Properties

Label 560.4.g.f.449.1
Level $560$
Weight $4$
Character 560.449
Analytic conductor $33.041$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(449,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.449");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.1
Root \(1.85474i\) of defining polynomial
Character \(\chi\) \(=\) 560.449
Dual form 560.4.g.f.449.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.98858i q^{3} +(3.91321 + 10.4731i) q^{5} +7.00000i q^{7} -53.7945 q^{9} -37.4408 q^{11} +3.96370i q^{13} +(94.1387 - 35.1742i) q^{15} -51.6780i q^{17} +25.9323 q^{19} +62.9200 q^{21} +173.454i q^{23} +(-94.3736 + 81.9673i) q^{25} +240.845i q^{27} +245.676 q^{29} +172.074 q^{31} +336.539i q^{33} +(-73.3120 + 27.3925i) q^{35} +250.699i q^{37} +35.6281 q^{39} -48.8649 q^{41} +143.612i q^{43} +(-210.509 - 563.398i) q^{45} -36.6415i q^{47} -49.0000 q^{49} -464.511 q^{51} +645.286i q^{53} +(-146.514 - 392.123i) q^{55} -233.094i q^{57} +395.495 q^{59} +47.5130 q^{61} -376.562i q^{63} +(-41.5125 + 15.5108i) q^{65} +263.189i q^{67} +1559.11 q^{69} +268.177 q^{71} +199.757i q^{73} +(736.769 + 848.284i) q^{75} -262.085i q^{77} +473.640 q^{79} +712.399 q^{81} +72.7028i q^{83} +(541.231 - 202.227i) q^{85} -2208.28i q^{87} +1552.25 q^{89} -27.7459 q^{91} -1546.70i q^{93} +(101.478 + 271.593i) q^{95} -243.338i q^{97} +2014.11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 6 q^{5} - 46 q^{9} - 84 q^{11} - 8 q^{15} - 72 q^{19} + 140 q^{21} - 362 q^{25} + 88 q^{29} - 120 q^{31} + 28 q^{35} - 212 q^{39} - 852 q^{41} - 510 q^{45} - 490 q^{49} - 1276 q^{51} + 1136 q^{55}+ \cdots + 5304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.98858i 1.72985i −0.501899 0.864926i \(-0.667365\pi\)
0.501899 0.864926i \(-0.332635\pi\)
\(4\) 0 0
\(5\) 3.91321 + 10.4731i 0.350008 + 0.936747i
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) −53.7945 −1.99239
\(10\) 0 0
\(11\) −37.4408 −1.02626 −0.513128 0.858312i \(-0.671513\pi\)
−0.513128 + 0.858312i \(0.671513\pi\)
\(12\) 0 0
\(13\) 3.96370i 0.0845641i 0.999106 + 0.0422821i \(0.0134628\pi\)
−0.999106 + 0.0422821i \(0.986537\pi\)
\(14\) 0 0
\(15\) 94.1387 35.1742i 1.62043 0.605463i
\(16\) 0 0
\(17\) 51.6780i 0.737279i −0.929572 0.368640i \(-0.879824\pi\)
0.929572 0.368640i \(-0.120176\pi\)
\(18\) 0 0
\(19\) 25.9323 0.313120 0.156560 0.987668i \(-0.449960\pi\)
0.156560 + 0.987668i \(0.449960\pi\)
\(20\) 0 0
\(21\) 62.9200 0.653823
\(22\) 0 0
\(23\) 173.454i 1.57251i 0.617902 + 0.786255i \(0.287983\pi\)
−0.617902 + 0.786255i \(0.712017\pi\)
\(24\) 0 0
\(25\) −94.3736 + 81.9673i −0.754988 + 0.655738i
\(26\) 0 0
\(27\) 240.845i 1.71669i
\(28\) 0 0
\(29\) 245.676 1.57314 0.786568 0.617503i \(-0.211856\pi\)
0.786568 + 0.617503i \(0.211856\pi\)
\(30\) 0 0
\(31\) 172.074 0.996951 0.498475 0.866904i \(-0.333893\pi\)
0.498475 + 0.866904i \(0.333893\pi\)
\(32\) 0 0
\(33\) 336.539i 1.77527i
\(34\) 0 0
\(35\) −73.3120 + 27.3925i −0.354057 + 0.132291i
\(36\) 0 0
\(37\) 250.699i 1.11391i 0.830543 + 0.556954i \(0.188030\pi\)
−0.830543 + 0.556954i \(0.811970\pi\)
\(38\) 0 0
\(39\) 35.6281 0.146283
\(40\) 0 0
\(41\) −48.8649 −0.186132 −0.0930661 0.995660i \(-0.529667\pi\)
−0.0930661 + 0.995660i \(0.529667\pi\)
\(42\) 0 0
\(43\) 143.612i 0.509317i 0.967031 + 0.254658i \(0.0819630\pi\)
−0.967031 + 0.254658i \(0.918037\pi\)
\(44\) 0 0
\(45\) −210.509 563.398i −0.697353 1.86636i
\(46\) 0 0
\(47\) 36.6415i 0.113717i −0.998382 0.0568587i \(-0.981892\pi\)
0.998382 0.0568587i \(-0.0181085\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −464.511 −1.27538
