Properties

Label 560.4.a.u.1.3
Level $560$
Weight $4$
Character 560.1
Self dual yes
Analytic conductor $33.041$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.14360.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.62456\) of defining polynomial
Character \(\chi\) \(=\) 560.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.38660 q^{3} +5.00000 q^{5} -7.00000 q^{7} +43.3350 q^{9} +30.1117 q^{11} +88.9295 q^{13} +41.9330 q^{15} -4.73699 q^{17} -124.818 q^{19} -58.7062 q^{21} -20.2680 q^{23} +25.0000 q^{25} +136.995 q^{27} +134.088 q^{29} +2.03767 q^{31} +252.534 q^{33} -35.0000 q^{35} -141.137 q^{37} +745.816 q^{39} +95.2784 q^{41} +298.646 q^{43} +216.675 q^{45} +129.054 q^{47} +49.0000 q^{49} -39.7272 q^{51} +388.429 q^{53} +150.558 q^{55} -1046.80 q^{57} -838.501 q^{59} +389.422 q^{61} -303.345 q^{63} +444.647 q^{65} -697.794 q^{67} -169.979 q^{69} +523.450 q^{71} +66.4684 q^{73} +209.665 q^{75} -210.782 q^{77} +526.982 q^{79} -21.1236 q^{81} -70.0265 q^{83} -23.6850 q^{85} +1124.54 q^{87} -9.27925 q^{89} -622.506 q^{91} +17.0891 q^{93} -624.089 q^{95} -4.19493 q^{97} +1304.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{3} + 15 q^{5} - 21 q^{7} + 81 q^{9} + 74 q^{11} + 44 q^{13} - 10 q^{15} - 52 q^{17} - 168 q^{19} + 14 q^{21} + 124 q^{23} + 75 q^{25} - 170 q^{27} + 332 q^{29} - 320 q^{31} - 106 q^{33} - 105 q^{35}+ \cdots + 3488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.38660 1.61400 0.807001 0.590551i \(-0.201089\pi\)
0.807001 + 0.590551i \(0.201089\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 43.3350 1.60500
\(10\) 0 0
\(11\) 30.1117 0.825364 0.412682 0.910875i \(-0.364592\pi\)
0.412682 + 0.910875i \(0.364592\pi\)
\(12\) 0 0
\(13\) 88.9295 1.89728 0.948639 0.316362i \(-0.102461\pi\)
0.948639 + 0.316362i \(0.102461\pi\)
\(14\) 0 0
\(15\) 41.9330 0.721803
\(16\) 0 0
\(17\) −4.73699 −0.0675817 −0.0337909 0.999429i \(-0.510758\pi\)
−0.0337909 + 0.999429i \(0.510758\pi\)
\(18\) 0 0
\(19\) −124.818 −1.50711 −0.753557 0.657382i \(-0.771664\pi\)
−0.753557 + 0.657382i \(0.771664\pi\)
\(20\) 0 0
\(21\) −58.7062 −0.610035
\(22\) 0 0
\(23\) −20.2680 −0.183746 −0.0918731 0.995771i \(-0.529285\pi\)
−0.0918731 + 0.995771i \(0.529285\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 136.995 0.976470
\(28\) 0 0
\(29\) 134.088 0.858603 0.429301 0.903161i \(-0.358760\pi\)
0.429301 + 0.903161i \(0.358760\pi\)
\(30\) 0 0
\(31\) 2.03767 0.0118057 0.00590284 0.999983i \(-0.498121\pi\)
0.00590284 + 0.999983i \(0.498121\pi\)
\(32\) 0 0
\(33\) 252.534 1.33214
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) −141.137 −0.627104 −0.313552 0.949571i \(-0.601519\pi\)
−0.313552 + 0.949571i \(0.601519\pi\)
\(38\) 0 0
\(39\) 745.816 3.06221
\(40\) 0 0
\(41\) 95.2784 0.362927 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(42\) 0 0
\(43\) 298.646 1.05914 0.529571 0.848266i \(-0.322353\pi\)
0.529571 + 0.848266i \(0.322353\pi\)
\(44\) 0 0
\(45\) 216.675 0.717778
\(46\) 0 0
\(47\) 129.054 0.400519 0.200260 0.979743i \(-0.435821\pi\)
0.200260 + 0.979743i \(0.435821\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −39.7272 −0.109077
\(52\) 0 0
\(53\) 388.429 1.00669 0.503347 0.864084i \(-0.332102\pi\)
0.503347 + 0.864084i \(0.332102\pi\)
\(54\) 0 0
\(55\) 150.558 0.369114
\(56\) 0 0
\(57\) −1046.80 −2.43248
\(58\) 0 0
\(59\) −838.501 −1.85023 −0.925114 0.379688i \(-0.876031\pi\)
−0.925114 + 0.379688i \(0.876031\pi\)
\(60\) 0 0
\(61\) 389.422 0.817384 0.408692 0.912672i \(-0.365985\pi\)
0.408692 + 0.912672i \(0.365985\pi\)
\(62\) 0 0
\(63\) −303.345 −0.606633
\(64\) 0 0
\(65\) 444.647 0.848488
\(66\) 0 0
\(67\) −697.794 −1.27237 −0.636187 0.771534i \(-0.719490\pi\)
−0.636187 + 0.771534i \(0.719490\pi\)
\(68\) 0 0
\(69\) −169.979 −0.296567
\(70\) 0 0
\(71\) 523.450 0.874959 0.437479 0.899228i \(-0.355871\pi\)
0.437479 + 0.899228i \(0.355871\pi\)
\(72\) 0 0
\(73\) 66.4684 0.106569 0.0532845 0.998579i \(-0.483031\pi\)
0.0532845 + 0.998579i \(0.483031\pi\)
\(74\) 0 0
\(75\) 209.665 0.322800
\(76\) 0 0
\(77\) −210.782 −0.311958
\(78\) 0 0
\(79\) 526.982 0.750508 0.375254 0.926922i \(-0.377556\pi\)
0.375254 + 0.926922i \(0.377556\pi\)
\(80\) 0 0
\(81\) −21.1236 −0.0289762
\(82\) 0 0
