Defining parameters
Level: | \( N \) | \(=\) | \( 56 = 2^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 56.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(56))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 8 | 36 |
Cusp forms | 36 | 8 | 28 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(56))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
56.6.a.a | $1$ | $8.981$ | \(\Q\) | None | \(0\) | \(-6\) | \(4\) | \(49\) | $-$ | $-$ | \(q-6q^{3}+4q^{5}+7^{2}q^{7}-207q^{9}-240q^{11}+\cdots\) | |
56.6.a.b | $1$ | $8.981$ | \(\Q\) | None | \(0\) | \(30\) | \(32\) | \(49\) | $+$ | $-$ | \(q+30q^{3}+2^{5}q^{5}+7^{2}q^{7}+657q^{9}+\cdots\) | |
56.6.a.c | $2$ | $8.981$ | \(\Q(\sqrt{177}) \) | None | \(0\) | \(-26\) | \(-62\) | \(98\) | $+$ | $-$ | \(q+(-13-\beta )q^{3}+(-31-5\beta )q^{5}+7^{2}q^{7}+\cdots\) | |
56.6.a.d | $2$ | $8.981$ | \(\Q(\sqrt{193}) \) | None | \(0\) | \(-14\) | \(42\) | \(-98\) | $+$ | $+$ | \(q+(-7-\beta )q^{3}+(21+5\beta )q^{5}-7^{2}q^{7}+\cdots\) | |
56.6.a.e | $2$ | $8.981$ | \(\Q(\sqrt{345}) \) | None | \(0\) | \(-6\) | \(82\) | \(-98\) | $-$ | $+$ | \(q+(-3-\beta )q^{3}+(41-3\beta )q^{5}-7^{2}q^{7}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(56))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(56)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 2}\)