# Properties

 Label 56.3.k.a.11.1 Level 56 Weight 3 Character 56.11 Analytic conductor 1.526 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$56 = 2^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 56.k (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.52588948042$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 11.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 56.11 Dual form 56.3.k.a.51.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-2.00000 q^{2} +(-0.500000 + 0.866025i) q^{3} +4.00000 q^{4} +(-4.50000 + 2.59808i) q^{5} +(1.00000 - 1.73205i) q^{6} +(-1.00000 + 6.92820i) q^{7} -8.00000 q^{8} +(4.00000 + 6.92820i) q^{9} +O(q^{10})$$ $$q-2.00000 q^{2} +(-0.500000 + 0.866025i) q^{3} +4.00000 q^{4} +(-4.50000 + 2.59808i) q^{5} +(1.00000 - 1.73205i) q^{6} +(-1.00000 + 6.92820i) q^{7} -8.00000 q^{8} +(4.00000 + 6.92820i) q^{9} +(9.00000 - 5.19615i) q^{10} +(-8.50000 + 14.7224i) q^{11} +(-2.00000 + 3.46410i) q^{12} -13.8564i q^{13} +(2.00000 - 13.8564i) q^{14} -5.19615i q^{15} +16.0000 q^{16} +(12.5000 - 21.6506i) q^{17} +(-8.00000 - 13.8564i) q^{18} +(3.50000 + 6.06218i) q^{19} +(-18.0000 + 10.3923i) q^{20} +(-5.50000 - 4.33013i) q^{21} +(17.0000 - 29.4449i) q^{22} +(4.50000 - 2.59808i) q^{23} +(4.00000 - 6.92820i) q^{24} +(1.00000 - 1.73205i) q^{25} +27.7128i q^{26} -17.0000 q^{27} +(-4.00000 + 27.7128i) q^{28} +13.8564i q^{29} +10.3923i q^{30} +(28.5000 + 16.4545i) q^{31} -32.0000 q^{32} +(-8.50000 - 14.7224i) q^{33} +(-25.0000 + 43.3013i) q^{34} +(-13.5000 - 33.7750i) q^{35} +(16.0000 + 27.7128i) q^{36} +(7.50000 - 4.33013i) q^{37} +(-7.00000 - 12.1244i) q^{38} +(12.0000 + 6.92820i) q^{39} +(36.0000 - 20.7846i) q^{40} +26.0000 q^{41} +(11.0000 + 8.66025i) q^{42} +14.0000 q^{43} +(-34.0000 + 58.8897i) q^{44} +(-36.0000 - 20.7846i) q^{45} +(-9.00000 + 5.19615i) q^{46} +(-43.5000 + 25.1147i) q^{47} +(-8.00000 + 13.8564i) q^{48} +(-47.0000 - 13.8564i) q^{49} +(-2.00000 + 3.46410i) q^{50} +(12.5000 + 21.6506i) q^{51} -55.4256i q^{52} +(79.5000 + 45.8993i) q^{53} +34.0000 q^{54} -88.3346i q^{55} +(8.00000 - 55.4256i) q^{56} -7.00000 q^{57} -27.7128i q^{58} +(27.5000 - 47.6314i) q^{59} -20.7846i q^{60} +(19.5000 - 11.2583i) q^{61} +(-57.0000 - 32.9090i) q^{62} +(-52.0000 + 20.7846i) q^{63} +64.0000 q^{64} +(36.0000 + 62.3538i) q^{65} +(17.0000 + 29.4449i) q^{66} +(-8.50000 + 14.7224i) q^{67} +(50.0000 - 86.6025i) q^{68} +5.19615i q^{69} +(27.0000 + 67.5500i) q^{70} +(-32.0000 - 55.4256i) q^{72} +(-59.5000 + 103.057i) q^{73} +(-15.0000 + 8.66025i) q^{74} +(1.00000 + 1.73205i) q^{75} +(14.0000 + 24.2487i) q^{76} +(-93.5000 - 73.6122i) q^{77} +(-24.0000 - 13.8564i) q^{78} +(64.5000 - 37.2391i) q^{79} +(-72.0000 + 41.5692i) q^{80} +(-27.5000 + 47.6314i) q^{81} -52.0000 q^{82} +110.000 q^{83} +(-22.0000 - 17.3205i) q^{84} +129.904i q^{85} -28.0000 q^{86} +(-12.0000 - 6.92820i) q^{87} +(68.0000 - 117.779i) q^{88} +(-35.5000 - 61.4878i) q^{89} +(72.0000 + 41.5692i) q^{90} +(96.0000 + 13.8564i) q^{91} +(18.0000 - 10.3923i) q^{92} +(-28.5000 + 16.4545i) q^{93} +(87.0000 - 50.2295i) q^{94} +(-31.5000 - 18.1865i) q^{95} +(16.0000 - 27.7128i) q^{96} -22.0000 q^{97} +(94.0000 + 27.7128i) q^{98} -136.000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 4q^{2} - q^{3} + 8q^{4} - 9q^{5} + 2q^{6} - 2q^{7} - 16q^{8} + 8q^{9} + O(q^{10})$$ $$2q - 4q^{2} - q^{3} + 8q^{4} - 9q^{5} + 2q^{6} - 2q^{7} - 16q^{8} + 8q^{9} + 18q^{10} - 17q^{11} - 4q^{12} + 4q^{14} + 32q^{16} + 25q^{17} - 16q^{18} + 7q^{19} - 36q^{20} - 11q^{21} + 34q^{22} + 9q^{23} + 8q^{24} + 2q^{25} - 34q^{27} - 8q^{28} + 57q^{31} - 64q^{32} - 17q^{33} - 50q^{34} - 27q^{35} + 32q^{36} + 15q^{37} - 14q^{38} + 24q^{39} + 72q^{40} + 52q^{41} + 22q^{42} + 28q^{43} - 68q^{44} - 72q^{45} - 18q^{46} - 87q^{47} - 16q^{48} - 94q^{49} - 4q^{50} + 25q^{51} + 159q^{53} + 68q^{54} + 16q^{56} - 14q^{57} + 55q^{59} + 39q^{61} - 114q^{62} - 104q^{63} + 128q^{64} + 72q^{65} + 34q^{66} - 17q^{67} + 100q^{68} + 54q^{70} - 64q^{72} - 119q^{73} - 30q^{74} + 2q^{75} + 28q^{76} - 187q^{77} - 48q^{78} + 129q^{79} - 144q^{80} - 55q^{81} - 104q^{82} + 220q^{83} - 44q^{84} - 56q^{86} - 24q^{87} + 136q^{88} - 71q^{89} + 144q^{90} + 192q^{91} + 36q^{92} - 57q^{93} + 174q^{94} - 63q^{95} + 32q^{96} - 44q^{97} + 188q^{98} - 272q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/56\mathbb{Z}\right)^\times$$.