\(83\) −70.0265 −0.0926074 −0.0463037 0.998927i \(-0.514744\pi\)
−0.0463037 + 0.998927i \(0.514744\pi\)
\(84\) 0 0
\(85\) −23.6850 −0.0302235
\(86\) 0 0
\(87\) 1124.54 1.38579
\(88\) 0 0
\(89\) −9.27925 −0.0110517 −0.00552584 0.999985i \(-0.501759\pi\)
−0.00552584 + 0.999985i \(0.501759\pi\)
\(90\) 0 0
\(91\) −622.506 −0.717103
\(92\) 0 0
\(93\) 17.0891 0.0190544
\(94\) 0 0
\(95\) −624.089 −0.674002
\(96\) 0 0
\(97\) −4.19493 −0.00439104 −0.00219552 0.999998i \(-0.500699\pi\)
−0.00219552 + 0.999998i \(0.500699\pi\)
\(98\) 0 0
\(99\) 1304.89 1.32471
\(100\) 0 0
\(101\) −865.844 −0.853016 −0.426508 0.904484i \(-0.640256\pi\)
−0.426508 + 0.904484i \(0.640256\pi\)
\(102\) 0 0
\(103\) 1166.12 1.11554 0.557771 0.829995i \(-0.311657\pi\)
0.557771 + 0.829995i \(0.311657\pi\)
\(104\) 0 0
\(105\) −293.531 −0.272816
\(106\) 0 0
\(107\) −56.9652 −0.0514676 −0.0257338 0.999669i \(-0.508192\pi\)
−0.0257338 + 0.999669i \(0.508192\pi\)
\(108\) 0 0
\(109\) −1358.89 −1.19411 −0.597055 0.802200i \(-0.703663\pi\)
−0.597055 + 0.802200i \(0.703663\pi\)
\(110\) 0 0
\(111\) −1183.66 −1.01215
\(112\) 0 0
\(113\) 436.038 0.363000 0.181500 0.983391i \(-0.441905\pi\)
0.181500 + 0.983391i \(0.441905\pi\)
\(114\) 0 0
\(115\) −101.340 −0.0821738
\(116\) 0 0
\(117\) 3853.76 3.04513
\(118\) 0 0
\(119\) 33.1590 0.0255435
\(120\) 0 0
\(121\) −424.288 −0.318774
\(122\) 0 0
\(123\) 799.062 0.585764
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1186.69 −0.829144 −0.414572 0.910017i \(-0.636069\pi\)
−0.414572 + 0.910017i \(0.636069\pi\)
\(128\) 0 0
\(129\) 2504.62 1.70946
\(130\) 0 0
\(131\) −1034.56 −0.689997 −0.344999 0.938603i \(-0.612121\pi\)
−0.344999 + 0.938603i \(0.612121\pi\)
\(132\) 0 0
\(133\) 873.725 0.569636
\(134\) 0 0
\(135\) 684.975 0.436691
\(136\) 0 0
\(137\) 646.219 0.402994 0.201497 0.979489i \(-0.435419\pi\)
0.201497 + 0.979489i \(0.435419\pi\)
\(138\) 0 0
\(139\) −506.484 −0.309061 −0.154530 0.987988i \(-0.549386\pi\)
−0.154530 + 0.987988i \(0.549386\pi\)
\(140\) 0 0
\(141\) 1082.32 0.646439
\(142\) 0 0
\(143\) 2677.81 1.56594
\(144\) 0 0
\(145\) 670.439 0.383979
\(146\) 0 0
\(147\) 410.943 0.230572
\(148\) 0 0
\(149\) −1828.12 −1.00513 −0.502567 0.864538i \(-0.667611\pi\)
−0.502567 + 0.864538i \(0.667611\pi\)
\(150\) 0 0
\(151\) −2975.17 −1.60342 −0.801708 0.597716i \(-0.796075\pi\)
−0.801708 + 0.597716i \(0.796075\pi\)
\(152\) 0 0
\(153\) −205.278 −0.108469
\(154\) 0 0
\(155\) 10.1883 0.00527966
\(156\) 0 0
\(157\) −2131.74 −1.08364 −0.541820 0.840495i \(-0.682264\pi\)
−0.541820 + 0.840495i \(0.682264\pi\)
\(158\) 0 0
\(159\) 3257.59 1.62481
\(160\) 0 0
\(161\) 141.876 0.0694495
\(162\) 0 0
\(163\) 593.939 0.285404 0.142702 0.989766i \(-0.454421\pi\)
0.142702 + 0.989766i \(0.454421\pi\)
\(164\) 0 0
\(165\) 1262.67 0.595751
\(166\) 0 0
\(167\) 2936.30 1.36059 0.680293 0.732941i \(-0.261853\pi\)
0.680293 + 0.732941i \(0.261853\pi\)
\(168\) 0 0
\(169\) 5711.45 2.59966
\(170\) 0 0
\(171\) −5408.98 −2.41892
\(172\) 0 0
\(173\) 2347.31 1.03158 0.515788 0.856716i \(-0.327499\pi\)
0.515788 + 0.856716i \(0.327499\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) −7032.17 −2.98627
\(178\) 0 0
\(179\) −3036.56 −1.26795 −0.633975 0.773354i \(-0.718578\pi\)
−0.633975 + 0.773354i \(0.718578\pi\)
\(180\) 0 0
\(181\) −899.776 −0.369502 −0.184751 0.982785i \(-0.559148\pi\)
−0.184751 + 0.982785i \(0.559148\pi\)
\(182\) 0 0
\(183\) 3265.93 1.31926
\(184\) 0 0
\(185\) −705.687 −0.280449
\(186\) 0 0
\(187\) −142.639 −0.0557796
\(188\) 0 0
\(189\) −958.964 −0.369071
\(190\) 0 0
\(191\) −416.168 −0.157659 −0.0788294 0.996888i \(-0.525118\pi\)
−0.0788294 + 0.996888i \(0.525118\pi\)
\(192\) 0 0
\(193\) −5181.05 −1.93233 −0.966166 0.257922i \(-0.916962\pi\)
−0.966166 + 0.257922i \(0.916962\pi\)
\(194\) 0 0
\(195\) 3729.08 1.36946
\(196\) 0 0
\(197\) 1452.34 0.525255 0.262627 0.964897i \(-0.415411\pi\)
0.262627 + 0.964897i \(0.415411\pi\)
\(198\) 0 0
\(199\) 1277.23 0.454978 0.227489 0.973781i \(-0.426948\pi\)
0.227489 + 0.973781i \(0.426948\pi\)
\(200\) 0 0
\(201\) −5852.12 −2.05361
\(202\) 0 0
\(203\) −938.615 −0.324521
\(204\) 0 0
\(205\) 476.392 0.162306
\(206\) 0 0
\(207\) −878.312 −0.294913
\(208\) 0 0
\(209\) −3758.47 −1.24392
