Newspace parameters
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.bw (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.47162251319\) |
Analytic rank: | \(1\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{-19})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{3} - 4x^{2} - 5x + 25 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 140) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - x^{3} - 4x^{2} - 5x + 25 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} + 4\nu^{2} - 4\nu - 5 ) / 20 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{3} + 4\nu + 5 ) / 4 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} + 5\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( -4\beta_{3} + 4\beta _1 + 5 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).
\(n\) | \(241\) | \(337\) | \(351\) | \(421\) |
\(\chi(n)\) | \(-\beta_{2}\) | \(-1\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
289.1 |
|
0 | −1.50000 | + | 0.866025i | 0 | −0.500000 | − | 2.17945i | 0 | 1.13746 | + | 2.38876i | 0 | 0 | 0 | ||||||||||||||||||||||||
289.2 | 0 | −1.50000 | + | 0.866025i | 0 | −0.500000 | + | 2.17945i | 0 | −2.63746 | + | 0.209313i | 0 | 0 | 0 | |||||||||||||||||||||||||
529.1 | 0 | −1.50000 | − | 0.866025i | 0 | −0.500000 | − | 2.17945i | 0 | −2.63746 | − | 0.209313i | 0 | 0 | 0 | |||||||||||||||||||||||||
529.2 | 0 | −1.50000 | − | 0.866025i | 0 | −0.500000 | + | 2.17945i | 0 | 1.13746 | − | 2.38876i | 0 | 0 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
35.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 560.2.bw.a | 4 | |
4.b | odd | 2 | 1 | 140.2.q.b | yes | 4 | |
5.b | even | 2 | 1 | 560.2.bw.e | 4 | ||
7.c | even | 3 | 1 | 560.2.bw.e | 4 | ||
12.b | even | 2 | 1 | 1260.2.bm.b | 4 | ||
20.d | odd | 2 | 1 | 140.2.q.a | ✓ | 4 | |
20.e | even | 4 | 2 | 700.2.i.f | 8 | ||
28.d | even | 2 | 1 | 980.2.q.b | 4 | ||
28.f | even | 6 | 1 | 980.2.e.c | 4 | ||
28.f | even | 6 | 1 | 980.2.q.g | 4 | ||
28.g | odd | 6 | 1 | 140.2.q.a | ✓ | 4 | |
28.g | odd | 6 | 1 | 980.2.e.f | 4 | ||
35.j | even | 6 | 1 | inner | 560.2.bw.a | 4 | |
60.h | even | 2 | 1 | 1260.2.bm.a | 4 | ||
84.n | even | 6 | 1 | 1260.2.bm.a | 4 | ||
140.c | even | 2 | 1 | 980.2.q.g | 4 | ||
140.p | odd | 6 | 1 | 140.2.q.b | yes | 4 | |
140.p | odd | 6 | 1 | 980.2.e.f | 4 | ||
140.s | even | 6 | 1 | 980.2.e.c | 4 | ||
140.s | even | 6 | 1 | 980.2.q.b | 4 | ||
140.w | even | 12 | 2 | 700.2.i.f | 8 | ||
140.w | even | 12 | 2 | 4900.2.a.be | 4 | ||
140.x | odd | 12 | 2 | 4900.2.a.bf | 4 | ||
420.ba | even | 6 | 1 | 1260.2.bm.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
140.2.q.a | ✓ | 4 | 20.d | odd | 2 | 1 | |
140.2.q.a | ✓ | 4 | 28.g | odd | 6 | 1 | |
140.2.q.b | yes | 4 | 4.b | odd | 2 | 1 | |
140.2.q.b | yes | 4 | 140.p | odd | 6 | 1 | |
560.2.bw.a | 4 | 1.a | even | 1 | 1 | trivial | |
560.2.bw.a | 4 | 35.j | even | 6 | 1 | inner | |
560.2.bw.e | 4 | 5.b | even | 2 | 1 | ||
560.2.bw.e | 4 | 7.c | even | 3 | 1 | ||
700.2.i.f | 8 | 20.e | even | 4 | 2 | ||
700.2.i.f | 8 | 140.w | even | 12 | 2 | ||
980.2.e.c | 4 | 28.f | even | 6 | 1 | ||
980.2.e.c | 4 | 140.s | even | 6 | 1 | ||
980.2.e.f | 4 | 28.g | odd | 6 | 1 | ||
980.2.e.f | 4 | 140.p | odd | 6 | 1 | ||
980.2.q.b | 4 | 28.d | even | 2 | 1 | ||
980.2.q.b | 4 | 140.s | even | 6 | 1 | ||
980.2.q.g | 4 | 28.f | even | 6 | 1 | ||
980.2.q.g | 4 | 140.c | even | 2 | 1 | ||
1260.2.bm.a | 4 | 60.h | even | 2 | 1 | ||
1260.2.bm.a | 4 | 84.n | even | 6 | 1 | ||
1260.2.bm.b | 4 | 12.b | even | 2 | 1 | ||
1260.2.bm.b | 4 | 420.ba | even | 6 | 1 | ||
4900.2.a.be | 4 | 140.w | even | 12 | 2 | ||
4900.2.a.bf | 4 | 140.x | odd | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + 3T_{3} + 3 \)
acting on \(S_{2}^{\mathrm{new}}(560, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( (T^{2} + 3 T + 3)^{2} \)
$5$
\( (T^{2} + T + 5)^{2} \)
$7$
\( T^{4} + 3 T^{3} + 2 T^{2} + 21 T + 49 \)
$11$
\( T^{4} + 3 T^{3} + 21 T^{2} - 36 T + 144 \)
$13$
\( T^{4} + 44T^{2} + 256 \)
$17$
\( T^{4} + 9 T^{3} + 29 T^{2} + 18 T + 4 \)
$19$
\( T^{4} - T^{3} + 15 T^{2} + 14 T + 196 \)
$23$
\( T^{4} + 12 T^{3} + 41 T^{2} - 84 T + 49 \)
$29$
\( (T^{2} + T - 14)^{2} \)
$31$
\( T^{4} + T^{3} + 15 T^{2} - 14 T + 196 \)
$37$
\( T^{4} + 27 T^{3} + 299 T^{2} + \cdots + 3136 \)
$41$
\( (T^{2} + 15 T + 42)^{2} \)
$43$
\( T^{4} + 47T^{2} + 196 \)
$47$
\( T^{4} + 15 T^{3} + 89 T^{2} + \cdots + 196 \)
$53$
\( T^{4} - 3 T^{3} - 39 T^{2} + \cdots + 1764 \)
$59$
\( T^{4} + T^{3} + 15 T^{2} - 14 T + 196 \)
$61$
\( T^{4} - 12 T^{3} + 165 T^{2} + \cdots + 441 \)
$67$
\( T^{4} + 18 T^{3} + 59 T^{2} + \cdots + 2401 \)
$71$
\( (T^{2} + 6 T - 48)^{2} \)
$73$
\( T^{4} - 15 T^{3} + 89 T^{2} + \cdots + 196 \)
$79$
\( T^{4} + 7 T^{3} + 51 T^{2} - 14 T + 4 \)
$83$
\( T^{4} + 87T^{2} + 1764 \)
$89$
\( (T^{2} + 7 T + 49)^{2} \)
$97$
\( (T^{2} + 48)^{2} \)
show more
show less