 $$n$$ $$15$$ $$17$$ $$29$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −2.00000 −1.00000
$$3$$ −0.500000 + 0.866025i −0.166667 + 0.288675i −0.937246 0.348669i $$-0.886634\pi$$
0.770579 + 0.637344i $$0.219967\pi$$
$$4$$ 4.00000 1.00000
$$5$$ −4.50000 + 2.59808i −0.900000 + 0.519615i −0.877200 0.480125i $$-0.840591\pi$$
−0.0227998 + 0.999740i $$0.507258\pi$$
$$6$$ 1.00000 1.73205i 0.166667 0.288675i
$$7$$ −1.00000 + 6.92820i −0.142857 + 0.989743i
$$8$$ −8.00000 −1.00000
$$9$$ 4.00000 + 6.92820i 0.444444 + 0.769800i
$$10$$ 9.00000 5.19615i 0.900000 0.519615i
$$11$$ −8.50000 + 14.7224i −0.772727 + 1.33840i 0.163336 + 0.986571i $$0.447775\pi$$
−0.936063 + 0.351832i $$0.885559\pi$$
$$12$$ −2.00000 + 3.46410i −0.166667 + 0.288675i
$$13$$ 13.8564i 1.06588i −0.846154 0.532939i $$-0.821088\pi$$
0.846154 0.532939i $$-0.178912\pi$$
$$14$$ 2.00000 13.8564i 0.142857 0.989743i
$$15$$ 5.19615i 0.346410i
$$16$$ 16.0000 1.00000
$$17$$ 12.5000 21.6506i 0.735294 1.27357i −0.219300 0.975657i $$-0.570377\pi$$
0.954594 0.297909i $$-0.0962893\pi$$
$$18$$ −8.00000 13.8564i −0.444444 0.769800i
$$19$$ 3.50000 + 6.06218i 0.184211 + 0.319062i 0.943310 0.331912i $$-0.107694\pi$$
−0.759100 + 0.650974i $$0.774361\pi$$
$$20$$ −18.0000 + 10.3923i −0.900000 + 0.519615i
$$21$$ −5.50000 4.33013i −0.261905 0.206197i
$$22$$ 17.0000 29.4449i 0.772727 1.33840i
$$23$$ 4.50000 2.59808i 0.195652 0.112960i −0.398974 0.916962i $$-0.630634\pi$$
0.594626 + 0.804003i $$0.297300\pi$$
$$24$$ 4.00000 6.92820i 0.166667 0.288675i
$$25$$ 1.00000 1.73205i 0.0400000 0.0692820i
$$26$$ 27.7128i 1.06588i
$$27$$ −17.0000 −0.629630
$$28$$ −4.00000 + 27.7128i −0.142857 + 0.989743i
$$29$$ 13.8564i 0.477807i 0.971043 + 0.238904i $$0.0767880\pi$$
−0.971043 + 0.238904i $$0.923212\pi$$
$$30$$ 10.3923i 0.346410i
$$31$$ 28.5000 + 16.4545i 0.919355 + 0.530790i 0.883429 0.468565i $$-0.155229\pi$$
0.0359257 + 0.999354i $$0.488562\pi$$
$$32$$ −32.0000 −1.00000
$$33$$ −8.50000 14.7224i −0.257576 0.446134i
$$34$$ −25.0000 + 43.3013i −0.735294 + 1.27357i
$$35$$ −13.5000 33.7750i −0.385714 0.965000i
$$36$$ 16.0000 + 27.7128i 0.444444 + 0.769800i
$$37$$ 7.50000 4.33013i 0.202703 0.117030i −0.395213 0.918590i $$-0.629329\pi$$
0.597916 + 0.801559i $$0.295996\pi$$
$$38$$ −7.00000 12.1244i −0.184211 0.319062i
$$39$$ 12.0000 + 6.92820i 0.307692 + 0.177646i
$$40$$ 36.0000 20.7846i 0.900000 0.519615i
$$41$$ 26.0000 0.634146 0.317073 0.948401i $$-0.397300\pi$$
0.317073 + 0.948401i $$0.397300\pi$$
$$42$$ 11.0000 + 8.66025i 0.261905 + 0.206197i
$$43$$ 14.0000 0.325581 0.162791 0.986661i $$-0.447950\pi$$
0.162791 + 0.986661i $$0.447950\pi$$
$$44$$ −34.0000 + 58.8897i −0.772727 + 1.33840i
$$45$$ −36.0000 20.7846i −0.800000 0.461880i
$$46$$ −9.00000 + 5.19615i −0.195652 + 0.112960i
$$47$$ −43.5000 + 25.1147i −0.925532 + 0.534356i −0.885396 0.464838i $$-0.846113\pi$$
−0.0401362 + 0.999194i $$0.512779\pi$$
$$48$$ −8.00000 + 13.8564i −0.166667 + 0.288675i
$$49$$ −47.0000 13.8564i −0.959184 0.282784i
$$50$$ −2.00000 + 3.46410i −0.0400000 + 0.0692820i
$$51$$ 12.5000 + 21.6506i 0.245098 + 0.424522i
$$52$$ 55.4256i 1.06588i
$$53$$ 79.5000 + 45.8993i 1.50000 + 0.866025i 1.00000 $$0$$
0.500000 + 0.866025i $$0.333333\pi$$
$$54$$ 34.0000 0.629630
$$55$$ 88.3346i 1.60608i
$$56$$ 8.00000 55.4256i 0.142857 0.989743i
$$57$$ −7.00000 −0.122807
$$58$$ 27.7128i 0.477807i
$$59$$ 27.5000 47.6314i 0.466102 0.807312i −0.533149 0.846021i $$-0.678991\pi$$
0.999250 + 0.0387097i $$0.0123247\pi$$
$$60$$ 20.7846i 0.346410i
$$61$$ 19.5000 11.2583i 0.319672 0.184563i −0.331574 0.943429i $$-0.607580\pi$$
0.651246 + 0.758866i $$0.274246\pi$$
$$62$$ −57.0000 32.9090i −0.919355 0.530790i
$$63$$ −52.0000 + 20.7846i −0.825397 + 0.329914i
$$64$$ 64.0000 1.00000
$$65$$ 36.0000 + 62.3538i 0.553846 + 0.959290i
$$66$$ 17.0000 + 29.4449i 0.257576 + 0.446134i
$$67$$ −8.50000 + 14.7224i −0.126866 + 0.219738i −0.922461 0.386091i $$-0.873825\pi$$
0.795595 + 0.605829i $$0.207158\pi$$
$$68$$ 50.0000 86.6025i 0.735294 1.27357i
$$69$$ 5.19615i 0.0753066i
$$70$$ 27.0000 + 67.5500i 0.385714 + 0.965000i
$$71$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$72$$ −32.0000 55.4256i −0.444444 0.769800i
$$73$$ −59.5000 + 103.057i −0.815068 + 1.41174i 0.0942102 + 0.995552i $$0.469967\pi$$
−0.909279 + 0.416188i $$0.863366\pi$$
