# Properties

 Label 560.2.a.d Level $560$ Weight $2$ Character orbit 560.a Self dual yes Analytic conductor $4.472$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [560,2,Mod(1,560)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(560, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("560.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$560 = 2^{4} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 560.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$4.47162251319$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{5} + q^{7} - 3 q^{9}+O(q^{10})$$ q - q^5 + q^7 - 3 * q^9 $$q - q^{5} + q^{7} - 3 q^{9} - 4 q^{11} - 6 q^{13} + 2 q^{17} + q^{25} + 6 q^{29} - 8 q^{31} - q^{35} - 10 q^{37} + 2 q^{41} - 4 q^{43} + 3 q^{45} - 8 q^{47} + q^{49} - 2 q^{53} + 4 q^{55} + 8 q^{59} - 14 q^{61} - 3 q^{63} + 6 q^{65} + 12 q^{67} + 16 q^{71} + 2 q^{73} - 4 q^{77} + 8 q^{79} + 9 q^{81} - 8 q^{83} - 2 q^{85} + 10 q^{89} - 6 q^{91} + 2 q^{97} + 12 q^{99}+O(q^{100})$$ q - q^5 + q^7 - 3 * q^9 - 4 * q^11 - 6 * q^13 + 2 * q^17 + q^25 + 6 * q^29 - 8 * q^31 - q^35 - 10 * q^37 + 2 * q^41 - 4 * q^43 + 3 * q^45 - 8 * q^47 + q^49 - 2 * q^53 + 4 * q^55 + 8 * q^59 - 14 * q^61 - 3 * q^63 + 6 * q^65 + 12 * q^67 + 16 * q^71 + 2 * q^73 - 4 * q^77 + 8 * q^79 + 9 * q^81 - 8 * q^83 - 2 * q^85 + 10 * q^89 - 6 * q^91 + 2 * q^97 + 12 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 1.00000 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.2.a.d 1
3.b odd 2 1 5040.2.a.bm 1
4.b odd 2 1 70.2.a.a 1
5.b even 2 1 2800.2.a.m 1
5.c odd 4 2 2800.2.g.n 2
7.b odd 2 1 3920.2.a.t 1
8.b even 2 1 2240.2.a.q 1
8.d odd 2 1 2240.2.a.n 1
12.b even 2 1 630.2.a.d 1
20.d odd 2 1 350.2.a.b 1
20.e even 4 2 350.2.c.b 2
28.d even 2 1 490.2.a.h 1
28.f even 6 2 490.2.e.c 2
28.g odd 6 2 490.2.e.d 2
44.c even 2 1 8470.2.a.j 1
60.h even 2 1 3150.2.a.bj 1
60.l odd 4 2 3150.2.g.c 2
84.h odd 2 1 4410.2.a.b 1
140.c even 2 1 2450.2.a.l 1
140.j odd 4 2 2450.2.c.k 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.a.a 1 4.b odd 2 1
350.2.a.b 1 20.d odd 2 1
350.2.c.b 2 20.e even 4 2
490.2.a.h 1 28.d even 2 1
490.2.e.c 2 28.f even 6 2
490.2.e.d 2 28.g odd 6 2
560.2.a.d 1 1.a even 1 1 trivial
630.2.a.d 1 12.b even 2 1
2240.2.a.n 1 8.d odd 2 1
2240.2.a.q 1 8.b even 2 1
2450.2.a.l 1 140.c even 2 1
2450.2.c.k 2 140.j odd 4 2
2800.2.a.m 1 5.b even 2 1
2800.2.g.n 2 5.c odd 4 2
3150.2.a.bj 1 60.h even 2 1
3150.2.g.c 2 60.l odd 4 2
3920.2.a.t 1 7.b odd 2 1
4410.2.a.b 1 84.h odd 2 1
5040.2.a.bm 1 3.b odd 2 1
8470.2.a.j 1 44.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(560))$$:

 $$T_{3}$$ T3 $$T_{11} + 4$$ T11 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T - 1$$
$11$ $$T + 4$$
$13$ $$T + 6$$
$17$ $$T - 2$$
$19$ $$T$$
$23$ $$T$$
$29$ $$T - 6$$
$31$ $$T + 8$$
$37$ $$T + 10$$
$41$ $$T - 2$$
$43$ $$T + 4$$
$47$ $$T + 8$$
$53$ $$T + 2$$
$59$ $$T - 8$$
$61$ $$T + 14$$
$67$ $$T - 12$$
$71$ $$T - 16$$
$73$ $$T - 2$$
$79$ $$T - 8$$
$83$ $$T + 8$$
$89$ $$T - 10$$
$97$ $$T - 2$$