\(52\) 0 0
\(53\) 645.286i 1.67239i 0.548430 + 0.836196i \(0.315226\pi\)
−0.548430 + 0.836196i \(0.684774\pi\)
\(54\) 0 0
\(55\) −146.514 392.123i −0.359198 0.961342i
\(56\) 0 0
\(57\) 233.094i 0.541651i
\(58\) 0 0
\(59\) 395.495 0.872696 0.436348 0.899778i \(-0.356272\pi\)
0.436348 + 0.899778i \(0.356272\pi\)
\(60\) 0 0
\(61\) 47.5130 0.0997282 0.0498641 0.998756i \(-0.484121\pi\)
0.0498641 + 0.998756i \(0.484121\pi\)
\(62\) 0 0
\(63\) 376.562i 0.753053i
\(64\) 0 0
\(65\) −41.5125 + 15.5108i −0.0792152 + 0.0295981i
\(66\) 0 0
\(67\) 263.189i 0.479906i 0.970785 + 0.239953i \(0.0771320\pi\)
−0.970785 + 0.239953i \(0.922868\pi\)
\(68\) 0 0
\(69\) 1559.11 2.72021
\(70\) 0 0
\(71\) 268.177 0.448264 0.224132 0.974559i \(-0.428045\pi\)
0.224132 + 0.974559i \(0.428045\pi\)
\(72\) 0 0
\(73\) 199.757i 0.320271i 0.987095 + 0.160136i \(0.0511931\pi\)
−0.987095 + 0.160136i \(0.948807\pi\)
\(74\) 0 0
\(75\) 736.769 + 848.284i 1.13433 + 1.30602i
\(76\) 0 0
\(77\) 262.085i 0.387888i
\(78\) 0 0
\(79\) 473.640 0.674540 0.337270 0.941408i \(-0.390497\pi\)
0.337270 + 0.941408i \(0.390497\pi\)
\(80\) 0 0
\(81\) 712.399 0.977227
\(82\) 0 0
\(83\) 72.7028i 0.0961466i 0.998844 + 0.0480733i \(0.0153081\pi\)
−0.998844 + 0.0480733i \(0.984692\pi\)
\(84\) 0 0
\(85\) 541.231 202.227i 0.690644 0.258054i
\(86\) 0 0
\(87\) 2208.28i 2.72129i
\(88\) 0 0
\(89\) 1552.25 1.84874 0.924369 0.381500i \(-0.124592\pi\)
0.924369 + 0.381500i \(0.124592\pi\)
\(90\) 0 0
\(91\) −27.7459 −0.0319622
\(92\) 0 0
\(93\) 1546.70i 1.72458i
\(94\) 0 0
\(95\) 101.478 + 271.593i 0.109594 + 0.293314i
\(96\) 0 0
\(97\) 243.338i 0.254714i −0.991857 0.127357i \(-0.959351\pi\)
0.991857 0.127357i \(-0.0406494\pi\)
\(98\) 0 0
\(99\) 2014.11 2.04470
\(100\) 0 0
\(101\) −1539.34 −1.51653 −0.758265 0.651946i \(-0.773953\pi\)
−0.758265 + 0.651946i \(0.773953\pi\)
\(102\) 0 0
\(103\) 948.628i 0.907486i −0.891133 0.453743i \(-0.850088\pi\)
0.891133 0.453743i \(-0.149912\pi\)
\(104\) 0 0
\(105\) 246.219 + 658.971i 0.228843 + 0.612466i
\(106\) 0 0
\(107\) 863.983i 0.780602i 0.920687 + 0.390301i \(0.127629\pi\)
−0.920687 + 0.390301i \(0.872371\pi\)
\(108\) 0 0
\(109\) −886.319 −0.778844 −0.389422 0.921060i \(-0.627325\pi\)
−0.389422 + 0.921060i \(0.627325\pi\)
\(110\) 0 0
\(111\) 2253.42 1.92690
\(112\) 0 0
\(113\) 765.957i 0.637657i 0.947812 + 0.318828i \(0.103289\pi\)
−0.947812 + 0.318828i \(0.896711\pi\)
\(114\) 0 0
\(115\) −1816.61 + 678.763i −1.47304 + 0.550391i
\(116\) 0 0
\(117\) 213.226i 0.168485i
\(118\) 0 0
\(119\) 361.746 0.278665
\(120\) 0 0
\(121\) 70.8116 0.0532018
\(122\) 0 0
\(123\) 439.226i 0.321981i
\(124\) 0 0
\(125\) −1227.76 667.633i −0.878513 0.477719i
\(126\) 0 0
\(127\) 505.042i 0.352876i 0.984312 + 0.176438i \(0.0564575\pi\)
−0.984312 + 0.176438i \(0.943543\pi\)
\(128\) 0 0
\(129\) 1290.87 0.881043
\(130\) 0 0
\(131\) −672.930 −0.448811 −0.224405 0.974496i \(-0.572044\pi\)
−0.224405 + 0.974496i \(0.572044\pi\)
\(132\) 0 0
\(133\) 181.526i 0.118348i
\(134\) 0 0
\(135\) −2522.40 + 942.476i −1.60810 + 0.600855i
\(136\) 0 0
\(137\) 1552.28i 0.968032i −0.875059 0.484016i \(-0.839178\pi\)
0.875059 0.484016i \(-0.160822\pi\)
\(138\) 0 0
\(139\) −1072.02 −0.654154 −0.327077 0.944998i \(-0.606064\pi\)
−0.327077 + 0.944998i \(0.606064\pi\)
\(140\) 0 0
\(141\) −329.355 −0.196714
\(142\) 0 0
\(143\) 148.404i 0.0867845i
\(144\) 0 0
\(145\) 961.384 + 2573.00i 0.550611 + 1.47363i
\(146\) 0 0
\(147\) 440.440i 0.247122i
\(148\) 0 0
\(149\) −645.936 −0.355149 −0.177574 0.984107i \(-0.556825\pi\)
−0.177574 + 0.984107i \(0.556825\pi\)
\(150\) 0 0