$$74$$ −15.0000 + 8.66025i −0.202703 + 0.117030i
$$75$$ 1.00000 + 1.73205i 0.0133333 + 0.0230940i
$$76$$ 14.0000 + 24.2487i 0.184211 + 0.319062i
$$77$$ −93.5000 73.6122i −1.21429 0.956002i
$$78$$ −24.0000 13.8564i −0.307692 0.177646i
$$79$$ 64.5000 37.2391i 0.816456 0.471381i −0.0327370 0.999464i $$-0.510422\pi$$
0.849193 + 0.528083i $$0.177089\pi$$
$$80$$ −72.0000 + 41.5692i −0.900000 + 0.519615i
$$81$$ −27.5000 + 47.6314i −0.339506 + 0.588042i
$$82$$ −52.0000 −0.634146
$$83$$ 110.000 1.32530 0.662651 0.748929i $$-0.269431\pi$$
0.662651 + 0.748929i $$0.269431\pi$$
$$84$$ −22.0000 17.3205i −0.261905 0.206197i
$$85$$ 129.904i 1.52828i
$$86$$ −28.0000 −0.325581
$$87$$ −12.0000 6.92820i −0.137931 0.0796345i
$$88$$ 68.0000 117.779i 0.772727 1.33840i
$$89$$ −35.5000 61.4878i −0.398876 0.690874i 0.594711 0.803939i $$-0.297266\pi$$
−0.993588 + 0.113065i $$0.963933\pi$$
$$90$$ 72.0000 + 41.5692i 0.800000 + 0.461880i
$$91$$ 96.0000 + 13.8564i 1.05495 + 0.152268i
$$92$$ 18.0000 10.3923i 0.195652 0.112960i
$$93$$ −28.5000 + 16.4545i −0.306452 + 0.176930i
$$94$$ 87.0000 50.2295i 0.925532 0.534356i
$$95$$ −31.5000 18.1865i −0.331579 0.191437i
$$96$$ 16.0000 27.7128i 0.166667 0.288675i
$$97$$ −22.0000 −0.226804 −0.113402 0.993549i $$-0.536175\pi$$
−0.113402 + 0.993549i $$0.536175\pi$$
$$98$$ 94.0000 + 27.7128i 0.959184 + 0.282784i
$$99$$ −136.000 −1.37374
$$100$$ 4.00000 6.92820i 0.0400000 0.0692820i
$$101$$ 67.5000 + 38.9711i 0.668317 + 0.385853i 0.795439 0.606034i $$-0.207241\pi$$
−0.127122 + 0.991887i $$0.540574\pi$$
$$102$$ −25.0000 43.3013i −0.245098 0.424522i
$$103$$ −139.500 + 80.5404i −1.35437 + 0.781945i −0.988858 0.148862i $$-0.952439\pi$$
−0.365511 + 0.930807i $$0.619106\pi$$
$$104$$ 110.851i 1.06588i
$$105$$ 36.0000 + 5.19615i 0.342857 + 0.0494872i
$$106$$ −159.000 91.7987i −1.50000 0.866025i
$$107$$ −32.5000 56.2917i −0.303738 0.526090i 0.673241 0.739423i $$-0.264902\pi$$
−0.976980 + 0.213333i $$0.931568\pi$$
$$108$$ −68.0000 −0.629630
$$109$$ 7.50000 + 4.33013i 0.0688073 + 0.0397259i 0.534009 0.845479i $$-0.320685\pi$$
−0.465202 + 0.885205i $$0.654018\pi$$
$$110$$ 176.669i 1.60608i
$$111$$ 8.66025i 0.0780203i
$$112$$ −16.0000 + 110.851i −0.142857 + 0.989743i
$$113$$ 122.000 1.07965 0.539823 0.841779i $$-0.318491\pi$$
0.539823 + 0.841779i $$0.318491\pi$$
$$114$$ 14.0000 0.122807
$$115$$ −13.5000 + 23.3827i −0.117391 + 0.203328i
$$116$$ 55.4256i 0.477807i
$$117$$ 96.0000 55.4256i 0.820513 0.473723i
$$118$$ −55.0000 + 95.2628i −0.466102 + 0.807312i
$$119$$ 137.500 + 108.253i 1.15546 + 0.909691i
$$120$$ 41.5692i 0.346410i
$$121$$ −84.0000 145.492i −0.694215 1.20242i
$$122$$ −39.0000 + 22.5167i −0.319672 + 0.184563i
$$123$$ −13.0000 + 22.5167i −0.105691 + 0.183062i
$$124$$ 114.000 + 65.8179i 0.919355 + 0.530790i
$$125$$ 119.512i 0.956092i
$$126$$ 104.000 41.5692i 0.825397 0.329914i
$$127$$ 166.277i 1.30927i −0.755947 0.654633i $$-0.772823\pi$$
0.755947 0.654633i $$-0.227177\pi$$
$$128$$ −128.000 −1.00000
$$129$$ −7.00000 + 12.1244i −0.0542636 + 0.0939873i
$$130$$ −72.0000 124.708i −0.553846 0.959290i
$$131$$ −8.50000 14.7224i −0.0648855 0.112385i 0.831758 0.555139i $$-0.187335\pi$$
−0.896643 + 0.442754i $$0.854002\pi$$
$$132$$ −34.0000 58.8897i −0.257576 0.446134i
$$133$$ −45.5000 + 18.1865i −0.342105 + 0.136741i
$$134$$ 17.0000 29.4449i 0.126866 0.219738i
$$135$$ 76.5000 44.1673i 0.566667 0.327165i
$$136$$ −100.000 + 173.205i −0.735294 + 1.27357i
$$137$$ 72.5000 125.574i 0.529197 0.916596i −0.470223 0.882548i $$-0.655827\pi$$
0.999420 0.0340486i $$-0.0108401\pi$$
$$138$$ 10.3923i 0.0753066i
$$139$$ −82.0000 −0.589928 −0.294964 0.955508i $$-0.595308\pi$$
−0.294964 + 0.955508i $$0.595308\pi$$
$$140$$ −54.0000 135.100i −0.385714 0.965000i
$$141$$ 50.2295i 0.356237i
$$142$$ 0 0
$$143$$ 204.000 + 117.779i 1.42657 + 0.823633i
$$144$$ 64.0000 + 110.851i 0.444444 + 0.769800i
$$145$$ −36.0000 62.3538i −0.248276 0.430026i
$$146$$ 119.000 206.114i 0.815068 1.41174i
$$147$$ 35.5000 33.7750i 0.241497 0.229762i
$$148$$ 30.0000 17.3205i 0.202703 0.117030i
$$149$$ −4.50000 + 2.59808i −0.0302013 + 0.0174368i −0.515025 0.857175i $$-0.672217\pi$$
0.484823 + 0.874612i $$0.338884\pi$$
$$150$$ −2.00000 3.46410i −0.0133333 0.0230940i
$$151$$ −31.5000 18.1865i −0.208609 0.120441i 0.392056 0.919942i $$-0.371764\pi$$
