i 0.0521509 0.0111009i
\(736\) 0 0
\(737\) 13170.4i 0.658263i
\(738\) 0 0
\(739\) 34874.4 1.73596 0.867982 0.496597i \(-0.165417\pi\)
0.867982 + 0.496597i \(0.165417\pi\)
\(740\) 0 0
\(741\) −98.5136 −0.00488392
\(742\) 0 0
\(743\) 27686.7i 1.36706i 0.729922 + 0.683530i \(0.239556\pi\)
−0.729922 + 0.683530i \(0.760444\pi\)
\(744\) 0 0
\(745\) 75.6510 + 355.401i 0.00372032 + 0.0174777i
\(746\) 0 0
\(747\) 24251.1i 1.18782i
\(748\) 0 0
\(749\) 9667.83 0.471635
\(750\) 0 0
\(751\) −4806.85 −0.233561 −0.116781 0.993158i \(-0.537257\pi\)
−0.116781 + 0.993158i \(0.537257\pi\)
\(752\) 0 0
\(753\) 9148.45i 0.442747i
\(754\) 0 0
\(755\) 1086.49 + 5104.21i 0.0523726 + 0.246041i
\(756\) 0 0
\(757\) 40166.6i 1.92851i 0.264983 + 0.964253i \(0.414634\pi\)
−0.264983 + 0.964253i \(0.585366\pi\)
\(758\) 0 0
\(759\) 5379.90 0.257283
\(760\) 0 0
\(761\) 25912.3 1.23432 0.617162 0.786836i \(-0.288282\pi\)
0.617162 + 0.786836i \(0.288282\pi\)
\(762\) 0 0
\(763\) 2734.07i 0.129725i
\(764\) 0 0
\(765\) 7038.01 1498.12i 0.332627 0.0708034i
\(766\) 0 0
\(767\) 43530.4i 2.04927i
\(768\) 0 0
\(769\) 23231.3 1.08939 0.544697 0.838633i \(-0.316645\pi\)
0.544697 + 0.838633i \(0.316645\pi\)
\(770\) 0 0
\(771\) −12141.2 −0.567125
\(772\) 0 0
\(773\) 836.306i 0.0389131i 0.999811 + 0.0194566i \(0.00619360\pi\)
−0.999811 + 0.0194566i \(0.993806\pi\)
\(774\) 0 0
\(775\) 14750.4 6577.58i 0.683675 0.304869i
\(776\) 0 0
\(777\) 520.096i 0.0240133i
\(778\) 0 0
\(779\) −319.523 −0.0146959
\(780\) 0 0
\(781\) 14217.0 0.651374
\(782\) 0 0
\(783\) 22799.2i 1.04058i
\(784\) 0 0
\(785\) −18300.3 + 3895.43i −0.832060 + 0.177113i
\(786\) 0 0
\(787\) 31945.6i 1.44693i 0.690359 + 0.723467i \(0.257453\pi\)
−0.690359 + 0.723467i \(0.742547\pi\)
\(788\) 0 0
\(789\) 11157.4 0.503438
\(790\) 0 0
\(791\) −11502.1 −0.517024
\(792\) 0 0
\(793\) 36840.2i 1.64973i
\(794\) 0 0