Defining parameters
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(560, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 108 | 18 | 90 |
Cusp forms | 84 | 18 | 66 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(560, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
560.2.g.a | $2$ | $4.472$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+3 i q^{3}+(-i-2)q^{5}-i q^{7}-6 q^{9}+\cdots\) |
560.2.g.b | $2$ | $4.472$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+i q^{3}+(-i-2)q^{5}+i q^{7}+2 q^{9}+\cdots\) |
560.2.g.c | $2$ | $4.472$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+(2 i+1)q^{5}-i q^{7}+3 q^{9}-4 i q^{13}+\cdots\) |
560.2.g.d | $2$ | $4.472$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+i q^{3}+(i+2)q^{5}+i q^{7}+2 q^{9}+\cdots\) |
560.2.g.e | $4$ | $4.472$ | \(\Q(i, \sqrt{6})\) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+(\beta _{1}+\beta _{3})q^{3}+(1+\beta _{1}-\beta _{2})q^{5}-\beta _{2}q^{7}+\cdots\) |
560.2.g.f | $6$ | $4.472$ | 6.0.5161984.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{3}+(\beta _{2}+\beta _{5})q^{5}+\beta _{4}q^{7}+(-1+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(560, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(560, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)