\(151\) −243.194 −0.131065 −0.0655326 0.997850i \(-0.520875\pi\)
−0.0655326 + 0.997850i \(0.520875\pi\)
\(152\) 0 0
\(153\) 2779.99i 1.46895i
\(154\) 0 0
\(155\) 673.363 + 1802.16i 0.348941 + 0.933890i
\(156\) 0 0
\(157\) 1552.56i 0.789223i 0.918848 + 0.394611i \(0.129121\pi\)
−0.918848 + 0.394611i \(0.870879\pi\)
\(158\) 0 0
\(159\) 5800.20 2.89299
\(160\) 0 0
\(161\) −1214.18 −0.594353
\(162\) 0 0
\(163\) 2553.65i 1.22710i −0.789656 0.613550i \(-0.789741\pi\)
0.789656 0.613550i \(-0.210259\pi\)
\(164\) 0 0
\(165\) −3524.63 + 1316.95i −1.66298 + 0.621360i
\(166\) 0 0
\(167\) 3573.14i 1.65568i 0.560966 + 0.827839i \(0.310430\pi\)
−0.560966 + 0.827839i \(0.689570\pi\)
\(168\) 0 0
\(169\) 2181.29 0.992849
\(170\) 0 0
\(171\) −1395.01 −0.623856
\(172\) 0 0
\(173\) 2234.71i 0.982090i 0.871134 + 0.491045i \(0.163385\pi\)
−0.871134 + 0.491045i \(0.836615\pi\)
\(174\) 0 0
\(175\) −573.771 660.615i −0.247846 0.285359i
\(176\) 0 0
\(177\) 3554.94i 1.50964i
\(178\) 0 0
\(179\) −1830.53 −0.764361 −0.382180 0.924088i \(-0.624827\pi\)
−0.382180 + 0.924088i \(0.624827\pi\)
\(180\) 0 0
\(181\) 2437.22 1.00087 0.500433 0.865775i \(-0.333174\pi\)
0.500433 + 0.865775i \(0.333174\pi\)
\(182\) 0 0
\(183\) 427.075i 0.172515i
\(184\) 0 0
\(185\) −2625.60 + 981.037i −1.04345 + 0.389877i
\(186\) 0 0
\(187\) 1934.86i 0.756638i
\(188\) 0 0
\(189\) −1685.91 −0.648847
\(190\) 0 0
\(191\) −5079.50 −1.92429 −0.962145 0.272538i \(-0.912137\pi\)
−0.962145 + 0.272538i \(0.912137\pi\)
\(192\) 0 0
\(193\) 2805.09i 1.04619i −0.852274 0.523095i \(-0.824777\pi\)
0.852274 0.523095i \(-0.175223\pi\)
\(194\) 0 0
\(195\) 139.420 + 373.138i 0.0512004 + 0.137031i
\(196\) 0 0
\(197\) 3107.79i 1.12396i 0.827149 + 0.561982i \(0.189961\pi\)
−0.827149 + 0.561982i \(0.810039\pi\)
\(198\) 0 0
\(199\) −2145.63 −0.764321 −0.382161 0.924096i \(-0.624820\pi\)
−0.382161 + 0.924096i \(0.624820\pi\)
\(200\) 0 0
\(201\) 2365.70 0.830166
\(202\) 0 0
\(203\) 1719.73i 0.594590i
\(204\) 0 0
\(205\) −191.219 511.769i −0.0651478 0.174359i
\(206\) 0 0
\(207\) 9330.89i 3.13305i
\(208\) 0 0
\(209\) −970.925 −0.321341
\(210\) 0 0
\(211\) −2837.45 −0.925772 −0.462886 0.886418i \(-0.653186\pi\)
−0.462886 + 0.886418i \(0.653186\pi\)
\(212\) 0 0
\(213\) 2410.53i 0.775430i
\(214\) 0 0
\(215\) −1504.07 + 561.984i −0.477101 + 0.178265i
\(216\) 0 0
\(217\) 1204.52i 0.376812i
\(218\) 0 0
\(219\) 1795.53 0.554022
\(220\) 0 0
\(221\) 204.836 0.0623474
\(222\) 0 0
\(223\) 4741.40i 1.42380i 0.702280 + 0.711901i \(0.252166\pi\)
−0.702280 + 0.711901i \(0.747834\pi\)
\(224\) 0 0
\(225\) 5076.78 4409.39i 1.50423 1.30649i
\(226\) 0 0
\(227\) 960.790i 0.280925i −0.990086 0.140462i \(-0.955141\pi\)
0.990086 0.140462i \(-0.0448589\pi\)
\(228\) 0 0
\(229\) −744.006 −0.214696 −0.107348 0.994222i \(-0.534236\pi\)
−0.107348 + 0.994222i \(0.534236\pi\)
\(230\) 0 0
\(231\) −2355.78 −0.670990
\(232\) 0 0
\(233\) 1550.56i 0.435968i 0.975952 + 0.217984i \(0.0699480\pi\)
−0.975952 + 0.217984i \(0.930052\pi\)
\(234\) 0 0
\(235\) 383.752 143.386i 0.106524 0.0398020i
\(236\) 0 0
\(237\) 4257.35i 1.16685i
\(238\) 0 0
\(239\) 2775.00 0.751045 0.375523 0.926813i \(-0.377463\pi\)
0.375523 + 0.926813i \(0.377463\pi\)
\(240\) 0 0
\(241\) −2550.20 −0.681630 −0.340815 0.940130i \(-0.610703\pi\)
−0.340815 + 0.940130i \(0.610703\pi\)
\(242\) 0 0
\(243\) 99.3558i 0.0262291i
\(244\) 0 0
\(245\) −191.747 513.184i −0.0500012 0.133821i
\(246\) 0 0
\(247\) 102.788i 0.0264787i
\(248\) 0 0
\(249\) 653.494 0.166319
\(250\) 0 0
\(251\) 2933.00 0.737568 0.368784 0.929515i \(-0.379774\pi\)
0.368784 + 0.929515i \(0.379774\pi\)