−0.600665 + 0.799501i $$0.705097\pi$$
$$152$$ −28.0000 48.4974i −0.184211 0.319062i
$$153$$ 200.000 1.30719
$$154$$ 187.000 + 147.224i 1.21429 + 0.956002i
$$155$$ −171.000 −1.10323
$$156$$ 48.0000 + 27.7128i 0.307692 + 0.177646i
$$157$$ −268.500 155.019i −1.71019 0.987379i −0.934282 0.356534i $$-0.883958\pi$$
−0.775909 0.630845i $$1.21729\pi$$
$$158$$ −129.000 + 74.4782i −0.816456 + 0.471381i
$$159$$ −79.5000 + 45.8993i −0.500000 + 0.288675i
$$160$$ 144.000 83.1384i 0.900000 0.519615i
$$161$$ 13.5000 + 33.7750i 0.0838509 + 0.209783i
$$162$$ 55.0000 95.2628i 0.339506 0.588042i
$$163$$ −8.50000 14.7224i −0.0521472 0.0903217i 0.838773 0.544481i $$-0.183273\pi$$
−0.890921 + 0.454159i $$0.849940\pi$$
$$164$$ 104.000 0.634146
$$165$$ 76.5000 + 44.1673i 0.463636 + 0.267681i
$$166$$ −220.000 −1.32530
$$167$$ 13.8564i 0.0829725i −0.999139 0.0414862i $$-0.986791\pi$$
0.999139 0.0414862i $$-0.0132093\pi$$
$$168$$ 44.0000 + 34.6410i 0.261905 + 0.206197i
$$169$$ −23.0000 −0.136095
$$170$$ 259.808i 1.52828i
$$171$$ −28.0000 + 48.4974i −0.163743 + 0.283611i
$$172$$ 56.0000 0.325581
$$173$$ 91.5000 52.8275i 0.528902 0.305362i −0.211667 0.977342i $$-0.567889\pi$$
0.740569 + 0.671980i $$0.234556\pi$$
$$174$$ 24.0000 + 13.8564i 0.137931 + 0.0796345i
$$175$$ 11.0000 + 8.66025i 0.0628571 + 0.0494872i
$$176$$ −136.000 + 235.559i −0.772727 + 1.33840i
$$177$$ 27.5000 + 47.6314i 0.155367 + 0.269104i
$$178$$ 71.0000 + 122.976i 0.398876 + 0.690874i
$$179$$ −44.5000 + 77.0763i −0.248603 + 0.430594i −0.963139 0.269006i $$-0.913305\pi$$
0.714535 + 0.699600i $$0.246638\pi$$
$$180$$ −144.000 83.1384i −0.800000 0.461880i
$$181$$ 249.415i 1.37799i 0.724768 + 0.688993i $$0.241947\pi$$
−0.724768 + 0.688993i $$0.758053\pi$$
$$182$$ −192.000 27.7128i −1.05495 0.152268i
$$183$$ 22.5167i 0.123042i
$$184$$ −36.0000 + 20.7846i −0.195652 + 0.112960i
$$185$$ −22.5000 + 38.9711i −0.121622 + 0.210655i
$$186$$ 57.0000 32.9090i 0.306452 0.176930i
$$187$$ 212.500 + 368.061i 1.13636 + 1.96824i
$$188$$ −174.000 + 100.459i −0.925532 + 0.534356i
$$189$$ 17.0000 117.779i 0.0899471 0.623172i
$$190$$ 63.0000 + 36.3731i 0.331579 + 0.191437i
$$191$$ −187.500 + 108.253i −0.981675 + 0.566771i −0.902776 0.430112i $$-0.858474\pi$$
−0.0788999 + 0.996883i $$0.525141\pi$$
$$192$$ −32.0000 + 55.4256i −0.166667 + 0.288675i
$$193$$ 36.5000 63.2199i 0.189119 0.327564i −0.755838 0.654759i $$-0.772770\pi$$
0.944957 + 0.327195i $$0.106103\pi$$
$$194$$ 44.0000 0.226804
$$195$$ −72.0000 −0.369231
$$196$$ −188.000 55.4256i −0.959184 0.282784i
$$197$$ 207.846i 1.05506i 0.849538 + 0.527528i $$0.176881\pi$$
−0.849538 + 0.527528i $$0.823119\pi$$
$$198$$ 272.000 1.37374
$$199$$ −55.5000 32.0429i −0.278894 0.161020i 0.354028 0.935235i $$-0.384812\pi$$
−0.632923 + 0.774215i $$0.718145\pi$$
$$200$$ −8.00000 + 13.8564i −0.0400000 + 0.0692820i
$$201$$ −8.50000 14.7224i −0.0422886 0.0732459i
$$202$$ −135.000 77.9423i −0.668317 0.385853i
$$203$$ −96.0000 13.8564i −0.472906 0.0682582i
$$204$$ 50.0000 + 86.6025i 0.245098 + 0.424522i
$$205$$ −117.000 + 67.5500i −0.570732 + 0.329512i
$$206$$ 279.000 161.081i 1.35437 0.781945i
$$207$$ 36.0000 + 20.7846i 0.173913 + 0.100409i
$$208$$ 221.703i 1.06588i
$$209$$ −119.000 −0.569378
$$210$$ −72.0000 10.3923i −0.342857 0.0494872i
$$211$$ 302.000 1.43128 0.715640 0.698470i $$-0.246135\pi$$
0.715640 + 0.698470i $$0.246135\pi$$
$$212$$ 318.000 + 183.597i 1.50000 + 0.866025i
$$213$$ 0 0
$$214$$ 65.0000 + 112.583i 0.303738 + 0.526090i
$$215$$ −63.0000 + 36.3731i −0.293023 + 0.169177i
$$216$$ 136.000 0.629630
$$217$$ −142.500 + 180.999i −0.656682 + 0.834098i
$$218$$ −15.0000 8.66025i −0.0688073 0.0397259i
$$219$$ −59.5000 103.057i −0.271689 0.470580i
$$220$$ 353.338i 1.60608i
$$221$$ −300.000 173.205i −1.35747 0.783733i
$$222$$ 17.3205i 0.0780203i
$$223$$ 138.564i 0.621364i 0.950514 + 0.310682i $$0.100557\pi$$
−0.950514 + 0.310682i $$0.899443\pi$$
$$224$$ 32.0000 221.703i 0.142857 0.989743i
$$225$$ 16.0000 0.0711111
$$226$$ −244.000 −1.07965
$$227$$ 27.5000 47.6314i 0.121145 0.209830i −0.799074 0.601232i $$-0.794677\pi$$
0.920220 + 0.391402i $$0.128010\pi$$
$$228$$ −28.0000 −0.122807
$$229$$ 283.500 163.679i 1.23799 0.714755i 0.269308 0.963054i $$-0.413205\pi$$
0.968683 + 0.248300i $$0.0798717\pi$$
