Properties

Label 560.2.q.a
Level 560
Weight 2
Character orbit 560.q
Analytic conductor 4.472
Analytic rank 1
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -3 + 3 \zeta_{6} ) q^{3} + \zeta_{6} q^{5} + ( 1 - 3 \zeta_{6} ) q^{7} -6 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( -3 + 3 \zeta_{6} ) q^{3} + \zeta_{6} q^{5} + ( 1 - 3 \zeta_{6} ) q^{7} -6 \zeta_{6} q^{9} + ( -2 + 2 \zeta_{6} ) q^{11} -6 q^{13} -3 q^{15} + ( -2 + 2 \zeta_{6} ) q^{17} + ( 6 + 3 \zeta_{6} ) q^{21} -9 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} + 9 q^{27} + 3 q^{29} + ( 2 - 2 \zeta_{6} ) q^{31} -6 \zeta_{6} q^{33} + ( 3 - 2 \zeta_{6} ) q^{35} -8 \zeta_{6} q^{37} + ( 18 - 18 \zeta_{6} ) q^{39} + 5 q^{41} - q^{43} + ( 6 - 6 \zeta_{6} ) q^{45} + 8 \zeta_{6} q^{47} + ( -8 + 3 \zeta_{6} ) q^{49} -6 \zeta_{6} q^{51} + ( -4 + 4 \zeta_{6} ) q^{53} -2 q^{55} + ( -8 + 8 \zeta_{6} ) q^{59} -7 \zeta_{6} q^{61} + ( -18 + 12 \zeta_{6} ) q^{63} -6 \zeta_{6} q^{65} + ( -3 + 3 \zeta_{6} ) q^{67} + 27 q^{69} -8 q^{71} + ( -14 + 14 \zeta_{6} ) q^{73} -3 \zeta_{6} q^{75} + ( 4 + 2 \zeta_{6} ) q^{77} + 4 \zeta_{6} q^{79} + ( -9 + 9 \zeta_{6} ) q^{81} + q^{83} -2 q^{85} + ( -9 + 9 \zeta_{6} ) q^{87} -13 \zeta_{6} q^{89} + ( -6 + 18 \zeta_{6} ) q^{91} + 6 \zeta_{6} q^{93} -10 q^{97} + 12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 3q^{3} + q^{5} - q^{7} - 6q^{9} + O(q^{10}) \) \( 2q - 3q^{3} + q^{5} - q^{7} - 6q^{9} - 2q^{11} - 12q^{13} - 6q^{15} - 2q^{17} + 15q^{21} - 9q^{23} - q^{25} + 18q^{27} + 6q^{29} + 2q^{31} - 6q^{33} + 4q^{35} - 8q^{37} + 18q^{39} + 10q^{41} - 2q^{43} + 6q^{45} + 8q^{47} - 13q^{49} - 6q^{51} - 4q^{53} - 4q^{55} - 8q^{59} - 7q^{61} - 24q^{63} - 6q^{65} - 3q^{67} + 54q^{69} - 16q^{71} - 14q^{73} - 3q^{75} + 10q^{77} + 4q^{79} - 9q^{81} + 2q^{83} - 4q^{85} - 9q^{87} - 13q^{89} + 6q^{91} + 6q^{93} - 20q^{97} + 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.50000 + 2.59808i 0 0.500000 + 0.866025i 0 −0.500000 2.59808i 0 −3.00000 5.19615i 0
401.1 0 −1.50000 2.59808i 0 0.500000 0.866025i 0 −0.500000 + 2.59808i 0 −3.00000 + 5.19615i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.2.q.a 2
4.b odd 2 1 140.2.i.b 2
7.c even 3 1 inner 560.2.q.a 2
7.c even 3 1 3920.2.a.bi 1
7.d odd 6 1 3920.2.a.d 1
12.b even 2 1 1260.2.s.b 2
20.d odd 2 1 700.2.i.a 2
20.e even 4 2 700.2.r.c 4
28.d even 2 1 980.2.i.a 2
28.f even 6 1 980.2.a.i 1