\(210\) 0 0
\(211\) 3259.09 1.06334 0.531670 0.846951i \(-0.321564\pi\)
0.531670 + 0.846951i \(0.321564\pi\)
\(212\) 0 0
\(213\) 4389.96 1.41218
\(214\) 0 0
\(215\) 1493.23 0.473663
\(216\) 0 0
\(217\) −14.2637 −0.00446213
\(218\) 0 0
\(219\) 557.444 0.172002
\(220\) 0 0
\(221\) −421.258 −0.128221
\(222\) 0 0
\(223\) −4373.35 −1.31328 −0.656639 0.754205i \(-0.728023\pi\)
−0.656639 + 0.754205i \(0.728023\pi\)
\(224\) 0 0
\(225\) 1083.37 0.321000
\(226\) 0 0
\(227\) 61.1145 0.0178692 0.00893461 0.999960i \(-0.497156\pi\)
0.00893461 + 0.999960i \(0.497156\pi\)
\(228\) 0 0
\(229\) 3019.41 0.871302 0.435651 0.900116i \(-0.356518\pi\)
0.435651 + 0.900116i \(0.356518\pi\)
\(230\) 0 0
\(231\) −1767.74 −0.503501
\(232\) 0 0
\(233\) −3531.17 −0.992851 −0.496426 0.868079i \(-0.665354\pi\)
−0.496426 + 0.868079i \(0.665354\pi\)
\(234\) 0 0
\(235\) 645.268 0.179118
\(236\) 0 0
\(237\) 4419.58 1.21132
\(238\) 0 0
\(239\) −2282.62 −0.617785 −0.308893 0.951097i \(-0.599958\pi\)
−0.308893 + 0.951097i \(0.599958\pi\)
\(240\) 0 0
\(241\) −2215.68 −0.592217 −0.296109 0.955154i \(-0.595689\pi\)
−0.296109 + 0.955154i \(0.595689\pi\)
\(242\) 0 0
\(243\) −3876.02 −1.02324
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) −11100.0 −2.85941
\(248\) 0 0
\(249\) −587.284 −0.149468
\(250\) 0 0
\(251\) 3082.55 0.775174 0.387587 0.921833i \(-0.373309\pi\)
0.387587 + 0.921833i \(0.373309\pi\)
\(252\) 0 0
\(253\) −610.302 −0.151658
\(254\) 0 0
\(255\) −198.636 −0.0487807
\(256\) 0 0
\(257\) −6032.40 −1.46417 −0.732083 0.681215i \(-0.761452\pi\)
−0.732083 + 0.681215i \(0.761452\pi\)
\(258\) 0 0
\(259\) 987.962 0.237023
\(260\) 0 0
\(261\) 5810.69 1.37806
\(262\) 0 0
\(263\) −5923.81 −1.38889 −0.694445 0.719546i \(-0.744350\pi\)
−0.694445 + 0.719546i \(0.744350\pi\)
\(264\) 0 0
\(265\) 1942.14 0.450207
\(266\) 0 0
\(267\) −77.8213 −0.0178374
\(268\) 0 0
\(269\) 3252.80 0.737273 0.368637 0.929574i \(-0.379825\pi\)
0.368637 + 0.929574i \(0.379825\pi\)
\(270\) 0 0
\(271\) 6246.26 1.40012 0.700061 0.714083i \(-0.253156\pi\)
0.700061 + 0.714083i \(0.253156\pi\)
\(272\) 0 0
\(273\) −5220.71 −1.15741
\(274\) 0 0
\(275\) 752.792 0.165073
\(276\) 0 0
\(277\) −1572.17 −0.341020 −0.170510 0.985356i \(-0.554541\pi\)
−0.170510 + 0.985356i \(0.554541\pi\)
\(278\) 0 0
\(279\) 88.3024 0.0189481
\(280\) 0 0
\(281\) −7846.03 −1.66567 −0.832837 0.553518i \(-0.813285\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(282\) 0 0
\(283\) −6265.58 −1.31608 −0.658039 0.752984i \(-0.728614\pi\)
−0.658039 + 0.752984i \(0.728614\pi\)
\(284\) 0 0
\(285\) −5233.98 −1.08784
\(286\) 0 0
\(287\) −666.949 −0.137173
\(288\) 0 0
\(289\) −4890.56 −0.995433
\(290\) 0 0
\(291\) −35.1812 −0.00708714
\(292\) 0 0
\(293\) −7264.99 −1.44855 −0.724276 0.689511i \(-0.757826\pi\)
−0.724276 + 0.689511i \(0.757826\pi\)
\(294\) 0 0
\(295\) −4192.50 −0.827448
\(296\) 0 0
\(297\) 4125.14 0.805943
\(298\) 0 0
\(299\) −1802.42 −0.348617
\(300\) 0 0
\(301\) −2090.52 −0.400318
\(302\) 0 0
\(303\) −7261.48 −1.37677
\(304\) 0 0
\(305\) 1947.11 0.365545
\(306\) 0 0
\(307\) −1328.32 −0.246943 −0.123471 0.992348i \(-0.539403\pi\)
−0.123471 + 0.992348i \(0.539403\pi\)
\(308\) 0 0
\(309\) 9779.75 1.80049
\(310\) 0 0
\(311\) −4868.68 −0.887709 −0.443855 0.896099i \(-0.646389\pi\)
−0.443855 + 0.896099i \(0.646389\pi\)
\(312\) 0 0
\(313\) 7733.39 1.39654 0.698270 0.715835i \(-0.253954\pi\)
0.698270 + 0.715835i \(0.253954\pi\)
\(314\) 0 0
\(315\) −1516.72 −0.271294
\(316\) 0 0
\(317\) −8175.03 −1.44844 −0.724220 0.689569i \(-0.757800\pi\)
−0.724220 + 0.689569i \(0.757800\pi\)
\(318\) 0 0
\(319\) 4037.61 0.708660
\(320\) 0 0
\(321\) −477.744 −0.0830688
\(322\) 0 0
\(323\) 591.261 0.101853
\(324\) 0 0
\(325\) 2223.24 0.379455
\(326\) 0 0
\(327\) −11396.5 −1.92729
\(328\) 0 0
\(329\) −903.375 −0.151382
\(330\) 0 0
\(331\) 2040.76 0.338884 0.169442 0.985540i \(-0.445803\pi\)
0.169442 + 0.985540i \(0.445803\pi\)
\(332\) 0 0
\(333\) −6116.19 −1.00650
\(334\) 0 0
\(335\) −3488.97 −0.569023
\(336\) 0 0
\(337\) 7349.73 1.18803 0.594013 0.804455i \(-0.297543\pi\)
0.594013 + 0.804455i \(0.297543\pi\)
\(338\) 0 0
\(339\) 3656.87 0.585882
\(340\) 0 0
\(341\) 61.3576 0.00974399