$$230$$ 27.0000 46.7654i 0.117391 0.203328i
$$231$$ 110.500 44.1673i 0.478355 0.191200i
$$232$$ 110.851i 0.477807i
$$233$$ 192.500 + 333.420i 0.826180 + 1.43099i 0.901014 + 0.433790i $$0.142824\pi$$
−0.0748337 + 0.997196i $$0.523843\pi$$
$$234$$ −192.000 + 110.851i −0.820513 + 0.473723i
$$235$$ 130.500 226.033i 0.555319 0.961841i
$$236$$ 110.000 190.526i 0.466102 0.807312i
$$237$$ 74.4782i 0.314254i
$$238$$ −275.000 216.506i −1.15546 0.909691i
$$239$$ 429.549i 1.79727i −0.438693 0.898637i $$-0.644558\pi$$
0.438693 0.898637i $$-0.355442\pi$$
$$240$$ 83.1384i 0.346410i
$$241$$ 72.5000 125.574i 0.300830 0.521053i −0.675494 0.737365i $$-0.736070\pi$$
0.976324 + 0.216313i $$0.0694030\pi$$
$$242$$ 168.000 + 290.985i 0.694215 + 1.20242i
$$243$$ −104.000 180.133i −0.427984 0.741289i
$$244$$ 78.0000 45.0333i 0.319672 0.184563i
$$245$$ 247.500 59.7558i 1.01020 0.243901i
$$246$$ 26.0000 45.0333i 0.105691 0.183062i
$$247$$ 84.0000 48.4974i 0.340081 0.196346i
$$248$$ −228.000 131.636i −0.919355 0.530790i
$$249$$ −55.0000 + 95.2628i −0.220884 + 0.382582i
$$250$$ 239.023i 0.956092i
$$251$$ −58.0000 −0.231076 −0.115538 0.993303i $$-0.536859\pi$$
−0.115538 + 0.993303i $$0.536859\pi$$
$$252$$ −208.000 + 83.1384i −0.825397 + 0.329914i
$$253$$ 88.3346i 0.349149i
$$254$$ 332.554i 1.30927i
$$255$$ −112.500 64.9519i −0.441176 0.254713i
$$256$$ 256.000 1.00000
$$257$$ −59.5000 103.057i −0.231518 0.401000i 0.726737 0.686915i $$-0.241036\pi$$
−0.958255 + 0.285915i $$0.907702\pi$$
$$258$$ 14.0000 24.2487i 0.0542636 0.0939873i
$$259$$ 22.5000 + 56.2917i 0.0868726 + 0.217342i
$$260$$ 144.000 + 249.415i 0.553846 + 0.959290i
$$261$$ −96.0000 + 55.4256i −0.367816 + 0.212359i
$$262$$ 17.0000 + 29.4449i 0.0648855 + 0.112385i
$$263$$ −283.500 163.679i −1.07795 0.622353i −0.147605 0.989046i $$-0.547156\pi$$
−0.930342 + 0.366694i $$0.880490\pi$$
$$264$$ 68.0000 + 117.779i 0.257576 + 0.446134i
$$265$$ −477.000 −1.80000
$$266$$ 91.0000 36.3731i 0.342105 0.136741i
$$267$$ 71.0000 0.265918
$$268$$ −34.0000 + 58.8897i −0.126866 + 0.219738i
$$269$$ 115.500 + 66.6840i 0.429368 + 0.247896i 0.699077 0.715046i $$-0.253594\pi$$
−0.269709 + 0.962942i $$0.586928\pi$$
$$270$$ −153.000 + 88.3346i −0.566667 + 0.327165i
$$271$$ 376.500 217.372i 1.38930 0.802112i 0.396063 0.918223i $$-0.370376\pi$$
0.993236 + 0.116111i $$0.0370430\pi$$
$$272$$ 200.000 346.410i 0.735294 1.27357i
$$273$$ −60.0000 + 76.2102i −0.219780 + 0.279158i
$$274$$ −145.000 + 251.147i −0.529197 + 0.916596i
$$275$$ 17.0000 + 29.4449i 0.0618182 + 0.107072i
$$276$$ 20.7846i 0.0753066i
$$277$$ 175.500 + 101.325i 0.633574 + 0.365794i 0.782135 0.623109i $$-0.214131\pi$$
−0.148561 + 0.988903i $$0.547464\pi$$
$$278$$ 164.000 0.589928
$$279$$ 263.272i 0.943626i
$$280$$ 108.000 + 270.200i 0.385714 + 0.965000i
$$281$$ 74.0000 0.263345 0.131673 0.991293i $$-0.457965\pi$$
0.131673 + 0.991293i $$0.457965\pi$$
$$282$$ 100.459i 0.356237i
$$283$$ 231.500 400.970i 0.818021 1.41685i −0.0891169 0.996021i $$-0.528404\pi$$
0.907138 0.420833i $$-0.138262\pi$$
$$284$$ 0 0
$$285$$ 31.5000 18.1865i 0.110526 0.0638124i
$$286$$ −408.000 235.559i −1.42657 0.823633i
$$287$$ −26.0000 + 180.133i −0.0905923 + 0.627642i
$$288$$ −128.000 221.703i −0.444444 0.769800i
$$289$$ −168.000 290.985i −0.581315 1.00687i
$$290$$ 72.0000 + 124.708i 0.248276 + 0.430026i
$$291$$ 11.0000 19.0526i 0.0378007 0.0654727i
$$292$$ −238.000 + 412.228i −0.815068 + 1.41174i
$$293$$ 110.851i 0.378332i 0.981945 + 0.189166i $$0.0605784\pi$$
−0.981945 + 0.189166i $$0.939422\pi$$
$$294$$ −71.0000 + 67.5500i −0.241497 + 0.229762i
$$295$$ 285.788i 0.968774i
$$296$$ −60.0000 + 34.6410i −0.202703 + 0.117030i
$$297$$ 144.500 250.281i 0.486532 0.842698i
$$298$$ 9.00000 5.19615i 0.0302013 0.0174368i
$$299$$ −36.0000 62.3538i −0.120401 0.208541i
$$300$$ 4.00000 + 6.92820i 0.0133333 + 0.0230940i
$$301$$ −14.0000 + 96.9948i −0.0465116 + 0.322242i
$$302$$ 63.0000 + 36.3731i 0.208609 + 0.120441i
$$303$$ −67.5000 + 38.9711i −0.222772 + 0.128618i
$$304$$ 56.0000 + 96.9948i 0.184211 + 0.319062i
$$305$$ −58.5000 + 101.325i −0.191803 + 0.332213i
$$306$$ −400.000 −1.30719
$$307$$ −274.000 −0.892508 −0.446254 0.894906i $$-0.647242\pi$$
−0.446254 + 0.894906i $$0.647242\pi$$
$$308$$ −374.000 294.449i −1.21429 0.956002i
$$309$$ 161.081i 0.521297i
