Properties

Label 560.2.cp
Level $560$
Weight $2$
Character orbit 560.cp
Rep. character $\chi_{560}(221,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $256$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.cp (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 112 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(560, [\chi])\).

Total New Old
Modular forms 400 256 144
Cusp forms 368 256 112
Eisenstein series 32 0 32

Trace form

\( 256 q + 4 q^{4} + 8 q^{11} + 16 q^{14} - 20 q^{16} - 40 q^{18} - 16 q^{20} + 56 q^{22} - 40 q^{24} + 4 q^{28} - 32 q^{29} - 20 q^{32} + 16 q^{37} - 40 q^{38} - 60 q^{42} + 16 q^{43} + 32 q^{44} - 20 q^{46}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(560, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
560.2.cp.a 560.cp 112.w $256$ $4.472$ None 560.2.cp.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(560, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(560, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)