\(252\) 0 0
\(253\) 6494.26i 1.61380i
\(254\) 0 0
\(255\) −1817.73 4864.90i −0.446395 1.19471i
\(256\) 0 0
\(257\) 2725.22i 0.661459i −0.943726 0.330729i \(-0.892705\pi\)
0.943726 0.330729i \(-0.107295\pi\)
\(258\) 0 0
\(259\) −1754.89 −0.421018
\(260\) 0 0
\(261\) −13216.0 −3.13430
\(262\) 0 0
\(263\) 3027.26i 0.709767i −0.934910 0.354884i \(-0.884520\pi\)
0.934910 0.354884i \(-0.115480\pi\)
\(264\) 0 0
\(265\) −6758.17 + 2525.14i −1.56661 + 0.585351i
\(266\) 0 0
\(267\) 13952.5i 3.19804i
\(268\) 0 0
\(269\) 1442.46 0.326946 0.163473 0.986548i \(-0.447730\pi\)
0.163473 + 0.986548i \(0.447730\pi\)
\(270\) 0 0
\(271\) 6464.45 1.44903 0.724516 0.689258i \(-0.242063\pi\)
0.724516 + 0.689258i \(0.242063\pi\)
\(272\) 0 0
\(273\) 249.396i 0.0552900i
\(274\) 0 0
\(275\) 3533.42 3068.92i 0.774812 0.672955i
\(276\) 0 0
\(277\) 876.614i 0.190147i 0.995470 + 0.0950733i \(0.0303086\pi\)
−0.995470 + 0.0950733i \(0.969691\pi\)
\(278\) 0 0
\(279\) −9256.66 −1.98631
\(280\) 0 0
\(281\) 6252.19 1.32731 0.663655 0.748038i \(-0.269004\pi\)
0.663655 + 0.748038i \(0.269004\pi\)
\(282\) 0 0
\(283\) 2250.07i 0.472625i 0.971677 + 0.236312i \(0.0759389\pi\)
−0.971677 + 0.236312i \(0.924061\pi\)
\(284\) 0 0
\(285\) 2441.23 912.147i 0.507390 0.189582i
\(286\) 0 0
\(287\) 342.054i 0.0703513i
\(288\) 0 0
\(289\) 2242.39 0.456419
\(290\) 0 0
\(291\) −2187.26 −0.440617
\(292\) 0 0
\(293\) 5917.86i 1.17995i 0.807422 + 0.589975i \(0.200862\pi\)
−0.807422 + 0.589975i \(0.799138\pi\)
\(294\) 0 0
\(295\) 1547.66 + 4142.08i 0.305451 + 0.817495i
\(296\) 0 0
\(297\) 9017.41i 1.76176i
\(298\) 0 0
\(299\) −687.522 −0.132978
\(300\) 0 0
\(301\) −1005.28 −0.192504
\(302\) 0 0
\(303\) 13836.4i 2.62337i
\(304\) 0 0
\(305\) 185.929 + 497.611i 0.0349057 + 0.0934200i
\(306\) 0 0
\(307\) 9458.47i 1.75838i −0.476469 0.879191i \(-0.658084\pi\)
0.476469 0.879191i \(-0.341916\pi\)
\(308\) 0 0
\(309\) −8526.81 −1.56982
\(310\) 0 0
\(311\) 7576.78 1.38148 0.690739 0.723104i \(-0.257285\pi\)
0.690739 + 0.723104i \(0.257285\pi\)
\(312\) 0 0
\(313\) 9172.41i 1.65641i 0.560427 + 0.828204i \(0.310637\pi\)
−0.560427 + 0.828204i \(0.689363\pi\)
\(314\) 0 0
\(315\) 3943.79 1473.57i 0.705419 0.263575i
\(316\) 0 0
\(317\) 3077.94i 0.545345i −0.962107 0.272672i \(-0.912092\pi\)
0.962107 0.272672i \(-0.0879075\pi\)
\(318\) 0 0
\(319\) −9198.31 −1.61444
\(320\) 0 0
\(321\) 7765.98 1.35033
\(322\) 0 0
\(323\) 1340.13i 0.230857i
\(324\) 0 0
\(325\) −324.894 374.069i −0.0554519 0.0638449i
\(326\) 0 0
\(327\) 7966.75i 1.34728i
\(328\) 0 0
\(329\) 256.491 0.0429811
\(330\) 0 0
\(331\) −3234.50 −0.537113 −0.268557 0.963264i \(-0.586547\pi\)
−0.268557 + 0.963264i \(0.586547\pi\)
\(332\) 0 0
\(333\) 13486.2i 2.21934i
\(334\) 0 0
\(335\) −2756.42 + 1029.92i −0.449550 + 0.167971i
\(336\) 0 0
\(337\) 3777.84i 0.610658i −0.952247 0.305329i \(-0.901234\pi\)
0.952247 0.305329i \(-0.0987665\pi\)
\(338\) 0 0
\(339\) 6884.87 1.10305
\(340\) 0 0
\(341\) −6442.60 −1.02313
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 6101.12 + 16328.8i 0.952096 + 2.54815i
\(346\) 0 0
\(347\) 8244.08i 1.27540i 0.770283 + 0.637702i \(0.220115\pi\)
−0.770283 + 0.637702i \(0.779885\pi\)
\(348\) 0 0
\(349\) −7173.78 −1.10030 −0.550148 0.835067i \(-0.685429\pi\)
−0.550148 + 0.835067i \(0.685429\pi\)
\(350\) 0 0
\(351\) −954.637 −0.145170
\(352\) 0 0
\(353\) 4191.51i 0.631987i 0.948761 + 0.315994i \(0.102338\pi\)
−0.948761 + 0.315994i \(0.897662\pi\)
\(354\) 0 0
\(355\) 1049.43 + 2808.65i 0.156896 + 0.419910i
\(356\) 0 0
\(357\) 3251.58i 0.482050i
\(358\) 0 0