$$310$$ 342.000 1.10323
$$311$$ −43.5000 25.1147i −0.139871 0.0807548i 0.428431 0.903574i $$-0.359066\pi$$
−0.568303 + 0.822820i $$0.692400\pi$$
$$312$$ −96.0000 55.4256i −0.307692 0.177646i
$$313$$ 204.500 + 354.204i 0.653355 + 1.13164i 0.982304 + 0.187296i $$0.0599723\pi$$
−0.328949 + 0.944348i $$0.606694\pi$$
$$314$$ 537.000 + 310.037i 1.71019 + 0.987379i
$$315$$ 180.000 228.631i 0.571429 0.725812i
$$316$$ 258.000 148.956i 0.816456 0.471381i
$$317$$ 163.500 94.3968i 0.515773 0.297782i −0.219431 0.975628i $$-0.570420\pi$$
0.735203 + 0.677847i $$0.237087\pi$$
$$318$$ 159.000 91.7987i 0.500000 0.288675i
$$319$$ −204.000 117.779i −0.639498 0.369215i
$$320$$ −288.000 + 166.277i −0.900000 + 0.519615i
$$321$$ 65.0000 0.202492
$$322$$ −27.0000 67.5500i −0.0838509 0.209783i
$$323$$ 175.000 0.541796
$$324$$ −110.000 + 190.526i −0.339506 + 0.588042i
$$325$$ −24.0000 13.8564i −0.0738462 0.0426351i
$$326$$ 17.0000 + 29.4449i 0.0521472 + 0.0903217i
$$327$$ −7.50000 + 4.33013i −0.0229358 + 0.0132420i
$$328$$ −208.000 −0.634146
$$329$$ −130.500 326.492i −0.396657 0.992376i
$$330$$ −153.000 88.3346i −0.463636 0.267681i
$$331$$ 147.500 + 255.477i 0.445619 + 0.771835i 0.998095 0.0616936i $$-0.0196502\pi$$
−0.552476 + 0.833529i $$0.686317\pi$$
$$332$$ 440.000 1.32530
$$333$$ 60.0000 + 34.6410i 0.180180 + 0.104027i
$$334$$ 27.7128i 0.0829725i
$$335$$ 88.3346i 0.263685i
$$336$$ −88.0000 69.2820i −0.261905 0.206197i
$$337$$ 26.0000 0.0771513 0.0385757 0.999256i $$-0.487718\pi$$
0.0385757 + 0.999256i $$0.487718\pi$$
$$338$$ 46.0000 0.136095
$$339$$ −61.0000 + 105.655i −0.179941 + 0.311667i
$$340$$ 519.615i 1.52828i
$$341$$ −484.500 + 279.726i −1.42082 + 0.820311i
$$342$$ 56.0000 96.9948i 0.163743 0.283611i
$$343$$ 143.000 311.769i 0.416910 0.908948i
$$344$$ −112.000 −0.325581
$$345$$ −13.5000 23.3827i −0.0391304 0.0677759i
$$346$$ −183.000 + 105.655i −0.528902 + 0.305362i
$$347$$ −188.500 + 326.492i −0.543228 + 0.940898i 0.455488 + 0.890242i $$0.349465\pi$$
−0.998716 + 0.0506562i $$0.983869\pi$$
$$348$$ −48.0000 27.7128i −0.137931 0.0796345i
$$349$$ 96.9948i 0.277922i 0.990298 + 0.138961i $$0.0443763\pi$$
−0.990298 + 0.138961i $$0.955624\pi$$
$$350$$ −22.0000 17.3205i −0.0628571 0.0494872i
$$351$$ 235.559i 0.671108i
$$352$$ 272.000 471.118i 0.772727 1.33840i
$$353$$ −251.500 + 435.611i −0.712465 + 1.23402i 0.251465 + 0.967866i $$0.419088\pi$$
−0.963929 + 0.266158i $$0.914246\pi$$
$$354$$ −55.0000 95.2628i −0.155367 0.269104i
$$355$$ 0 0
$$356$$ −142.000 245.951i −0.398876 0.690874i
$$357$$ −162.500 + 64.9519i −0.455182 + 0.181938i
$$358$$ 89.0000 154.153i 0.248603 0.430594i
$$359$$ 160.500 92.6647i 0.447075 0.258119i −0.259519 0.965738i $$-0.583564\pi$$
0.706594 + 0.707619i $$0.250231\pi$$
$$360$$ 288.000 + 166.277i 0.800000 + 0.461880i
$$361$$ 156.000 270.200i 0.432133 0.748476i
$$362$$ 498.831i 1.37799i
$$363$$ 168.000 0.462810
$$364$$ 384.000 + 55.4256i 1.05495 + 0.152268i
$$365$$ 618.342i 1.69409i
$$366$$ 45.0333i 0.123042i
$$367$$ 256.500 + 148.090i 0.698910 + 0.403516i 0.806941 0.590632i $$-0.201121\pi$$
−0.108031 + 0.994147i $$0.534455\pi$$
$$368$$ 72.0000 41.5692i 0.195652 0.112960i
$$369$$ 104.000 + 180.133i 0.281843 + 0.488166i
$$370$$ 45.0000 77.9423i 0.121622 0.210655i
$$371$$ −397.500 + 504.893i −1.07143 + 1.36090i
$$372$$ −114.000 + 65.8179i −0.306452 + 0.176930i
$$373$$ 103.500 59.7558i 0.277480 0.160203i −0.354802 0.934941i $$-0.615452\pi$$
0.632282 + 0.774738i $$0.282118\pi$$
$$374$$ −425.000 736.122i −1.13636 1.96824i
$$375$$ 103.500 + 59.7558i 0.276000 + 0.159349i
$$376$$ 348.000 200.918i 0.925532 0.534356i
$$377$$ 192.000 0.509284
$$378$$ −34.0000 + 235.559i −0.0899471 + 0.623172i
$$379$$ −634.000 −1.67282 −0.836412 0.548102i $$-0.815351\pi$$
−0.836412 + 0.548102i $$0.815351\pi$$
$$380$$ −126.000 72.7461i −0.331579 0.191437i
$$381$$ 144.000 + 83.1384i 0.377953 + 0.218211i
$$382$$ 375.000 216.506i 0.981675 0.566771i
$$383$$ −211.500 + 122.110i −0.552219 + 0.318824i −0.750017 0.661419i $$-0.769955\pi$$
0.197797 + 0.980243i $$0.436621\pi$$
$$384$$ 64.0000 110.851i 0.166667 0.288675i
$$385$$ 612.000 + 88.3346i 1.58961 + 0.229440i
$$386$$ −73.0000 + 126.440i −0.189119 + 0.327564i
$$387$$ 56.0000 + 96.9948i 0.144703 + 0.250633i
$$388$$ −88.0000 −0.226804