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −849.896 −0.132629
\(346\) 0 0
\(347\) 12069.9 1.86728 0.933642 0.358207i \(-0.116612\pi\)
0.933642 + 0.358207i \(0.116612\pi\)
\(348\) 0 0
\(349\) −4484.96 −0.687892 −0.343946 0.938989i \(-0.611764\pi\)
−0.343946 + 0.938989i \(0.611764\pi\)
\(350\) 0 0
\(351\) 12182.9 1.85263
\(352\) 0 0
\(353\) −12762.5 −1.92430 −0.962151 0.272517i \(-0.912144\pi\)
−0.962151 + 0.272517i \(0.912144\pi\)
\(354\) 0 0
\(355\) 2617.25 0.391293
\(356\) 0 0
\(357\) 278.091 0.0412272
\(358\) 0 0
\(359\) 2419.42 0.355689 0.177844 0.984059i \(-0.443088\pi\)
0.177844 + 0.984059i \(0.443088\pi\)
\(360\) 0 0
\(361\) 8720.49 1.27139
\(362\) 0 0
\(363\) −3558.33 −0.514501
\(364\) 0 0
\(365\) 332.342 0.0476591
\(366\) 0 0
\(367\) 7129.74 1.01409 0.507043 0.861921i \(-0.330739\pi\)
0.507043 + 0.861921i \(0.330739\pi\)
\(368\) 0 0
\(369\) 4128.89 0.582497
\(370\) 0 0
\(371\) −2719.00 −0.380495
\(372\) 0 0
\(373\) 11596.9 1.60983 0.804914 0.593391i \(-0.202211\pi\)
0.804914 + 0.593391i \(0.202211\pi\)
\(374\) 0 0
\(375\) 1048.32 0.144361
\(376\) 0 0
\(377\) 11924.4 1.62901
\(378\) 0 0
\(379\) 12770.8 1.73085 0.865424 0.501040i \(-0.167049\pi\)
0.865424 + 0.501040i \(0.167049\pi\)
\(380\) 0 0
\(381\) −9952.25 −1.33824
\(382\) 0 0
\(383\) −7470.10 −0.996617 −0.498308 0.867000i \(-0.666045\pi\)
−0.498308 + 0.867000i \(0.666045\pi\)
\(384\) 0 0
\(385\) −1053.91 −0.139512
\(386\) 0 0
\(387\) 12941.8 1.69992
\(388\) 0 0
\(389\) 8749.77 1.14044 0.570220 0.821492i \(-0.306858\pi\)
0.570220 + 0.821492i \(0.306858\pi\)
\(390\) 0 0
\(391\) 96.0092 0.0124179
\(392\) 0 0
\(393\) −8676.41 −1.11366
\(394\) 0 0
\(395\) 2634.91 0.335637
\(396\) 0 0
\(397\) 5375.25 0.679537 0.339769 0.940509i \(-0.389651\pi\)
0.339769 + 0.940509i \(0.389651\pi\)
\(398\) 0 0
\(399\) 7327.58 0.919393
\(400\) 0 0
\(401\) 7361.33 0.916727 0.458363 0.888765i \(-0.348436\pi\)
0.458363 + 0.888765i \(0.348436\pi\)
\(402\) 0 0
\(403\) 181.209 0.0223987
\(404\) 0 0
\(405\) −105.618 −0.0129585
\(406\) 0 0
\(407\) −4249.88 −0.517589
\(408\) 0 0
\(409\) −2612.45 −0.315837 −0.157919 0.987452i \(-0.550478\pi\)
−0.157919 + 0.987452i \(0.550478\pi\)
\(410\) 0 0
\(411\) 5419.57 0.650433
\(412\) 0 0
\(413\) 5869.51 0.699321
\(414\) 0 0
\(415\) −350.133 −0.0414153
\(416\) 0 0
\(417\) −4247.68 −0.498824
\(418\) 0 0
\(419\) −4398.21 −0.512808 −0.256404 0.966570i \(-0.582538\pi\)
−0.256404 + 0.966570i \(0.582538\pi\)
\(420\) 0 0
\(421\) 9723.32 1.12562 0.562810 0.826587i \(-0.309720\pi\)
0.562810 + 0.826587i \(0.309720\pi\)
\(422\) 0 0
\(423\) 5592.54 0.642833
\(424\) 0 0
\(425\) −118.425 −0.0135163
\(426\) 0 0
\(427\) −2725.96 −0.308942
\(428\) 0 0
\(429\) 22457.7 2.52744
\(430\) 0 0
\(431\) 14314.5 1.59978 0.799892 0.600144i \(-0.204890\pi\)
0.799892 + 0.600144i \(0.204890\pi\)
\(432\) 0 0
\(433\) −2373.62 −0.263438 −0.131719 0.991287i \(-0.542050\pi\)
−0.131719 + 0.991287i \(0.542050\pi\)
\(434\) 0 0
\(435\) 5622.70 0.619742
\(436\) 0 0
\(437\) 2529.80 0.276927
\(438\) 0 0
\(439\) 9533.46 1.03646 0.518231 0.855240i \(-0.326591\pi\)
0.518231 + 0.855240i \(0.326591\pi\)
\(440\) 0 0
\(441\) 2123.41 0.229286
\(442\) 0 0
\(443\) −6647.94 −0.712987 −0.356493 0.934298i \(-0.616028\pi\)
−0.356493 + 0.934298i \(0.616028\pi\)
\(444\) 0 0
\(445\) −46.3963 −0.00494246
\(446\) 0 0
\(447\) −15331.7 −1.62229
\(448\) 0 0
\(449\) −768.256 −0.0807489 −0.0403744 0.999185i \(-0.512855\pi\)
−0.0403744 + 0.999185i \(0.512855\pi\)
\(450\) 0 0
\(451\) 2868.99 0.299547
\(452\) 0 0
\(453\) −24951.5 −2.58791
\(454\) 0 0
\(455\) −3112.53 −0.320698
\(456\) 0 0
\(457\) −3323.50 −0.340190 −0.170095 0.985428i \(-0.554407\pi\)
−0.170095 + 0.985428i \(0.554407\pi\)
\(458\) 0 0
\(459\) −648.944 −0.0659915
\(460\) 0 0
\(461\) −18840.7 −1.90347 −0.951733 0.306926i \(-0.900700\pi\)
−0.951733 + 0.306926i \(0.900700\pi\)
\(462\) 0 0
\(463\) 10759.1 1.07995 0.539977 0.841679i \(-0.318433\pi\)
0.539977 + 0.841679i \(0.318433\pi\)
\(464\) 0 0
\(465\) 85.4456 0.00852138
\(466\) 0 0
\(467\) −7441.70 −0.737390 −0.368695 0.929550i \(-0.620195\pi\)
−0.368695 + 0.929550i \(0.620195\pi\)
\(468\) 0 0
\(469\) 4884.56 0.480913
\(470\) 0 0
\(471\) −17878.0 −1.74899
\(472\) 0 0
\(473\) 8992.73 0.874178