\(359\) −3136.29 −0.461078 −0.230539 0.973063i \(-0.574049\pi\)
−0.230539 + 0.973063i \(0.574049\pi\)
\(360\) 0 0
\(361\) −6186.52 −0.901956
\(362\) 0 0
\(363\) 636.496i 0.0920313i
\(364\) 0 0
\(365\) −2092.08 + 781.691i −0.300013 + 0.112098i
\(366\) 0 0
\(367\) 1723.30i 0.245110i −0.992462 0.122555i \(-0.960891\pi\)
0.992462 0.122555i \(-0.0391088\pi\)
\(368\) 0 0
\(369\) 2628.67 0.370848
\(370\) 0 0
\(371\) −4517.00 −0.632105
\(372\) 0 0
\(373\) 2818.55i 0.391258i 0.980678 + 0.195629i \(0.0626748\pi\)
−0.980678 + 0.195629i \(0.937325\pi\)
\(374\) 0 0
\(375\) −6001.07 + 11035.8i −0.826384 + 1.51970i
\(376\) 0 0
\(377\) 973.788i 0.133031i
\(378\) 0 0
\(379\) −10466.1 −1.41849 −0.709246 0.704961i \(-0.750964\pi\)
−0.709246 + 0.704961i \(0.750964\pi\)
\(380\) 0 0
\(381\) 4539.61 0.610423
\(382\) 0 0
\(383\) 258.055i 0.0344282i 0.999852 + 0.0172141i \(0.00547969\pi\)
−0.999852 + 0.0172141i \(0.994520\pi\)
\(384\) 0 0
\(385\) 2744.86 1025.60i 0.363353 0.135764i
\(386\) 0 0
\(387\) 7725.54i 1.01476i
\(388\) 0 0
\(389\) −4573.87 −0.596156 −0.298078 0.954542i \(-0.596346\pi\)
−0.298078 + 0.954542i \(0.596346\pi\)
\(390\) 0 0
\(391\) 8963.77 1.15938
\(392\) 0 0
\(393\) 6048.69i 0.776376i
\(394\) 0 0
\(395\) 1853.45 + 4960.50i 0.236094 + 0.631873i
\(396\) 0 0
\(397\) 3624.55i 0.458215i −0.973401 0.229107i \(-0.926419\pi\)
0.973401 0.229107i \(-0.0735807\pi\)
\(398\) 0 0
\(399\) 1631.66 0.204725
\(400\) 0 0
\(401\) 6358.32 0.791819 0.395910 0.918289i \(-0.370429\pi\)
0.395910 + 0.918289i \(0.370429\pi\)
\(402\) 0 0
\(403\) 682.052i 0.0843063i
\(404\) 0 0
\(405\) 2787.77 + 7461.05i 0.342038 + 0.915414i
\(406\) 0 0
\(407\) 9386.35i 1.14316i
\(408\) 0 0
\(409\) 6536.39 0.790228 0.395114 0.918632i \(-0.370705\pi\)
0.395114 + 0.918632i \(0.370705\pi\)
\(410\) 0 0
\(411\) −13952.8 −1.67455
\(412\) 0 0
\(413\) 2768.47i 0.329848i
\(414\) 0 0
\(415\) −761.427 + 284.501i −0.0900650 + 0.0336521i
\(416\) 0 0
\(417\) 9635.91i 1.13159i
\(418\) 0 0
\(419\) 6333.56 0.738460 0.369230 0.929338i \(-0.379621\pi\)
0.369230 + 0.929338i \(0.379621\pi\)
\(420\) 0 0
\(421\) −8139.62 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(422\) 0 0
\(423\) 1971.11i 0.226569i
\(424\) 0 0
\(425\) 4235.90 + 4877.03i 0.483462 + 0.556637i
\(426\) 0 0
\(427\) 332.591i 0.0376937i
\(428\) 0 0
\(429\) −1333.94 −0.150124
\(430\) 0 0
\(431\) 14367.6 1.60571 0.802856 0.596173i \(-0.203313\pi\)
0.802856 + 0.596173i \(0.203313\pi\)
\(432\) 0 0
\(433\) 8399.05i 0.932176i −0.884738 0.466088i \(-0.845663\pi\)
0.884738 0.466088i \(-0.154337\pi\)
\(434\) 0 0
\(435\) 23127.6 8641.47i 2.54916 0.952475i
\(436\) 0 0
\(437\) 4498.07i 0.492384i
\(438\) 0 0
\(439\) −17860.8 −1.94180 −0.970901 0.239482i \(-0.923022\pi\)
−0.970901 + 0.239482i \(0.923022\pi\)
\(440\) 0 0
\(441\) 2635.93 0.284627
\(442\) 0 0
\(443\) 1901.57i 0.203942i −0.994787 0.101971i \(-0.967485\pi\)
0.994787 0.101971i \(-0.0325148\pi\)
\(444\) 0 0
\(445\) 6074.26 + 16256.9i 0.647074 + 1.73180i
\(446\) 0 0
\(447\) 5806.05i 0.614355i
\(448\) 0 0
\(449\) 5185.68 0.545050 0.272525 0.962149i \(-0.412141\pi\)
0.272525 + 0.962149i \(0.412141\pi\)
\(450\) 0 0
\(451\) 1829.54 0.191019
\(452\) 0 0
\(453\) 2185.97i 0.226723i
\(454\) 0 0
\(455\) −108.576 290.587i −0.0111870 0.0299405i
\(456\) 0 0
\(457\) 11198.8i 1.14630i 0.819451 + 0.573149i \(0.194278\pi\)
−0.819451 + 0.573149i \(0.805722\pi\)
\(458\) 0 0
\(459\) 12446.4 1.26568
\(460\) 0 0
\(461\) 17270.7 1.74485 0.872427 0.488744i \(-0.162545\pi\)
0.872427 + 0.488744i \(0.162545\pi\)
\(462\) 0 0
\(463\) 385.660i 0.0387109i −0.999813 0.0193554i \(-0.993839\pi\)
