Properties

Label 560.4
Level 560
Weight 4
Dimension 13526
Nonzero newspaces 28
Sturm bound 73728
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 28 \)
Sturm bound: \(73728\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(560))\).

Total New Old
Modular forms 28320 13798 14522
Cusp forms 26976 13526 13450
Eisenstein series 1344 272 1072

Trace form

\( 13526 q - 16 q^{2} + 2 q^{3} + 24 q^{4} - 33 q^{5} - 168 q^{6} - 60 q^{7} - 208 q^{8} - 42 q^{9} - 156 q^{10} + 218 q^{11} + 392 q^{12} + 260 q^{13} + 360 q^{14} - 282 q^{15} + 1080 q^{16} - 42 q^{17} + 688 q^{18}+ \cdots - 8952 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(560))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
560.4.a \(\chi_{560}(1, \cdot)\) 560.4.a.a 1 1
560.4.a.b 1
560.4.a.c 1
560.4.a.d 1
560.4.a.e 1
560.4.a.f 1
560.4.a.g 1
560.4.a.h 1
560.4.a.i 1
560.4.a.j 1
560.4.a.k 1
560.4.a.l 1
560.4.a.m 1
560.4.a.n 1
560.4.a.o 1
560.4.a.p 1
560.4.a.q 1
560.4.a.r 2
560.4.a.s 2
560.4.a.t 3
560.4.a.u 3
560.4.a.v 3
560.4.a.w 3
560.4.a.x 3
560.4.b \(\chi_{560}(281, \cdot)\) None 0 1
560.4.e \(\chi_{560}(559, \cdot)\) 560.4.e.a 4 1
560.4.e.b 4
560.4.e.c 8
560.4.e.d 16
560.4.e.e 40
560.4.g \(\chi_{560}(449, \cdot)\) 560.4.g.a 2 1
560.4.g.b 2
560.4.g.c 2
560.4.g.d 4
560.4.g.e 6
560.4.g.f 10
560.4.g.g 12
560.4.g.h 16
560.4.h \(\chi_{560}(391, \cdot)\) None 0 1
560.4.k \(\chi_{560}(111, \cdot)\) 560.4.k.a 16 1
560.4.k.b 32
560.4.l \(\chi_{560}(169, \cdot)\) None 0 1
560.4.n \(\chi_{560}(279, \cdot)\) None 0 1
560.4.q \(\chi_{560}(81, \cdot)\) 560.4.q.a 2 2
560.4.q.b 2
560.4.q.c 2
560.4.q.d 2
560.4.q.e 2
560.4.q.f 2
560.4.q.g 2
560.4.q.h 4
560.4.q.i 4
560.4.q.j 4
560.4.q.k 4
560.4.q.l 4
560.4.q.m 6
560.4.q.n 10
560.4.q.o 10
560.4.q.p 12
560.4.q.q 12
560.4.q.r 12
560.4.r \(\chi_{560}(237, \cdot)\) n/a 568 2
560.4.t \(\chi_{560}(43, \cdot)\) n/a 432 2
560.4.w \(\chi_{560}(153, \cdot)\) None 0 2
560.4.x \(\chi_{560}(127, \cdot)\) n/a 108 2
560.4.bb \(\chi_{560}(29, \cdot)\) n/a 432 2
560.4.bc \(\chi_{560}(251, \cdot)\) n/a 384 2
560.4.bd \(\chi_{560}(141, \cdot)\) n/a 288 2
560.4.be \(\chi_{560}(139, \cdot)\) n/a 568 2
560.4.bi \(\chi_{560}(183, \cdot)\) None 0 2
560.4.bj \(\chi_{560}(97, \cdot)\) n/a 140 2
560.4.bl \(\chi_{560}(267, \cdot)\) n/a 432 2
560.4.bn \(\chi_{560}(13, \cdot)\) n/a 568 2
560.4.bq \(\chi_{560}(199, \cdot)\) None 0 2
560.4.bs \(\chi_{560}(31, \cdot)\) 560.4.bs.a 32 2
560.4.bs.b 32
560.4.bs.c 32
560.4.bv \(\chi_{560}(9, \cdot)\) None 0 2
560.4.bw \(\chi_{560}(289, \cdot)\) n/a 140 2
560.4.bz \(\chi_{560}(311, \cdot)\) None 0 2
560.4.cb \(\chi_{560}(121, \cdot)\) None 0 2
560.4.cc \(\chi_{560}(159, \cdot)\) n/a 144 2
560.4.cf \(\chi_{560}(107, \cdot)\) n/a 1136 4
560.4.ch \(\chi_{560}(117, \cdot)\) n/a 1136 4
560.4.ci \(\chi_{560}(17, \cdot)\) n/a 280 4
560.4.cl \(\chi_{560}(23, \cdot)\) None 0 4
560.4.co \(\chi_{560}(19, \cdot)\) n/a 1136 4
560.4.cp \(\chi_{560}(221, \cdot)\) n/a 768 4
560.4.cq \(\chi_{560}(131, \cdot)\) n/a 768 4
560.4.cr \(\chi_{560}(109, \cdot)\) n/a 1136 4
560.4.cu \(\chi_{560}(207, \cdot)\) n/a 288 4
560.4.cx \(\chi_{560}(73, \cdot)\) None 0 4
560.4.cz \(\chi_{560}(157, \cdot)\) n/a 1136 4
560.4.db \(\chi_{560}(67, \cdot)\) n/a 1136 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(560))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(560)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(140))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(280))\)\(^{\oplus 2}\)