# Properties

 Label 560.2.a.a Level $560$ Weight $2$ Character orbit 560.a Self dual yes Analytic conductor $4.472$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$560 = 2^{4} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 560.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$4.47162251319$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 140) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - 3q^{3} - q^{5} + q^{7} + 6q^{9} + O(q^{10})$$ $$q - 3q^{3} - q^{5} + q^{7} + 6q^{9} + 5q^{11} - 3q^{13} + 3q^{15} - q^{17} - 6q^{19} - 3q^{21} - 6q^{23} + q^{25} - 9q^{27} - 9q^{29} + 4q^{31} - 15q^{33} - q^{35} + 2q^{37} + 9q^{39} - 4q^{41} - 10q^{43} - 6q^{45} + q^{47} + q^{49} + 3q^{51} + 4q^{53} - 5q^{55} + 18q^{57} + 8q^{59} - 8q^{61} + 6q^{63} + 3q^{65} - 12q^{67} + 18q^{69} - 8q^{71} + 2q^{73} - 3q^{75} + 5q^{77} - 13q^{79} + 9q^{81} + 4q^{83} + q^{85} + 27q^{87} + 4q^{89} - 3q^{91} - 12q^{93} + 6q^{95} - 13q^{97} + 30q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −3.00000 0 −1.00000 0 1.00000 0 6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.2.a.a 1
3.b odd 2 1 5040.2.a.bd 1
4.b odd 2 1 140.2.a.b 1
5.b even 2 1 2800.2.a.be 1
5.c odd 4 2 2800.2.g.c 2
7.b odd 2 1 3920.2.a.bl 1
8.b even 2 1 2240.2.a.bb 1
8.d odd 2 1 2240.2.a.c 1
12.b even 2 1 1260.2.a.h 1
20.d odd 2 1 700.2.a.b 1
20.e even 4 2 700.2.e.a 2
28.d even 2 1 980.2.a.b 1
28.f even 6 2 980.2.i.j 2
28.g odd 6 2 980.2.i.b 2
60.h even 2 1 6300.2.a.bf 1
60.l odd 4 2 6300.2.k.p 2
84.h odd 2 1 8820.2.a.n 1
140.c even 2 1 4900.2.a.u 1
140.j odd 4 2 4900.2.e.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.a.b 1 4.b odd 2 1
560.2.a.a 1 1.a even 1 1 trivial
700.2.a.b 1 20.d odd 2 1
700.2.e.a 2 20.e even 4 2
980.2.a.b 1 28.d even 2 1
980.2.i.b 2 28.g odd 6 2
980.2.i.j 2 28.f even 6 2
1260.2.a.h 1 12.b even 2 1
2240.2.a.c 1 8.d odd 2 1
2240.2.a.bb 1 8.b even 2 1
2800.2.a.be 1 5.b even 2 1
2800.2.g.c 2 5.c odd 4 2
3920.2.a.bl 1 7.b odd 2 1
4900.2.a.u 1 140.c even 2 1
4900.2.e.a 2 140.j odd 4 2
5040.2.a.bd 1 3.b odd 2 1
6300.2.a.bf 1 60.h even 2 1
6300.2.k.p 2 60.l odd 4 2
8820.2.a.n 1 84.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(560))$$:

 $$T_{3} + 3$$ $$T_{11} - 5$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$3 + T$$
$5$ $$1 + T$$
$7$ $$-1 + T$$
$11$ $$-5 + T$$
$13$ $$3 + T$$
$17$ $$1 + T$$
$19$ $$6 + T$$
$23$ $$6 + T$$
$29$ $$9 + T$$
$31$ $$-4 + T$$
$37$ $$-2 + T$$
$41$ $$4 + T$$
$43$ $$10 + T$$
$47$ $$-1 + T$$
$53$ $$-4 + T$$
$59$ $$-8 + T$$
$61$ $$8 + T$$
$67$ $$12 + T$$
$71$ $$8 + T$$
$73$ $$-2 + T$$
$79$ $$13 + T$$
$83$ $$-4 + T$$
$89$ $$-4 + T$$
$97$ $$13 + T$$