0.999813 0.0193554i \(-0.00616141\pi\)
\(464\) 0 0
\(465\) 16198.9 6052.58i 1.61549 0.603616i
\(466\) 0 0
\(467\) 5035.36i 0.498947i 0.968382 + 0.249474i \(0.0802576\pi\)
−0.968382 + 0.249474i \(0.919742\pi\)
\(468\) 0 0
\(469\) −1842.33 −0.181387
\(470\) 0 0
\(471\) 13955.3 1.36524
\(472\) 0 0
\(473\) 5376.94i 0.522689i
\(474\) 0 0
\(475\) −2447.32 + 2125.60i −0.236402 + 0.205324i
\(476\) 0 0
\(477\) 34712.8i 3.33206i
\(478\) 0 0
\(479\) −8681.99 −0.828163 −0.414082 0.910240i \(-0.635897\pi\)
−0.414082 + 0.910240i \(0.635897\pi\)
\(480\) 0 0
\(481\) −993.695 −0.0941967
\(482\) 0 0
\(483\) 10913.8i 1.02814i
\(484\) 0 0
\(485\) 2548.51 952.233i 0.238602 0.0891519i
\(486\) 0 0
\(487\) 890.476i 0.0828569i 0.999141 + 0.0414284i \(0.0131909\pi\)
−0.999141 + 0.0414284i \(0.986809\pi\)
\(488\) 0 0
\(489\) −22953.7 −2.12270
\(490\) 0 0
\(491\) −1562.48 −0.143613 −0.0718063 0.997419i \(-0.522876\pi\)
−0.0718063 + 0.997419i \(0.522876\pi\)
\(492\) 0 0
\(493\) 12696.1i 1.15984i
\(494\) 0 0
\(495\) 7881.63 + 21094.1i 0.715663 + 1.91537i
\(496\) 0 0
\(497\) 1877.24i 0.169428i
\(498\) 0 0
\(499\) 8234.33 0.738716 0.369358 0.929287i \(-0.379578\pi\)
0.369358 + 0.929287i \(0.379578\pi\)
\(500\) 0 0
\(501\) 32117.5 2.86408
\(502\) 0 0
\(503\) 72.5340i 0.00642969i −0.999995 0.00321484i \(-0.998977\pi\)
0.999995 0.00321484i \(-0.00102332\pi\)
\(504\) 0 0
\(505\) −6023.75 16121.7i −0.530798 1.42061i
\(506\) 0 0
\(507\) 19606.7i 1.71748i
\(508\) 0 0
\(509\) −7793.44 −0.678660 −0.339330 0.940667i \(-0.610200\pi\)
−0.339330 + 0.940667i \(0.610200\pi\)
\(510\) 0 0
\(511\) −1398.30 −0.121051
\(512\) 0 0
\(513\) 6245.65i 0.537529i
\(514\) 0 0
\(515\) 9935.12 3712.18i 0.850084 0.317628i
\(516\) 0 0
\(517\) 1371.89i 0.116703i
\(518\) 0 0
\(519\) 20086.8 1.69887
\(520\) 0 0
\(521\) 4645.42 0.390633 0.195316 0.980740i \(-0.437427\pi\)
0.195316 + 0.980740i \(0.437427\pi\)
\(522\) 0 0
\(523\) 8783.88i 0.734402i −0.930142 0.367201i \(-0.880316\pi\)
0.930142 0.367201i \(-0.119684\pi\)
\(524\) 0 0
\(525\) −5937.99 + 5157.38i −0.493629 + 0.428737i
\(526\) 0 0
\(527\) 8892.46i 0.735031i
\(528\) 0 0
\(529\) −17919.4 −1.47279
\(530\) 0 0
\(531\) −21275.5 −1.73875
\(532\) 0 0
\(533\) 193.686i 0.0157401i
\(534\) 0 0
\(535\) −9048.62 + 3380.95i −0.731226 + 0.273217i
\(536\) 0 0
\(537\) 16453.9i 1.32223i
\(538\) 0 0
\(539\) 1834.60 0.146608
\(540\) 0 0
\(541\) −7054.13 −0.560593 −0.280296 0.959913i \(-0.590433\pi\)
−0.280296 + 0.959913i \(0.590433\pi\)
\(542\) 0 0
\(543\) 21907.1i 1.73135i
\(544\) 0 0
\(545\) −3468.35 9282.55i −0.272602 0.729579i
\(546\) 0 0
\(547\) 5776.83i 0.451553i −0.974179 0.225776i \(-0.927508\pi\)
0.974179 0.225776i \(-0.0724919\pi\)
\(548\) 0 0
\(549\) −2555.94 −0.198697
\(550\) 0 0
\(551\) 6370.95 0.492580
\(552\) 0 0
\(553\) 3315.48i 0.254952i
\(554\) 0 0
\(555\) 8818.12 + 23600.4i 0.674430 + 1.80501i
\(556\) 0 0
\(557\) 20562.6i 1.56421i −0.623145 0.782106i \(-0.714146\pi\)
0.623145 0.782106i \(-0.285854\pi\)
\(558\) 0 0
\(559\) −569.235 −0.0430699
\(560\) 0 0
\(561\) 17391.7 1.30887
\(562\) 0 0
\(563\) 24009.5i 1.79730i 0.438666 + 0.898650i \(0.355451\pi\)
−0.438666 + 0.898650i \(0.644549\pi\)
\(564\) 0 0
\(565\) −8021.98 + 2997.35i −0.597323 + 0.223185i
\(566\) 0 0
\(567\) 4986.79i 0.369357i
\(568\) 0 0
\(569\) 24157.5 1.77985 0.889925 0.456107i \(-0.150757\pi\)
0.889925 + 0.456107i \(0.150757\pi\)
\(570\) 0 0
\(571\) 706.993 0.0518157 0.0259078 0.999664i \(-0.491752\pi\)
0.0259078 + 0.999664i \(0.491752\pi\)
\(572\) 0 0
\(573\) 45657.4i 3.32874i
\(574\) 0 0
