Newspace parameters
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(15.2588948042\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-5}) \) |
Defining polynomial: |
\( x^{2} + 5 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 35) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-5}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).
\(n\) | \(241\) | \(337\) | \(351\) | \(421\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
321.1 |
|
0 | − | 4.47214i | 0 | 2.23607i | 0 | −7.00000 | 0 | −11.0000 | 0 | |||||||||||||||||||||||
321.2 | 0 | 4.47214i | 0 | − | 2.23607i | 0 | −7.00000 | 0 | −11.0000 | 0 | ||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 560.3.f.a | 2 | |
4.b | odd | 2 | 1 | 35.3.d.a | ✓ | 2 | |
7.b | odd | 2 | 1 | inner | 560.3.f.a | 2 | |
12.b | even | 2 | 1 | 315.3.h.b | 2 | ||
20.d | odd | 2 | 1 | 175.3.d.f | 2 | ||
20.e | even | 4 | 2 | 175.3.c.d | 4 | ||
28.d | even | 2 | 1 | 35.3.d.a | ✓ | 2 | |
28.f | even | 6 | 2 | 245.3.h.b | 4 | ||
28.g | odd | 6 | 2 | 245.3.h.b | 4 | ||
84.h | odd | 2 | 1 | 315.3.h.b | 2 | ||
140.c | even | 2 | 1 | 175.3.d.f | 2 | ||
140.j | odd | 4 | 2 | 175.3.c.d | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.3.d.a | ✓ | 2 | 4.b | odd | 2 | 1 | |
35.3.d.a | ✓ | 2 | 28.d | even | 2 | 1 | |
175.3.c.d | 4 | 20.e | even | 4 | 2 | ||
175.3.c.d | 4 | 140.j | odd | 4 | 2 | ||
175.3.d.f | 2 | 20.d | odd | 2 | 1 | ||
175.3.d.f | 2 | 140.c | even | 2 | 1 | ||
245.3.h.b | 4 | 28.f | even | 6 | 2 | ||
245.3.h.b | 4 | 28.g | odd | 6 | 2 | ||
315.3.h.b | 2 | 12.b | even | 2 | 1 | ||
315.3.h.b | 2 | 84.h | odd | 2 | 1 | ||
560.3.f.a | 2 | 1.a | even | 1 | 1 | trivial | |
560.3.f.a | 2 | 7.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + 20 \)
acting on \(S_{3}^{\mathrm{new}}(560, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 20 \)
$5$
\( T^{2} + 5 \)
$7$
\( (T + 7)^{2} \)
$11$
\( (T + 2)^{2} \)
$13$
\( T^{2} + 180 \)
$17$
\( T^{2} + 720 \)
$19$
\( T^{2} + 180 \)
$23$
\( (T + 26)^{2} \)
$29$
\( (T + 22)^{2} \)
$31$
\( T^{2} + 2880 \)
$37$
\( (T - 14)^{2} \)
$41$
\( T^{2} + 720 \)
$43$
\( (T - 34)^{2} \)
$47$
\( T^{2} + 720 \)
$53$
\( (T + 34)^{2} \)
$59$
\( T^{2} + 1620 \)
$61$
\( T^{2} + 8820 \)
$67$
\( (T + 14)^{2} \)
$71$
\( (T + 62)^{2} \)
$73$
\( T^{2} + 2880 \)
$79$
\( (T + 38)^{2} \)
$83$
\( T^{2} + 1620 \)
$89$
\( T^{2} + 720 \)
$97$
\( T^{2} + 720 \)
show more
show less