Properties

Label 560.2.a.b
Level 560
Weight 2
Character orbit 560.a
Self dual yes
Analytic conductor 4.472
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} - q^{5} - q^{7} - 2q^{9} + O(q^{10}) \) \( q - q^{3} - q^{5} - q^{7} - 2q^{9} + 3q^{11} + 5q^{13} + q^{15} + 3q^{17} - 2q^{19} + q^{21} + 6q^{23} + q^{25} + 5q^{27} + 3q^{29} + 4q^{31} - 3q^{33} + q^{35} + 2q^{37} - 5q^{39} - 12q^{41} + 10q^{43} + 2q^{45} - 9q^{47} + q^{49} - 3q^{51} + 12q^{53} - 3q^{55} + 2q^{57} + 8q^{61} + 2q^{63} - 5q^{65} + 4q^{67} - 6q^{69} + 2q^{73} - q^{75} - 3q^{77} + q^{79} + q^{81} - 12q^{83} - 3q^{85} - 3q^{87} - 12q^{89} - 5q^{91} - 4q^{93} + 2q^{95} - q^{97} - 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 −1.00000 0 −1.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.2.a.b 1
3.b odd 2 1 5040.2.a.v 1
4.b odd 2 1 35.2.a.a 1
5.b even 2 1 2800.2.a.z 1
5.c odd 4 2 2800.2.g.l 2
7.b odd 2 1 3920.2.a.ba 1
8.b even 2 1 2240.2.a.u 1
8.d odd 2 1 2240.2.a.k 1
12.b even 2 1 315.2.a.b 1
20.d odd 2 1 175.2.a.b 1
20.e even 4 2 175.2.b.a 2
28.d even 2 1 245.2.a.c 1
28.f even 6 2 245.2.e.b 2
28.g odd 6 2 245.2.e.a 2
44.c even 2 1 4235.2.a.c 1
52.b odd 2 1 5915.2.a.f 1
60.h even 2 1 1575.2.a.f 1
60.l odd 4 2 1575.2.d.c 2
84.h odd 2 1 2205.2.a.e 1
140.c even 2 1 1225.2.a.e 1
140.j odd 4 2 1225.2.b.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.a.a 1 4.b odd 2 1
175.2.a.b 1 20.d odd 2 1
175.2.b.a 2 20.e even 4 2
245.2.a.c 1 28.d even 2 1
245.2.e.a 2 28.g odd 6 2
245.2.e.b 2 28.f even 6 2
315.2.a.b 1 12.b even 2 1
560.2.a.b 1 1.a even 1 1 trivial
1225.2.a.e 1 140.c even 2 1
1225.2.b.d 2 140.j odd 4 2
1575.2.a.f 1 60.h even 2 1
1575.2.d.c 2 60.l odd 4 2
2205.2.a.e 1 84.h odd 2 1
2240.2.a.k 1 8.d odd 2 1
2240.2.a.u 1 8.b even 2 1
2800.2.a.z 1 5.b even 2 1
2800.2.g.l 2 5.c odd 4 2
3920.2.a.ba 1 7.b odd 2 1
4235.2.a.c 1 44.c even 2 1
5040.2.a.v 1 3.b odd 2 1
5915.2.a.f 1 52.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(7\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(560))\):

\( T_{3} + 1 \)
\( T_{11} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T + 3 T^{2} \)
$5$ \( 1 + T \)
$7$ \( 1 + T \)
$11$ \( 1 - 3 T + 11 T^{2} \)
$13$ \( 1 - 5 T + 13 T^{2} \)
$17$ \( 1 - 3 T + 17 T^{2} \)
$19$ \( 1 + 2 T + 19 T^{2} \)
$23$ \( 1 - 6 T + 23 T^{2} \)
$29$ \( 1 - 3 T + 29 T^{2} \)
$31$ \( 1 - 4 T + 31 T^{2} \)
$37$ \( 1 - 2 T + 37 T^{2} \)
$41$ \( 1 + 12 T + 41 T^{2} \)
$43$ \( 1 - 10 T + 43 T^{2} \)
$47$ \( 1 + 9 T + 47 T^{2} \)
$53$ \( 1 - 12 T + 53 T^{2} \)
$59$ \( 1 + 59 T^{2} \)
$61$ \( 1 - 8 T + 61 T^{2} \)
$67$ \( 1 - 4 T + 67 T^{2} \)
$71$ \( 1 + 71 T^{2} \)
$73$ \( 1 - 2 T + 73 T^{2} \)
$79$ \( 1 - T + 79 T^{2} \)
$83$ \( 1 + 12 T + 83 T^{2} \)
$89$ \( 1 + 12 T + 89 T^{2} \)
$97$ \( 1 + T + 97 T^{2} \)
show more
show less