\(575\) −14217.6 16369.5i −1.03115 1.18723i
\(576\) 0 0
\(577\) 16057.2i 1.15853i −0.815139 0.579265i \(-0.803340\pi\)
0.815139 0.579265i \(-0.196660\pi\)
\(578\) 0 0
\(579\) −25213.8 −1.80976
\(580\) 0 0
\(581\) −508.919 −0.0363400
\(582\) 0 0
\(583\) 24160.0i 1.71630i
\(584\) 0 0
\(585\) 2233.14 834.397i 0.157827 0.0589710i
\(586\) 0 0
\(587\) 8605.63i 0.605098i 0.953134 + 0.302549i \(0.0978376\pi\)
−0.953134 + 0.302549i \(0.902162\pi\)
\(588\) 0 0
\(589\) 4462.28 0.312165
\(590\) 0 0
\(591\) 27934.6 1.94429
\(592\) 0 0
\(593\) 20355.6i 1.40962i −0.709397 0.704809i \(-0.751033\pi\)
0.709397 0.704809i \(-0.248967\pi\)
\(594\) 0 0
\(595\) 1415.59 + 3788.62i 0.0975352 + 0.261039i
\(596\) 0 0
\(597\) 19286.2i 1.32216i
\(598\) 0 0
\(599\) 22635.7 1.54402 0.772010 0.635610i \(-0.219251\pi\)
0.772010 + 0.635610i \(0.219251\pi\)
\(600\) 0 0
\(601\) −22553.8 −1.53077 −0.765383 0.643575i \(-0.777450\pi\)
−0.765383 + 0.643575i \(0.777450\pi\)
\(602\) 0 0
\(603\) 14158.1i 0.956159i
\(604\) 0 0
\(605\) 277.101 + 741.620i 0.0186211 + 0.0498366i
\(606\) 0 0
\(607\) 17534.2i 1.17248i −0.810139 0.586238i \(-0.800608\pi\)
0.810139 0.586238i \(-0.199392\pi\)
\(608\) 0 0
\(609\) 15458.0 1.02855
\(610\) 0 0
\(611\) 145.236 0.00961641
\(612\) 0 0
\(613\) 10445.5i 0.688238i −0.938926 0.344119i \(-0.888178\pi\)
0.938926 0.344119i \(-0.111822\pi\)
\(614\) 0 0
\(615\) −4600.08 + 1718.78i −0.301615 + 0.112696i
\(616\) 0 0
\(617\) 13218.9i 0.862516i −0.902229 0.431258i \(-0.858070\pi\)
0.902229 0.431258i \(-0.141930\pi\)
\(618\) 0 0
\(619\) 23438.9 1.52195 0.760976 0.648780i \(-0.224720\pi\)
0.760976 + 0.648780i \(0.224720\pi\)
\(620\) 0 0
\(621\) −41775.5 −2.69951
\(622\) 0 0
\(623\) 10865.7i 0.698757i
\(624\) 0 0
\(625\) 2187.74 15471.1i 0.140015 0.990149i
\(626\) 0 0
\(627\) 8727.23i 0.555873i
\(628\) 0 0
\(629\) 12955.6 0.821262
\(630\) 0 0
\(631\) 874.004 0.0551403 0.0275702 0.999620i \(-0.491223\pi\)
0.0275702 + 0.999620i \(0.491223\pi\)
\(632\) 0 0
\(633\) 25504.6i 1.60145i
\(634\) 0 0
\(635\) −5289.38 + 1976.34i −0.330555 + 0.123509i
\(636\) 0 0
\(637\) 194.222i 0.0120806i
\(638\) 0 0
\(639\) −14426.4 −0.893116
\(640\) 0 0
\(641\) 23977.0 1.47743 0.738715 0.674017i \(-0.235433\pi\)
0.738715 + 0.674017i \(0.235433\pi\)
\(642\) 0 0
\(643\) 27698.0i 1.69876i 0.527782 + 0.849380i \(0.323024\pi\)
−0.527782 + 0.849380i \(0.676976\pi\)
\(644\) 0 0
\(645\) 5051.44 + 13519.4i 0.308372 + 0.825314i
\(646\) 0 0
\(647\) 10965.1i 0.666282i −0.942877 0.333141i \(-0.891891\pi\)
0.942877 0.333141i \(-0.108109\pi\)
\(648\) 0 0
\(649\) −14807.6 −0.895610
\(650\) 0 0
\(651\) 10826.9 0.651829
\(652\) 0 0
\(653\) 12336.2i 0.739285i −0.929174 0.369642i \(-0.879480\pi\)
0.929174 0.369642i \(-0.120520\pi\)
\(654\) 0 0
\(655\) −2633.32 7047.70i −0.157087 0.420422i
\(656\) 0 0
\(657\) 10745.8i 0.638105i
\(658\) 0 0
\(659\) −25275.6 −1.49408 −0.747040 0.664779i \(-0.768526\pi\)
−0.747040 + 0.664779i \(0.768526\pi\)
\(660\) 0 0
\(661\) −4447.92 −0.261731 −0.130865 0.991400i \(-0.541776\pi\)
−0.130865 + 0.991400i \(0.541776\pi\)
\(662\) 0 0
\(663\) 1841.19i 0.107852i
\(664\) 0 0
\(665\) −1901.15 + 710.349i −0.110862 + 0.0414228i
\(666\) 0 0
\(667\) 42613.6i 2.47377i
\(668\) 0 0
\(669\) 42618.5 2.46297
\(670\) 0 0
\(671\) −1778.92 −0.102347
\(672\) 0 0
\(673\) 30358.9i 1.73885i 0.494061 + 0.869427i \(0.335512\pi\)
−0.494061 + 0.869427i \(0.664488\pi\)
\(674\) 0 0
\(675\) −19741.4 22729.4i −1.12570 1.29608i
\(676\) 0 0
\(677\) 6916.48i 0.392647i −0.980539 0.196324i \(-0.937100\pi\)
0.980539 0.196324i \(-0.0629003\pi\)
\(678\) 0 0
\(679\) 1703.37 0.0962728