\(474\) 0 0
\(475\) −3120.45 −0.301423
\(476\) 0 0
\(477\) 16832.6 1.61574
\(478\) 0 0
\(479\) −5691.97 −0.542949 −0.271475 0.962446i \(-0.587511\pi\)
−0.271475 + 0.962446i \(0.587511\pi\)
\(480\) 0 0
\(481\) −12551.3 −1.18979
\(482\) 0 0
\(483\) 1189.85 0.112092
\(484\) 0 0
\(485\) −20.9746 −0.00196373
\(486\) 0 0
\(487\) 2020.25 0.187980 0.0939899 0.995573i \(-0.470038\pi\)
0.0939899 + 0.995573i \(0.470038\pi\)
\(488\) 0 0
\(489\) 4981.12 0.460642
\(490\) 0 0
\(491\) −7636.02 −0.701851 −0.350925 0.936403i \(-0.614133\pi\)
−0.350925 + 0.936403i \(0.614133\pi\)
\(492\) 0 0
\(493\) −635.173 −0.0580259
\(494\) 0 0
\(495\) 6524.44 0.592428
\(496\) 0 0
\(497\) −3664.15 −0.330703
\(498\) 0 0
\(499\) −6284.56 −0.563799 −0.281900 0.959444i \(-0.590964\pi\)
−0.281900 + 0.959444i \(0.590964\pi\)
\(500\) 0 0
\(501\) 24625.6 2.19599
\(502\) 0 0
\(503\) −11310.9 −1.00264 −0.501319 0.865262i \(-0.667152\pi\)
−0.501319 + 0.865262i \(0.667152\pi\)
\(504\) 0 0
\(505\) −4329.22 −0.381481
\(506\) 0 0
\(507\) 47899.7 4.19586
\(508\) 0 0
\(509\) 10712.7 0.932876 0.466438 0.884554i \(-0.345537\pi\)
0.466438 + 0.884554i \(0.345537\pi\)
\(510\) 0 0
\(511\) −465.279 −0.0402793
\(512\) 0 0
\(513\) −17099.4 −1.47165
\(514\) 0 0
\(515\) 5830.58 0.498886
\(516\) 0 0
\(517\) 3886.02 0.330574
\(518\) 0 0
\(519\) 19685.9 1.66496
\(520\) 0 0
\(521\) 17721.9 1.49023 0.745116 0.666935i \(-0.232394\pi\)
0.745116 + 0.666935i \(0.232394\pi\)
\(522\) 0 0
\(523\) −237.193 −0.0198312 −0.00991562 0.999951i \(-0.503156\pi\)
−0.00991562 + 0.999951i \(0.503156\pi\)
\(524\) 0 0
\(525\) −1467.65 −0.122007
\(526\) 0 0
\(527\) −9.65243 −0.000797849 0
\(528\) 0 0
\(529\) −11756.2 −0.966237
\(530\) 0 0
\(531\) −36336.4 −2.96962
\(532\) 0 0
\(533\) 8473.06 0.688572
\(534\) 0 0
\(535\) −284.826 −0.0230170
\(536\) 0 0
\(537\) −25466.4 −2.04647
\(538\) 0 0
\(539\) 1475.47 0.117909
\(540\) 0 0
\(541\) −5352.94 −0.425399 −0.212699 0.977118i \(-0.568226\pi\)
−0.212699 + 0.977118i \(0.568226\pi\)
\(542\) 0 0
\(543\) −7546.06 −0.596376
\(544\) 0 0
\(545\) −6794.45 −0.534022
\(546\) 0 0
\(547\) 192.162 0.0150206 0.00751030 0.999972i \(-0.497609\pi\)
0.00751030 + 0.999972i \(0.497609\pi\)
\(548\) 0 0
\(549\) 16875.6 1.31190
\(550\) 0 0
\(551\) −16736.5 −1.29401
\(552\) 0 0
\(553\) −3688.87 −0.283665
\(554\) 0 0
\(555\) −5918.31 −0.452646
\(556\) 0 0
\(557\) −4850.62 −0.368990 −0.184495 0.982833i \(-0.559065\pi\)
−0.184495 + 0.982833i \(0.559065\pi\)
\(558\) 0 0
\(559\) 26558.4 2.00949
\(560\) 0 0
\(561\) −1196.25 −0.0900283
\(562\) 0 0
\(563\) −9699.11 −0.726055 −0.363027 0.931778i \(-0.618257\pi\)
−0.363027 + 0.931778i \(0.618257\pi\)
\(564\) 0 0
\(565\) 2180.19 0.162338
\(566\) 0 0
\(567\) 147.865 0.0109520
\(568\) 0 0
\(569\) 3109.53 0.229100 0.114550 0.993417i \(-0.463457\pi\)
0.114550 + 0.993417i \(0.463457\pi\)
\(570\) 0 0
\(571\) 14476.2 1.06097 0.530483 0.847695i \(-0.322010\pi\)
0.530483 + 0.847695i \(0.322010\pi\)
\(572\) 0 0
\(573\) −3490.23 −0.254461
\(574\) 0 0
\(575\) −506.699 −0.0367492
\(576\) 0 0
\(577\) −2208.23 −0.159323 −0.0796617 0.996822i \(-0.525384\pi\)
−0.0796617 + 0.996822i \(0.525384\pi\)
\(578\) 0 0
\(579\) −43451.4 −3.11879
\(580\) 0 0
\(581\) 490.186 0.0350023
\(582\) 0 0
\(583\) 11696.2 0.830889
\(584\) 0 0
\(585\) 19268.8 1.36182
\(586\) 0 0
\(587\) 23988.7 1.68675 0.843374 0.537327i \(-0.180566\pi\)
0.843374 + 0.537327i \(0.180566\pi\)
\(588\) 0 0
\(589\) −254.338 −0.0177925
\(590\) 0 0
\(591\) 12180.2 0.847762
\(592\) 0 0
\(593\) −15869.4 −1.09895 −0.549474 0.835511i \(-0.685172\pi\)
−0.549474 + 0.835511i \(0.685172\pi\)
\(594\) 0 0
\(595\) 165.795 0.0114234
\(596\) 0 0
\(597\) 10711.6 0.734335
\(598\) 0 0
\(599\) 15236.6 1.03932 0.519660 0.854373i \(-0.326059\pi\)
0.519660 + 0.854373i \(0.326059\pi\)
\(600\) 0 0
\(601\) 12258.8 0.832026 0.416013 0.909359i \(-0.363427\pi\)
0.416013 + 0.909359i \(0.363427\pi\)
\(602\) 0 0
\(603\) −30238.9 −2.04216
\(604\) 0 0
\(605\) −2121.44 −0.142560
\(606\) 0 0
\(607\) −23487.2 −1.57054 −0.785269 0.619155i \(-0.787475\pi\)
−0.785269 + 0.619155i \(0.787475\pi\)
\(608\) 0 0
\(609\) −7871.78 −0.523778
\(610\) 0 0
\(611\) 11476.7 0.759896
\(612\) 0 0
\(613\) −22305.3 −1.46966 −0.734830 0.678251i \(-0.762738\pi\)