$$389$$ −508.500 293.583i −1.30720 0.754711i −0.325570 0.945518i $$-0.605556\pi$$
−0.981628 + 0.190807i $$0.938890\pi$$
$$390$$ 144.000 0.369231
$$391$$ 129.904i 0.332235i
$$392$$ 376.000 + 110.851i 0.959184 + 0.282784i
$$393$$ 17.0000 0.0432570
$$394$$ 415.692i 1.05506i
$$395$$ −193.500 + 335.152i −0.489873 + 0.848486i
$$396$$ −544.000 −1.37374
$$397$$ −208.500 + 120.378i −0.525189 + 0.303218i −0.739055 0.673645i $$-0.764728\pi$$
0.213866 + 0.976863i $$0.431394\pi$$
$$398$$ 111.000 + 64.0859i 0.278894 + 0.161020i
$$399$$ 7.00000 48.4974i 0.0175439 0.121547i
$$400$$ 16.0000 27.7128i 0.0400000 0.0692820i
$$401$$ −59.5000 103.057i −0.148379 0.257000i 0.782249 0.622965i $$-0.214072\pi$$
−0.930629 + 0.365965i $$0.880739\pi$$
$$402$$ 17.0000 + 29.4449i 0.0422886 + 0.0732459i
$$403$$ 228.000 394.908i 0.565757 0.979920i
$$404$$ 270.000 + 155.885i 0.668317 + 0.385853i
$$405$$ 285.788i 0.705650i
$$406$$ 192.000 + 27.7128i 0.472906 + 0.0682582i
$$407$$ 147.224i 0.361731i
$$408$$ −100.000 173.205i −0.245098 0.424522i
$$409$$ 72.5000 125.574i 0.177262 0.307026i −0.763680 0.645595i $$-0.776609\pi$$
0.940942 + 0.338569i $$0.109943\pi$$
$$410$$ 234.000 135.100i 0.570732 0.329512i
$$411$$ 72.5000 + 125.574i 0.176399 + 0.305532i
$$412$$ −558.000 + 322.161i −1.35437 + 0.781945i
$$413$$ 302.500 + 238.157i 0.732446 + 0.576651i
$$414$$ −72.0000 41.5692i −0.173913 0.100409i
$$415$$ −495.000 + 285.788i −1.19277 + 0.688647i
$$416$$ 443.405i 1.06588i
$$417$$ 41.0000 71.0141i 0.0983213 0.170298i
$$418$$ 238.000 0.569378
$$419$$ 302.000 0.720764 0.360382 0.932805i $$-0.382646\pi$$
0.360382 + 0.932805i $$0.382646\pi$$
$$420$$ 144.000 + 20.7846i 0.342857 + 0.0494872i
$$421$$ 401.836i 0.954479i −0.878773 0.477240i $$-0.841637\pi$$
0.878773 0.477240i $$-0.158363\pi$$
$$422$$ −604.000 −1.43128
$$423$$ −348.000 200.918i −0.822695 0.474983i
$$424$$ −636.000 367.195i −1.50000 0.866025i
$$425$$ −25.0000 43.3013i −0.0588235 0.101885i
$$426$$ 0 0
$$427$$ 58.5000 + 146.358i 0.137002 + 0.342759i
$$428$$ −130.000 225.167i −0.303738 0.526090i
$$429$$ −204.000 + 117.779i −0.475524 + 0.274544i
$$430$$ 126.000 72.7461i 0.293023 0.169177i
$$431$$ 700.500 + 404.434i 1.62529 + 0.938362i 0.985473 + 0.169835i $$0.0543234\pi$$
0.639817 + 0.768527i $$0.279010\pi$$
$$432$$ −272.000 −0.629630
$$433$$ 410.000 0.946882 0.473441 0.880825i $$-0.343012\pi$$
0.473441 + 0.880825i $$0.343012\pi$$
$$434$$ 285.000 361.999i 0.656682 0.834098i
$$435$$ 72.0000 0.165517
$$436$$ 30.0000 + 17.3205i 0.0688073 + 0.0397259i
$$437$$ 31.5000 + 18.1865i 0.0720824 + 0.0416168i
$$438$$ 119.000 + 206.114i 0.271689 + 0.470580i
$$439$$ 424.500 245.085i 0.966970 0.558281i 0.0686591 0.997640i $$-0.478128\pi$$
0.898311 + 0.439360i $$0.144795\pi$$
$$440$$ 706.677i 1.60608i
$$441$$ −92.0000 381.051i −0.208617 0.864062i
$$442$$ 600.000 + 346.410i 1.35747 + 0.783733i
$$443$$ −200.500 347.276i −0.452596 0.783919i 0.545950 0.837817i $$-0.316169\pi$$
−0.998546 + 0.0538983i $$0.982835\pi$$
$$444$$ 34.6410i 0.0780203i
$$445$$ 319.500 + 184.463i 0.717978 + 0.414525i
$$446$$ 277.128i 0.621364i
$$447$$ 5.19615i 0.0116245i
$$448$$ −64.0000 + 443.405i −0.142857 + 0.989743i
$$449$$ −310.000 −0.690423 −0.345212 0.938525i $$-0.612193\pi$$
−0.345212 + 0.938525i $$0.612193\pi$$
$$450$$ −32.0000 −0.0711111
$$451$$ −221.000 + 382.783i −0.490022 + 0.848743i
$$452$$ 488.000 1.07965
$$453$$ 31.5000 18.1865i 0.0695364 0.0401469i
$$454$$ −55.0000 + 95.2628i −0.121145 + 0.209830i
$$455$$ −468.000 + 187.061i −1.02857 + 0.411124i
$$456$$ 56.0000 0.122807
$$457$$ −83.5000 144.626i −0.182713 0.316469i 0.760090 0.649818i $$-0.225155\pi$$
−0.942804 + 0.333349i $$0.891821\pi$$
$$458$$ −567.000 + 327.358i −1.23799 + 0.714755i
$$459$$ −212.500 + 368.061i −0.462963 + 0.801875i
$$460$$ −54.0000 + 93.5307i −0.117391 + 0.203328i
$$461$$ 13.8564i 0.0300573i 0.999887 + 0.0150286i $$0.00478394\pi$$
−0.999887 + 0.0150286i $$0.995216\pi$$
$$462$$ −221.000 + 88.3346i −0.478355 + 0.191200i
$$463$$ 609.682i 1.31681i 0.752665 + 0.658404i $$0.228768\pi$$
−0.752665 + 0.658404i $$0.771232\pi$$
$$464$$ 221.703i 0.477807i
$$465$$ 85.5000 148.090i 0.183871 0.318474i
$$466$$ −385.000 666.840i −0.826180 1.43099i
$$467$$ −392.500 679.830i −0.840471 1.45574i −0.889497 0.456941i $$-0.848945\pi$$
0.0490258 0.998798i $$-0.484388\pi$$
$$468$$ 384.000 221.703i 0.820513 0.473723i