\(680\) 0 0
\(681\) −8636.14 −0.485958
\(682\) 0 0
\(683\) 4532.72i 0.253938i −0.991907 0.126969i \(-0.959475\pi\)
0.991907 0.126969i \(-0.0405249\pi\)
\(684\) 0 0
\(685\) 16257.3 6074.40i 0.906800 0.338819i
\(686\) 0 0
\(687\) 6687.56i 0.371392i
\(688\) 0 0
\(689\) −2557.72 −0.141424
\(690\) 0 0
\(691\) −27235.2 −1.49939 −0.749694 0.661785i \(-0.769799\pi\)
−0.749694 + 0.661785i \(0.769799\pi\)
\(692\) 0 0
\(693\) 14098.8i 0.772825i
\(694\) 0 0
\(695\) −4195.03 11227.4i −0.228959 0.612776i
\(696\) 0 0
\(697\) 2525.24i 0.137231i
\(698\) 0 0
\(699\) 13937.3 0.754160
\(700\) 0 0
\(701\) −17144.3 −0.923726 −0.461863 0.886951i \(-0.652819\pi\)
−0.461863 + 0.886951i \(0.652819\pi\)
\(702\) 0 0
\(703\) 6501.19i 0.348787i
\(704\) 0 0
\(705\) −1288.84 3449.39i −0.0688516 0.184271i
\(706\) 0 0
\(707\) 10775.3i 0.573195i
\(708\) 0 0
\(709\) −16724.1 −0.885877 −0.442939 0.896552i \(-0.646064\pi\)
−0.442939 + 0.896552i \(0.646064\pi\)
\(710\) 0 0
\(711\) −25479.2 −1.34395
\(712\) 0 0
\(713\) 29847.0i 1.56771i
\(714\) 0 0
\(715\) 1554.26 580.737i 0.0812951 0.0303753i
\(716\) 0 0
\(717\) 24943.3i 1.29920i
\(718\) 0 0
\(719\) 4308.66 0.223485 0.111743 0.993737i \(-0.464357\pi\)
0.111743 + 0.993737i \(0.464357\pi\)
\(720\) 0 0
\(721\) 6640.39 0.342997
\(722\) 0 0
\(723\) 22922.7i 1.17912i
\(724\) 0 0
\(725\) −23185.4 + 20137.4i −1.18770 + 1.03157i
\(726\) 0 0
\(727\) 29435.6i 1.50166i −0.660496 0.750830i \(-0.729654\pi\)
0.660496 0.750830i \(-0.270346\pi\)
\(728\) 0 0
\(729\) 20127.8 1.02260
\(730\) 0 0
\(731\) 7421.58 0.375509
\(732\) 0 0
\(733\) 6587.69i 0.331954i −0.986130 0.165977i \(-0.946922\pi\)
0.986130 0.165977i \(-0.0530777\pi\)
\(734\) 0 0
\(735\) −4612.80 + 1723.54i −0.231490 + 0.0864947i
\(736\) 0 0
\(737\) 9854.01i 0.492506i
\(738\) 0 0
\(739\) 3684.46 0.183404 0.0917018 0.995787i \(-0.470769\pi\)
0.0917018 + 0.995787i \(0.470769\pi\)
\(740\) 0 0
\(741\) 923.917 0.0458042
\(742\) 0 0
\(743\) 12271.9i 0.605940i −0.953000 0.302970i \(-0.902022\pi\)
0.953000 0.302970i \(-0.0979783\pi\)
\(744\) 0 0
\(745\) −2527.68 6764.98i −0.124305 0.332684i
\(746\) 0 0
\(747\) 3911.01i 0.191561i
\(748\) 0 0
\(749\) −6047.88 −0.295040
\(750\) 0 0
\(751\) 30871.0 1.50000 0.749999 0.661439i \(-0.230054\pi\)
0.749999 + 0.661439i \(0.230054\pi\)
\(752\) 0 0
\(753\) 26363.5i 1.27588i
\(754\) 0 0
\(755\) −951.669 2547.00i −0.0458739 0.122775i
\(756\) 0 0
\(757\) 11442.1i 0.549368i −0.961535 0.274684i \(-0.911427\pi\)
0.961535 0.274684i \(-0.0885732\pi\)
\(758\) 0 0
\(759\) −58374.2 −2.79163
\(760\) 0 0
\(761\) 14423.3 0.687048 0.343524 0.939144i \(-0.388379\pi\)
0.343524 + 0.939144i \(0.388379\pi\)
\(762\) 0 0
\(763\) 6204.23i 0.294375i
\(764\) 0 0
\(765\) −29115.3 + 10878.7i −1.37603 + 0.514144i
\(766\) 0 0
\(767\) 1567.63i 0.0737988i
\(768\) 0 0
\(769\) −26772.8 −1.25546 −0.627731 0.778430i \(-0.716016\pi\)
−0.627731 + 0.778430i \(0.716016\pi\)
\(770\) 0 0
\(771\) −24495.9 −1.14423
\(772\) 0 0
\(773\) 27669.3i 1.28745i 0.765258 + 0.643724i \(0.222611\pi\)
−0.765258 + 0.643724i \(0.777389\pi\)
\(774\) 0 0
\(775\) −16239.3 + 14104.5i −0.752686 + 0.653739i
\(776\) 0 0
\(777\) 15774.0i 0.728299i
\(778\) 0 0
\(779\) −1267.18 −0.0582816
\(780\) 0 0
\(781\) −10040.7 −0.460034
\(782\) 0 0
\(783\) 59169.8i 2.70058i
\(784\) 0 0
\(785\) −16260.2 + 6075.51i −0.739302 + 0.276235i
\(786\) 0 0
\(787\) 10934.5i 0.495263i −0.968854 0.247632i \(-0.920348\pi\)
0.968854 0.247632i \(-0.0796523\pi\)
\(788\) 0 0
\(789\) −27210.8 −1.22779
\(790\) 0 0
\(791\) −5361.70 −0.241012
\(792\) 0 0
\(793\) 188.328i 0.00843343i
\(794\) 0 0