−0.734830 + 0.678251i \(0.762738\pi\)
\(614\) 0 0
\(615\) 3995.31 0.261962
\(616\) 0 0
\(617\) 3285.91 0.214402 0.107201 0.994237i \(-0.465811\pi\)
0.107201 + 0.994237i \(0.465811\pi\)
\(618\) 0 0
\(619\) 11613.1 0.754069 0.377035 0.926199i \(-0.376944\pi\)
0.377035 + 0.926199i \(0.376944\pi\)
\(620\) 0 0
\(621\) −2776.61 −0.179423
\(622\) 0 0
\(623\) 64.9548 0.00417714
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −31520.8 −2.00769
\(628\) 0 0
\(629\) 668.567 0.0423808
\(630\) 0 0
\(631\) −6890.91 −0.434743 −0.217372 0.976089i \(-0.569748\pi\)
−0.217372 + 0.976089i \(0.569748\pi\)
\(632\) 0 0
\(633\) 27332.7 1.71623
\(634\) 0 0
\(635\) −5933.43 −0.370804
\(636\) 0 0
\(637\) 4357.55 0.271040
\(638\) 0 0
\(639\) 22683.7 1.40431
\(640\) 0 0
\(641\) 18769.3 1.15654 0.578269 0.815846i \(-0.303728\pi\)
0.578269 + 0.815846i \(0.303728\pi\)
\(642\) 0 0
\(643\) 3142.30 0.192722 0.0963609 0.995346i \(-0.469280\pi\)
0.0963609 + 0.995346i \(0.469280\pi\)
\(644\) 0 0
\(645\) 12523.1 0.764492
\(646\) 0 0
\(647\) −19038.1 −1.15683 −0.578413 0.815744i \(-0.696328\pi\)
−0.578413 + 0.815744i \(0.696328\pi\)
\(648\) 0 0
\(649\) −25248.7 −1.52711
\(650\) 0 0
\(651\) −119.624 −0.00720188
\(652\) 0 0
\(653\) −20538.6 −1.23084 −0.615420 0.788199i \(-0.711014\pi\)
−0.615420 + 0.788199i \(0.711014\pi\)
\(654\) 0 0
\(655\) −5172.78 −0.308576
\(656\) 0 0
\(657\) 2880.41 0.171043
\(658\) 0 0
\(659\) 937.046 0.0553902 0.0276951 0.999616i \(-0.491183\pi\)
0.0276951 + 0.999616i \(0.491183\pi\)
\(660\) 0 0
\(661\) 21116.5 1.24257 0.621283 0.783586i \(-0.286612\pi\)
0.621283 + 0.783586i \(0.286612\pi\)
\(662\) 0 0
\(663\) −3532.92 −0.206949
\(664\) 0 0
\(665\) 4368.62 0.254749
\(666\) 0 0
\(667\) −2717.69 −0.157765
\(668\) 0 0
\(669\) −36677.5 −2.11963
\(670\) 0 0
\(671\) 11726.2 0.674640
\(672\) 0 0
\(673\) 13825.9 0.791903 0.395952 0.918271i \(-0.370415\pi\)
0.395952 + 0.918271i \(0.370415\pi\)
\(674\) 0 0
\(675\) 3424.87 0.195294
\(676\) 0 0
\(677\) −16928.4 −0.961021 −0.480510 0.876989i \(-0.659549\pi\)
−0.480510 + 0.876989i \(0.659549\pi\)
\(678\) 0 0
\(679\) 29.3645 0.00165966
\(680\) 0 0
\(681\) 512.543 0.0288409
\(682\) 0 0
\(683\) 13817.3 0.774091 0.387045 0.922061i \(-0.373496\pi\)
0.387045 + 0.922061i \(0.373496\pi\)
\(684\) 0 0
\(685\) 3231.09 0.180224
\(686\) 0 0
\(687\) 25322.6 1.40628
\(688\) 0 0
\(689\) 34542.8 1.90998
\(690\) 0 0
\(691\) 23671.6 1.30320 0.651600 0.758563i \(-0.274098\pi\)
0.651600 + 0.758563i \(0.274098\pi\)
\(692\) 0 0
\(693\) −9134.22 −0.500693
\(694\) 0 0
\(695\) −2532.42 −0.138216
\(696\) 0 0
\(697\) −451.333 −0.0245272
\(698\) 0 0
\(699\) −29614.5 −1.60246
\(700\) 0 0
\(701\) −17009.7 −0.916472 −0.458236 0.888831i \(-0.651519\pi\)
−0.458236 + 0.888831i \(0.651519\pi\)
\(702\) 0 0
\(703\) 17616.5 0.945117
\(704\) 0 0
\(705\) 5411.60 0.289096
\(706\) 0 0
\(707\) 6060.91 0.322410
\(708\) 0 0
\(709\) 22038.9 1.16740 0.583701 0.811969i \(-0.301604\pi\)
0.583701 + 0.811969i \(0.301604\pi\)
\(710\) 0 0
\(711\) 22836.8 1.20456
\(712\) 0 0
\(713\) −41.2994 −0.00216925
\(714\) 0 0
\(715\) 13389.1 0.700312
\(716\) 0 0
\(717\) −19143.4 −0.997106
\(718\) 0 0
\(719\) −7287.44 −0.377991 −0.188996 0.981978i \(-0.560523\pi\)
−0.188996 + 0.981978i \(0.560523\pi\)
\(720\) 0 0
\(721\) −8162.82 −0.421636
\(722\) 0 0
\(723\) −18582.0 −0.955839
\(724\) 0 0
\(725\) 3352.20 0.171721
\(726\) 0 0
\(727\) 29676.7 1.51396 0.756980 0.653438i \(-0.226674\pi\)
0.756980 + 0.653438i \(0.226674\pi\)
\(728\) 0 0
\(729\) −31936.3 −1.62253
\(730\) 0 0
\(731\) −1414.68 −0.0715786
\(732\) 0 0
\(733\) 23111.8 1.16460 0.582300 0.812974i \(-0.302153\pi\)
0.582300 + 0.812974i \(0.302153\pi\)
\(734\) 0 0
\(735\) 2054.72 0.103115
\(736\) 0 0
\(737\) −21011.7 −1.05017
\(738\) 0 0
\(739\) 31171.4 1.55164 0.775818 0.630957i \(-0.217338\pi\)
0.775818 + 0.630957i \(0.217338\pi\)
\(740\) 0 0
\(741\) −93091.1 −4.61510
\(742\) 0 0
\(743\) 31324.4 1.54668 0.773338 0.633993i \(-0.218585\pi\)
0.773338 + 0.633993i \(0.218585\pi\)
\(744\) 0 0
\(745\) −9140.58 −0.449510
\(746\) 0 0
\(747\) −3034.60 −0.148635
\(748\) 0 0
\(749\) 398.756 0.0194529
\(750\) 0 0
\(751\) −4032.20 −0.195922 −0.0979608 0.995190i \(-0.531232\pi\)
