Properties

Label 56.6
Level 56
Weight 6
Dimension 248
Nonzero newspaces 6
Newform subspaces 13
Sturm bound 1152
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 13 \)
Sturm bound: \(1152\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(56))\).

Total New Old
Modular forms 516 268 248
Cusp forms 444 248 196
Eisenstein series 72 20 52

Trace form

\( 248 q - 2 q^{2} - 46 q^{3} - 46 q^{4} + 148 q^{5} + 226 q^{6} - 78 q^{7} + 484 q^{8} + 572 q^{9} - 1270 q^{10} - 284 q^{11} - 3158 q^{12} - 1970 q^{13} + 2378 q^{14} + 3048 q^{15} + 6618 q^{16} + 3610 q^{17}+ \cdots + 255700 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(56))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
56.6.a \(\chi_{56}(1, \cdot)\) 56.6.a.a 1 1
56.6.a.b 1
56.6.a.c 2
56.6.a.d 2
56.6.a.e 2
56.6.b \(\chi_{56}(29, \cdot)\) 56.6.b.a 14 1
56.6.b.b 16
56.6.e \(\chi_{56}(27, \cdot)\) 56.6.e.a 2 1
56.6.e.b 36
56.6.f \(\chi_{56}(55, \cdot)\) None 0 1
56.6.i \(\chi_{56}(9, \cdot)\) 56.6.i.a 10 2
56.6.i.b 10
56.6.l \(\chi_{56}(31, \cdot)\) None 0 2
56.6.m \(\chi_{56}(3, \cdot)\) 56.6.m.a 76 2
56.6.p \(\chi_{56}(37, \cdot)\) 56.6.p.a 76 2

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(56))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(56)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)