Properties

Label 560.4.a.n
Level $560$
Weight $4$
Character orbit 560.a
Self dual yes
Analytic conductor $33.041$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,4,Mod(1,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,5,0,-5,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.0410696032\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 5 q^{3} - 5 q^{5} - 7 q^{7} - 2 q^{9} - 15 q^{11} + 17 q^{13} - 25 q^{15} + 123 q^{17} - 86 q^{19} - 35 q^{21} - 54 q^{23} + 25 q^{25} - 145 q^{27} - 177 q^{29} - 212 q^{31} - 75 q^{33} + 35 q^{35}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 5.00000 0 −5.00000 0 −7.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.4.a.n 1
4.b odd 2 1 140.4.a.a 1
8.b even 2 1 2240.4.a.i 1
8.d odd 2 1 2240.4.a.bf 1
12.b even 2 1 1260.4.a.k 1
20.d odd 2 1 700.4.a.k 1
20.e even 4 2 700.4.e.e 2
28.d even 2 1 980.4.a.m 1
28.f even 6 2 980.4.i.c 2
28.g odd 6 2 980.4.i.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.4.a.a 1 4.b odd 2 1
560.4.a.n 1 1.a even 1 1 trivial
700.4.a.k 1 20.d odd 2 1
700.4.e.e 2 20.e even 4 2
980.4.a.m 1 28.d even 2 1
980.4.i.c 2 28.f even 6 2
980.4.i.p 2 28.g odd 6 2
1260.4.a.k 1 12.b even 2 1
2240.4.a.i 1 8.b even 2 1
2240.4.a.bf 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(560))\):

\( T_{3} - 5 \) Copy content Toggle raw display
\( T_{11} + 15 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 5 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T + 15 \) Copy content Toggle raw display
$13$ \( T - 17 \) Copy content Toggle raw display
$17$ \( T - 123 \) Copy content Toggle raw display
$19$ \( T + 86 \) Copy content Toggle raw display
$23$ \( T + 54 \) Copy content Toggle raw display
$29$ \( T + 177 \) Copy content Toggle raw display
$31$ \( T + 212 \) Copy content Toggle raw display
$37$ \( T - 74 \) Copy content Toggle raw display
$41$ \( T + 444 \) Copy content Toggle raw display
$43$ \( T - 46 \) Copy content Toggle raw display
$47$ \( T + 471 \) Copy content Toggle raw display
$53$ \( T + 180 \) Copy content Toggle raw display
$59$ \( T + 144 \) Copy content Toggle raw display
$61$ \( T + 376 \) Copy content Toggle raw display
$67$ \( T + 356 \) Copy content Toggle raw display
$71$ \( T - 48 \) Copy content Toggle raw display
$73$ \( T - 818 \) Copy content Toggle raw display
$79$ \( T + 89 \) Copy content Toggle raw display
$83$ \( T - 780 \) Copy content Toggle raw display
$89$ \( T - 1140 \) Copy content Toggle raw display
$97$ \( T + 169 \) Copy content Toggle raw display
show more
show less