Properties

Label 56.6.a
Level $56$
Weight $6$
Character orbit 56.a
Rep. character $\chi_{56}(1,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $5$
Sturm bound $48$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 56.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(48\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(56))\).

Total New Old
Modular forms 44 8 36
Cusp forms 36 8 28
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(3\)
Minus space\(-\)\(5\)

Trace form

\( 8 q - 22 q^{3} + 98 q^{5} + 876 q^{9} + O(q^{10}) \) \( 8 q - 22 q^{3} + 98 q^{5} + 876 q^{9} - 268 q^{11} - 1178 q^{13} + 3112 q^{15} + 2324 q^{17} + 894 q^{19} + 882 q^{21} - 1560 q^{23} + 6916 q^{25} + 4220 q^{27} - 2852 q^{29} + 476 q^{31} - 14256 q^{33} - 7350 q^{35} - 11812 q^{37} - 10736 q^{39} - 36 q^{41} - 12004 q^{43} - 8550 q^{45} - 28476 q^{47} + 19208 q^{49} + 49612 q^{51} - 6464 q^{53} - 56136 q^{55} - 37092 q^{57} + 33838 q^{59} + 67602 q^{61} + 21364 q^{63} + 6396 q^{65} + 68568 q^{67} + 45856 q^{69} + 9656 q^{71} - 61272 q^{73} - 164162 q^{75} + 23716 q^{77} + 109944 q^{79} + 174900 q^{81} + 74166 q^{83} + 9572 q^{85} + 349268 q^{87} - 275152 q^{89} - 76930 q^{91} + 33128 q^{93} - 74040 q^{95} + 64436 q^{97} - 377436 q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(56))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
56.6.a.a 56.a 1.a $1$ $8.981$ \(\Q\) None 56.6.a.a \(0\) \(-6\) \(4\) \(49\) $-$ $-$ $\mathrm{SU}(2)$ \(q-6q^{3}+4q^{5}+7^{2}q^{7}-207q^{9}-240q^{11}+\cdots\)
56.6.a.b 56.a 1.a $1$ $8.981$ \(\Q\) None 56.6.a.b \(0\) \(30\) \(32\) \(49\) $+$ $-$ $\mathrm{SU}(2)$ \(q+30q^{3}+2^{5}q^{5}+7^{2}q^{7}+657q^{9}+\cdots\)
56.6.a.c 56.a 1.a $2$ $8.981$ \(\Q(\sqrt{177}) \) None 56.6.a.c \(0\) \(-26\) \(-62\) \(98\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-13-\beta )q^{3}+(-31-5\beta )q^{5}+7^{2}q^{7}+\cdots\)
56.6.a.d 56.a 1.a $2$ $8.981$ \(\Q(\sqrt{193}) \) None 56.6.a.d \(0\) \(-14\) \(42\) \(-98\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-7-\beta )q^{3}+(21+5\beta )q^{5}-7^{2}q^{7}+\cdots\)
56.6.a.e 56.a 1.a $2$ $8.981$ \(\Q(\sqrt{345}) \) None 56.6.a.e \(0\) \(-6\) \(82\) \(-98\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta )q^{3}+(41-3\beta )q^{5}-7^{2}q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(56))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(56)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 2}\)