−0.0979608 + 0.995190i \(0.531232\pi\)
\(752\) 0 0
\(753\) 25852.1 1.25113
\(754\) 0 0
\(755\) −14875.8 −0.717069
\(756\) 0 0
\(757\) 34263.7 1.64509 0.822546 0.568699i \(-0.192553\pi\)
0.822546 + 0.568699i \(0.192553\pi\)
\(758\) 0 0
\(759\) −5118.36 −0.244775
\(760\) 0 0
\(761\) 7265.88 0.346108 0.173054 0.984912i \(-0.444637\pi\)
0.173054 + 0.984912i \(0.444637\pi\)
\(762\) 0 0
\(763\) 9512.22 0.451331
\(764\) 0 0
\(765\) −1026.39 −0.0485087
\(766\) 0 0
\(767\) −74567.5 −3.51040
\(768\) 0 0
\(769\) 38116.2 1.78739 0.893695 0.448674i \(-0.148104\pi\)
0.893695 + 0.448674i \(0.148104\pi\)
\(770\) 0 0
\(771\) −50591.3 −2.36317
\(772\) 0 0
\(773\) 16158.2 0.751838 0.375919 0.926652i \(-0.377327\pi\)
0.375919 + 0.926652i \(0.377327\pi\)
\(774\) 0 0
\(775\) 50.9417 0.00236114
\(776\) 0 0
\(777\) 8285.64 0.382555
\(778\) 0 0
\(779\) −11892.4 −0.546972
\(780\) 0 0
\(781\) 15761.9 0.722160
\(782\) 0 0
\(783\) 18369.3 0.838400
\(784\) 0 0
\(785\) −10658.7 −0.484618
\(786\) 0 0
\(787\) −5092.49 −0.230658 −0.115329 0.993327i \(-0.536792\pi\)
−0.115329 + 0.993327i \(0.536792\pi\)
\(788\) 0 0
\(789\) −49680.6 −2.24167
\(790\) 0 0
\(791\) −3052.26 −0.137201
\(792\) 0 0
\(793\) 34631.1 1.55080
\(794\) 0 0
\(795\) 16288.0 0.726635
\(796\) 0 0
\(797\) −34666.2 −1.54070 −0.770350 0.637621i \(-0.779919\pi\)
−0.770350 + 0.637621i \(0.779919\pi\)
\(798\) 0 0
\(799\) −611.326 −0.0270678
\(800\) 0 0
\(801\) −402.116 −0.0177379
\(802\) 0 0
\(803\) 2001.47 0.0879582
\(804\) 0 0
\(805\) 709.379 0.0310588
\(806\) 0 0
\(807\) 27279.9 1.18996
\(808\) 0 0
\(809\) 15126.2 0.657365 0.328683 0.944440i \(-0.393395\pi\)
0.328683 + 0.944440i \(0.393395\pi\)
\(810\) 0 0
\(811\) −29416.5 −1.27368 −0.636840 0.770996i \(-0.719759\pi\)
−0.636840 + 0.770996i \(0.719759\pi\)
\(812\) 0 0
\(813\) 52384.9 2.25980
\(814\) 0 0
\(815\) 2969.69 0.127637
\(816\) 0 0
\(817\) −37276.3 −1.59625
\(818\) 0 0
\(819\) −26976.3 −1.15095
\(820\) 0 0
\(821\) −15334.4 −0.651856 −0.325928 0.945395i \(-0.605677\pi\)
−0.325928 + 0.945395i \(0.605677\pi\)
\(822\) 0 0
\(823\) 11003.7 0.466056 0.233028 0.972470i \(-0.425137\pi\)
0.233028 + 0.972470i \(0.425137\pi\)
\(824\) 0 0
\(825\) 6313.36 0.266428
\(826\) 0 0
\(827\) 3261.59 0.137142 0.0685711 0.997646i \(-0.478156\pi\)
0.0685711 + 0.997646i \(0.478156\pi\)
\(828\) 0 0
\(829\) 5163.30 0.216319 0.108160 0.994134i \(-0.465504\pi\)
0.108160 + 0.994134i \(0.465504\pi\)
\(830\) 0 0
\(831\) −13185.1 −0.550406
\(832\) 0 0
\(833\) −232.113 −0.00965453
\(834\) 0 0
\(835\) 14681.5 0.608472
\(836\) 0 0
\(837\) 279.150 0.0115279
\(838\) 0 0
\(839\) 5641.70 0.232149 0.116075 0.993241i \(-0.462969\pi\)
0.116075 + 0.993241i \(0.462969\pi\)
\(840\) 0 0
\(841\) −6409.46 −0.262801
\(842\) 0 0
\(843\) −65801.4 −2.68840
\(844\) 0 0
\(845\) 28557.3 1.16260
\(846\) 0 0
\(847\) 2970.01 0.120485
\(848\) 0 0
\(849\) −52546.8 −2.12415
\(850\) 0 0
\(851\) 2860.57 0.115228
\(852\) 0 0
\(853\) −7799.52 −0.313072 −0.156536 0.987672i \(-0.550033\pi\)
−0.156536 + 0.987672i \(0.550033\pi\)
\(854\) 0 0
\(855\) −27044.9 −1.08177
\(856\) 0 0
\(857\) −21540.0 −0.858568 −0.429284 0.903170i \(-0.641234\pi\)
−0.429284 + 0.903170i \(0.641234\pi\)
\(858\) 0 0
\(859\) −4447.97 −0.176674 −0.0883370 0.996091i \(-0.528155\pi\)
−0.0883370 + 0.996091i \(0.528155\pi\)
\(860\) 0 0
\(861\) −5593.43 −0.221398
\(862\) 0 0
\(863\) 9425.21 0.371770 0.185885 0.982571i \(-0.440485\pi\)
0.185885 + 0.982571i \(0.440485\pi\)
\(864\) 0 0
\(865\) 11736.5 0.461335
\(866\) 0 0
\(867\) −41015.2 −1.60663
\(868\) 0 0
\(869\) 15868.3 0.619442
\(870\) 0 0
\(871\) −62054.5 −2.41405
\(872\) 0 0
\(873\) −181.787 −0.00704761
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) 22346.1 0.860403 0.430201 0.902733i \(-0.358443\pi\)
0.430201 + 0.902733i \(0.358443\pi\)
\(878\) 0 0
\(879\) −60928.6 −2.33796
\(880\) 0 0
\(881\) 12074.9 0.461762 0.230881 0.972982i \(-0.425839\pi\)
0.230881 + 0.972982i \(0.425839\pi\)
\(882\) 0 0
\(883\) 30499.6 1.16239 0.581196 0.813764i \(-0.302585\pi\)
0.581196 + 0.813764i \(0.302585\pi\)
\(884\) 0 0
\(885\) −35160.8 −1.33550
\(886\) 0 0
\(887\) −23344.2 −0.883675 −0.441838 0.897095i \(-0.645673\pi\)
−0.441838 + 0.897095i \(0.645673\pi\)
\(888\) 0 0
