Defining parameters
Level: | \( N \) | = | \( 56 = 2^{3} \cdot 7 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 13 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(56))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 516 | 268 | 248 |
Cusp forms | 444 | 248 | 196 |
Eisenstein series | 72 | 20 | 52 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(56))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(56))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(56)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)