Properties

Label 560.2.q.h
Level $560$
Weight $2$
Character orbit 560.q
Analytic conductor $4.472$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{3} + \zeta_{6} q^{5} + ( - \zeta_{6} + 3) q^{7} + 2 \zeta_{6} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{6} + 1) q^{3} + \zeta_{6} q^{5} + ( - \zeta_{6} + 3) q^{7} + 2 \zeta_{6} q^{9} + ( - 2 \zeta_{6} + 2) q^{11} + q^{15} + (4 \zeta_{6} - 4) q^{17} - 2 \zeta_{6} q^{19} + ( - 3 \zeta_{6} + 2) q^{21} + \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{25} + 5 q^{27} + 9 q^{29} + ( - 4 \zeta_{6} + 4) q^{31} - 2 \zeta_{6} q^{33} + (2 \zeta_{6} + 1) q^{35} - 4 \zeta_{6} q^{37} + q^{41} - 9 q^{43} + (2 \zeta_{6} - 2) q^{45} + ( - 5 \zeta_{6} + 8) q^{49} + 4 \zeta_{6} q^{51} + ( - 10 \zeta_{6} + 10) q^{53} + 2 q^{55} - 2 q^{57} + (10 \zeta_{6} - 10) q^{59} - 9 \zeta_{6} q^{61} + (4 \zeta_{6} + 2) q^{63} + ( - 5 \zeta_{6} + 5) q^{67} + q^{69} - 14 q^{71} + (12 \zeta_{6} - 12) q^{73} + \zeta_{6} q^{75} + ( - 6 \zeta_{6} + 4) q^{77} + 14 \zeta_{6} q^{79} + (\zeta_{6} - 1) q^{81} - 11 q^{83} - 4 q^{85} + ( - 9 \zeta_{6} + 9) q^{87} + 15 \zeta_{6} q^{89} - 4 \zeta_{6} q^{93} + ( - 2 \zeta_{6} + 2) q^{95} - 18 q^{97} + 4 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + q^{5} + 5 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{3} + q^{5} + 5 q^{7} + 2 q^{9} + 2 q^{11} + 2 q^{15} - 4 q^{17} - 2 q^{19} + q^{21} + q^{23} - q^{25} + 10 q^{27} + 18 q^{29} + 4 q^{31} - 2 q^{33} + 4 q^{35} - 4 q^{37} + 2 q^{41} - 18 q^{43} - 2 q^{45} + 11 q^{49} + 4 q^{51} + 10 q^{53} + 4 q^{55} - 4 q^{57} - 10 q^{59} - 9 q^{61} + 8 q^{63} + 5 q^{67} + 2 q^{69} - 28 q^{71} - 12 q^{73} + q^{75} + 2 q^{77} + 14 q^{79} - q^{81} - 22 q^{83} - 8 q^{85} + 9 q^{87} + 15 q^{89} - 4 q^{93} + 2 q^{95} - 36 q^{97} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 0.500000 + 0.866025i 0 2.50000 0.866025i 0 1.00000 + 1.73205i 0
401.1 0 0.500000 + 0.866025i 0 0.500000 0.866025i 0 2.50000 + 0.866025i 0 1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.2.q.h 2
4.b odd 2 1 280.2.q.a 2
7.c even 3 1 inner 560.2.q.h 2
7.c even 3 1 3920.2.a.m 1
7.d odd 6 1 3920.2.a.y 1
12.b even 2 1 2520.2.bi.a 2
20.d odd 2 1 1400.2.q.e 2
20.e even 4 2 1400.2.bh.b 4
28.d even 2 1 1960.2.q.k 2
28.f even 6 1 1960.2.a.e 1
28.f even 6 1 1960.2.q.k 2
28.g odd 6 1 280.2.q.a 2
28.g odd 6 1 1960.2.a.i 1
84.n even 6 1 2520.2.bi.a 2
140.p odd 6 1 1400.2.q.e 2
140.p odd 6 1 9800.2.a.r 1
140.s even 6 1 9800.2.a.bc 1
140.w even 12 2 1400.2.bh.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.a 2 4.b odd 2 1
280.2.q.a 2 28.g odd 6 1
560.2.q.h 2 1.a even 1 1 trivial
560.2.q.h 2 7.c even 3 1 inner
1400.2.q.e 2 20.d odd 2 1
1400.2.q.e 2 140.p odd 6 1
1400.2.bh.b 4 20.e even 4 2
1400.2.bh.b 4 140.w even 12 2
1960.2.a.e 1 28.f even 6 1
1960.2.a.i 1 28.g odd 6 1
1960.2.q.k 2 28.d even 2 1
1960.2.q.k 2 28.f even 6 1
2520.2.bi.a 2 12.b even 2 1
2520.2.bi.a 2 84.n even 6 1
3920.2.a.m 1 7.c even 3 1
3920.2.a.y 1 7.d odd 6 1
9800.2.a.r 1 140.p odd 6 1
9800.2.a.bc 1 140.s even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(560, [\chi])\):

\( T_{3}^{2} - T_{3} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 2T_{11} + 4 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$23$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$29$ \( (T - 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$37$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$41$ \( (T - 1)^{2} \) Copy content Toggle raw display
$43$ \( (T + 9)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$59$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$61$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$67$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$71$ \( (T + 14)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$79$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$83$ \( (T + 11)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 15T + 225 \) Copy content Toggle raw display
$97$ \( (T + 18)^{2} \) Copy content Toggle raw display
show more
show less