\(889\) 8306.80 0.313387
\(890\) 0 0
\(891\) −636.068 −0.0239159
\(892\) 0 0
\(893\) −16108.2 −0.603628
\(894\) 0 0
\(895\) −15182.8 −0.567044
\(896\) 0 0
\(897\) −15116.2 −0.562669
\(898\) 0 0
\(899\) 273.227 0.0101364
\(900\) 0 0
\(901\) −1839.98 −0.0680341
\(902\) 0 0
\(903\) −17532.4 −0.646113
\(904\) 0 0
\(905\) −4498.88 −0.165246
\(906\) 0 0
\(907\) 15092.5 0.552523 0.276262 0.961082i \(-0.410904\pi\)
0.276262 + 0.961082i \(0.410904\pi\)
\(908\) 0 0
\(909\) −37521.3 −1.36909
\(910\) 0 0
\(911\) 15207.8 0.553081 0.276541 0.961002i \(-0.410812\pi\)
0.276541 + 0.961002i \(0.410812\pi\)
\(912\) 0 0
\(913\) −2108.62 −0.0764348
\(914\) 0 0
\(915\) 16329.6 0.589990
\(916\) 0 0
\(917\) 7241.90 0.260794
\(918\) 0 0
\(919\) −24818.1 −0.890831 −0.445415 0.895324i \(-0.646944\pi\)
−0.445415 + 0.895324i \(0.646944\pi\)
\(920\) 0 0
\(921\) −11140.1 −0.398566
\(922\) 0 0
\(923\) 46550.1 1.66004
\(924\) 0 0
\(925\) −3528.44 −0.125421
\(926\) 0 0
\(927\) 50533.7 1.79045
\(928\) 0 0
\(929\) 39906.4 1.40935 0.704675 0.709530i \(-0.251093\pi\)
0.704675 + 0.709530i \(0.251093\pi\)
\(930\) 0 0
\(931\) −6116.07 −0.215302
\(932\) 0 0
\(933\) −40831.7 −1.43276
\(934\) 0 0
\(935\) −713.194 −0.0249454
\(936\) 0 0
\(937\) 16923.0 0.590020 0.295010 0.955494i \(-0.404677\pi\)
0.295010 + 0.955494i \(0.404677\pi\)
\(938\) 0 0
\(939\) 64856.8 2.25402
\(940\) 0 0
\(941\) −53014.1 −1.83657 −0.918285 0.395921i \(-0.870426\pi\)
−0.918285 + 0.395921i \(0.870426\pi\)
\(942\) 0 0
\(943\) −1931.10 −0.0666864
\(944\) 0 0
\(945\) −4794.82 −0.165054
\(946\) 0 0
\(947\) 25798.9 0.885271 0.442636 0.896702i \(-0.354043\pi\)
0.442636 + 0.896702i \(0.354043\pi\)
\(948\) 0 0
\(949\) 5911.00 0.202191
\(950\) 0 0
\(951\) −68560.6 −2.33778
\(952\) 0 0
\(953\) −17942.7 −0.609885 −0.304943 0.952371i \(-0.598637\pi\)
−0.304943 + 0.952371i \(0.598637\pi\)
\(954\) 0 0
\(955\) −2080.84 −0.0705072
\(956\) 0 0
\(957\) 33861.8 1.14378
\(958\) 0 0
\(959\) −4523.53 −0.152317
\(960\) 0 0
\(961\) −29786.8 −0.999861
\(962\) 0 0
\(963\) −2468.59 −0.0826055
\(964\) 0 0
\(965\) −25905.2 −0.864165
\(966\) 0 0
\(967\) −19668.3 −0.654073 −0.327036 0.945012i \(-0.606050\pi\)
−0.327036 + 0.945012i \(0.606050\pi\)
\(968\) 0 0
\(969\) 4958.67 0.164392
\(970\) 0 0
\(971\) −6332.97 −0.209304 −0.104652 0.994509i \(-0.533373\pi\)
−0.104652 + 0.994509i \(0.533373\pi\)
\(972\) 0 0
\(973\) 3545.39 0.116814
\(974\) 0 0
\(975\) 18645.4 0.612441
\(976\) 0 0
\(977\) −11334.1 −0.371145 −0.185573 0.982631i \(-0.559414\pi\)
−0.185573 + 0.982631i \(0.559414\pi\)
\(978\) 0 0
\(979\) −279.414 −0.00912166
\(980\) 0 0
\(981\) −58887.4 −1.91655
\(982\) 0 0
\(983\) 37654.3 1.22175 0.610877 0.791725i \(-0.290817\pi\)
0.610877 + 0.791725i \(0.290817\pi\)
\(984\) 0 0
\(985\) 7261.72 0.234901
\(986\) 0 0
\(987\) −7576.24 −0.244331
\(988\) 0 0
\(989\) −6052.95 −0.194613
\(990\) 0 0
\(991\) 53441.5 1.71304 0.856522 0.516111i \(-0.172621\pi\)
0.856522 + 0.516111i \(0.172621\pi\)
\(992\) 0 0
\(993\) 17115.1 0.546959
\(994\) 0 0
\(995\) 6386.16 0.203472
\(996\) 0 0
\(997\) 37919.3 1.20453 0.602266 0.798296i \(-0.294265\pi\)
0.602266 + 0.798296i \(0.294265\pi\)
\(998\) 0 0
\(999\) −19335.1 −0.612348
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.4.a.u.1.3 3
4.3 odd 2 35.4.a.c.1.1 3
8.3 odd 2 2240.4.a.bt.1.3 3
8.5 even 2 2240.4.a.bv.1.1 3
12.11 even 2 315.4.a.p.1.3 3
20.3 even 4 175.4.b.e.99.6 6
20.7 even 4 175.4.b.e.99.1 6
20.19 odd 2 175.4.a.f.1.3 3
28.3 even 6 245.4.e.n.226.3 6
28.11 odd 6 245.4.e.m.226.3 6
28.19 even 6 245.4.e.n.116.3 6
28.23 odd 6 245.4.e.m.116.3 6
28.27 even 2 245.4.a.l.1.1 3
60.59 even 2 1575.4.a.ba.1.1 3
84.83 odd 2 2205.4.a.bm.1.3 3
140.139 even 2 1225.4.a.y.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.1 3 4.3 odd 2
175.4.a.f.1.3 3 20.19 odd 2
175.4.b.e.99.1 6 20.7 even 4
175.4.b.e.99.6 6 20.3 even 4
245.4.a.l.1.1 3 28.27 even 2
245.4.e.m.116.3 6 28.23 odd 6
245.4.e.m.226.3 6 28.11 odd 6
245.4.e.n.116.3 6 28.19 even 6
245.4.e.n.226.3 6 28.3 even 6
315.4.a.p.1.3 3 12.11 even 2
560.4.a.u.1.3 3 1.1 even 1 trivial
1225.4.a.y.1.3 3 140.139 even 2
1575.4.a.ba.1.1 3 60.59 even 2
2205.4.a.bm.1.3 3 84.83 odd 2
2240.4.a.bt.1.3 3 8.3 odd 2
2240.4.a.bv.1.1 3 8.5 even 2