28.f even 6 1 980.2.i.a 2
28.g odd 6 1 140.2.i.b 2
28.g odd 6 1 980.2.a.a 1
84.j odd 6 1 8820.2.a.k 1
84.n even 6 1 1260.2.s.b 2
84.n even 6 1 8820.2.a.w 1
140.p odd 6 1 700.2.i.a 2
140.p odd 6 1 4900.2.a.v 1
140.s even 6 1 4900.2.a.a 1
140.w even 12 2 700.2.r.c 4
140.w even 12 2 4900.2.e.c 2
140.x odd 12 2 4900.2.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.i.b 2 4.b odd 2 1
140.2.i.b 2 28.g odd 6 1
560.2.q.a 2 1.a even 1 1 trivial
560.2.q.a 2 7.c even 3 1 inner
700.2.i.a 2 20.d odd 2 1
700.2.i.a 2 140.p odd 6 1
700.2.r.c 4 20.e even 4 2
700.2.r.c 4 140.w even 12 2
980.2.a.a 1 28.g odd 6 1
980.2.a.i 1 28.f even 6 1
980.2.i.a 2 28.d even 2 1
980.2.i.a 2 28.f even 6 1
1260.2.s.b 2 12.b even 2 1
1260.2.s.b 2 84.n even 6 1
3920.2.a.d 1 7.d odd 6 1
3920.2.a.bi 1 7.c even 3 1
4900.2.a.a 1 140.s even 6 1
4900.2.a.v 1 140.p odd 6 1
4900.2.e.b 2 140.x odd 12 2
4900.2.e.c 2 140.w even 12 2
8820.2.a.k 1 84.j odd 6 1
8820.2.a.w 1 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(560, [\chi])\):

\( T_{3}^{2} + 3 T_{3} + 9 \)
\( T_{11}^{2} + 2 T_{11} + 4 \)
\( T_{13} + 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( ( 1 + 3 T^{2} )( 1 + 3 T + 3 T^{2} ) \)
$5$ \( 1 - T + T^{2} \)
$7$ \( 1 + T + 7 T^{2} \)
$11$ \( 1 + 2 T - 7 T^{2} + 22 T^{3} + 121 T^{4} \)
$13$ \( ( 1 + 6 T + 13 T^{2} )^{2} \)
$17$ \( 1 + 2 T - 13 T^{2} + 34 T^{3} + 289 T^{4} \)
$19$ \( 1 - 19 T^{2} + 361 T^{4} \)
$23$ \( 1 + 9 T + 58 T^{2} + 207 T^{3} + 529 T^{4} \)
$29$ \( ( 1 - 3 T + 29 T^{2} )^{2} \)
$31$ \( 1 - 2 T - 27 T^{2} - 62 T^{3} + 961 T^{4} \)
$37$ \( 1 + 8 T + 27 T^{2} + 296 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 - 5 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 + T + 43 T^{2} )^{2} \)
$47$ \( 1 - 8 T + 17 T^{2} - 376 T^{3} + 2209 T^{4} \)
$53$ \( 1 + 4 T - 37 T^{2} + 212 T^{3} + 2809 T^{4} \)
$59$ \( 1 + 8 T + 5 T^{2} + 472 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 7 T - 12 T^{2} + 427 T^{3} + 3721 T^{4} \)
$67$ \( 1 + 3 T - 58 T^{2} + 201 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 8 T + 71 T^{2} )^{2} \)
$73$ \( 1 + 14 T + 123 T^{2} + 1022 T^{3} + 5329 T^{4} \)
$79$ \( ( 1 - 17 T + 79 T^{2} )( 1 + 13 T + 79 T^{2} ) \)
$83$ \( ( 1 - T + 83 T^{2} )^{2} \)
$89$ \( 1 + 13 T + 80 T^{2} + 1157 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 + 10 T + 97 T^{2} )^{2} \)
show more
show less