$$469$$ −93.5000 73.6122i −0.199360 0.156956i
$$470$$ −261.000 + 452.065i −0.555319 + 0.961841i
$$471$$ 268.500 155.019i 0.570064 0.329126i
$$472$$ −220.000 + 381.051i −0.466102 + 0.807312i
$$473$$ −119.000 + 206.114i −0.251586 + 0.435759i
$$474$$ 148.956i 0.314254i
$$475$$ 14.0000 0.0294737
$$476$$ 550.000 + 433.013i 1.15546 + 0.909691i
$$477$$ 734.390i 1.53960i
$$478$$ 859.097i 1.79727i
$$479$$ −535.500 309.171i −1.11795 0.645451i −0.177076 0.984197i $$-0.556664\pi$$
−0.940878 + 0.338746i $$0.889997\pi$$
$$480$$ 166.277i 0.346410i
$$481$$ −60.0000 103.923i −0.124740 0.216056i
$$482$$ −145.000 + 251.147i −0.300830 + 0.521053i
$$483$$ −36.0000 5.19615i −0.0745342 0.0107581i
$$484$$ −336.000 581.969i −0.694215 1.20242i
$$485$$ 99.0000 57.1577i 0.204124 0.117851i
$$486$$ 208.000 + 360.267i 0.427984 + 0.741289i
$$487$$ 340.500 + 196.588i 0.699179 + 0.403671i 0.807041 0.590495i $$-0.201067\pi$$
−0.107863 + 0.994166i $$0.534401\pi$$
$$488$$ −156.000 + 90.0666i −0.319672 + 0.184563i
$$489$$ 17.0000 0.0347648
$$490$$ −495.000 + 119.512i −1.01020 + 0.243901i
$$491$$ 422.000 0.859470 0.429735 0.902955i $$-0.358607\pi$$
0.429735 + 0.902955i $$0.358607\pi$$
$$492$$ −52.0000 + 90.0666i −0.105691 + 0.183062i
$$493$$ 300.000 + 173.205i 0.608519 + 0.351329i
$$494$$ −168.000 + 96.9948i −0.340081 + 0.196346i
$$495$$ 612.000 353.338i 1.23636 0.713815i
$$496$$ 456.000 + 263.272i 0.919355 + 0.530790i
$$497$$ 0 0
$$498$$ 110.000 190.526i 0.220884 0.382582i
$$499$$ −32.5000 56.2917i −0.0651303 0.112809i 0.831622 0.555343i $$-0.187413\pi$$
−0.896752 + 0.442534i $$0.854080\pi$$
$$500$$ 478.046i 0.956092i
$$501$$ 12.0000 + 6.92820i 0.0239521 + 0.0138287i
$$502$$ 116.000 0.231076
$$503$$ 249.415i 0.495855i −0.968779 0.247928i $$-0.920250\pi$$
0.968779 0.247928i $$-0.0797496\pi$$
$$504$$ 416.000 166.277i 0.825397 0.329914i
$$505$$ −405.000 −0.801980
$$506$$ 176.669i 0.349149i
$$507$$ 11.5000 19.9186i 0.0226824 0.0392871i
$$508$$ 665.108i 1.30927i
$$509$$ −472.500 + 272.798i −0.928291 + 0.535949i −0.886271 0.463168i $$-0.846713\pi$$
−0.0420202 + 0.999117i $$0.513379\pi$$
$$510$$ 225.000 + 129.904i 0.441176 + 0.254713i
$$511$$ −654.500 515.285i −1.28082 1.00839i
$$512$$ −512.000 −1.00000
$$513$$ −59.5000 103.057i −0.115984 0.200891i
$$514$$ 119.000 + 206.114i 0.231518 + 0.401000i
$$515$$ 418.500 724.863i 0.812621 1.40750i
$$516$$ −28.0000 + 48.4974i −0.0542636 + 0.0939873i
$$517$$ 853.901i 1.65165i
$$518$$ −45.0000 112.583i −0.0868726 0.217342i
$$519$$ 105.655i 0.203574i
$$520$$ −288.000 498.831i −0.553846 0.959290i
$$521$$ 12.5000 21.6506i 0.0239923 0.0415559i −0.853780 0.520634i $$-0.825696\pi$$
0.877772 + 0.479078i $$0.159029\pi$$
$$522$$ 192.000 110.851i 0.367816 0.212359i
$$523$$ −296.500 513.553i −0.566922 0.981937i −0.996868 0.0790826i $$-0.974801\pi$$
0.429946 0.902854i $$-0.358532\pi$$
$$524$$ −34.0000 58.8897i −0.0648855 0.112385i
$$525$$ −13.0000 + 5.19615i −0.0247619 + 0.00989743i
$$526$$ 567.000 + 327.358i 1.07795 + 0.622353i
$$527$$ 712.500 411.362i 1.35199 0.780573i
$$528$$ −136.000 235.559i −0.257576 0.446134i
$$529$$ −251.000 + 434.745i −0.474480 + 0.821824i
$$530$$ 954.000 1.80000
$$531$$ 440.000 0.828625
$$532$$ −182.000 + 72.7461i −0.342105 + 0.136741i
$$533$$ 360.267i 0.675922i
$$534$$ −142.000 −0.265918
$$535$$ 292.500 + 168.875i 0.546729 + 0.315654i
$$536$$ 68.0000 117.779i 0.126866 0.219738i
$$537$$ −44.5000 77.0763i −0.0828678 0.143531i
$$538$$ −231.000 133.368i −0.429368 0.247896i
$$539$$ 603.500 574.175i 1.11967 1.06526i
$$540$$ 306.000 176.669i 0.566667 0.327165i
$$541$$ 655.500 378.453i 1.21165 0.699544i 0.248528 0.968625i $$-0.420053\pi$$
0.963117 + 0.269081i $$0.0867200\pi$$
$$542$$ −753.000 + 434.745i −1.38930 + 0.802112i
$$543$$ −216.000 124.708i −0.397790 0.229664i
$$544$$ −400.000 + 692.820i −0.735294 + 1.27357i
$$545$$ −45.0000 −0.0825688
$$546$$ 120.000 152.420i 0.219780 0.279158i
$$547$$ 662.000 1.21024 0.605119 0.796135i $$-0.293126\pi$$
0.605119 + 0.796135i $$0.293126\pi$$
$$548$$ 290.000 502.295i 0.529197 0.916596i
$$549$$ 156.000 + 90.0666i 0.284153 + 0.164056i
$$550$$ −34.0000 58.8897i −0.0618182 0.107072i
$$551$$ −84.0000 + 48.4974i −0.152450 + 0.0880171i
$$552$$ 41.5692i 0.0753066i
$$553$$ 193.500 + 484.108i 0.349910 + 0.875422i
$$554$$ −351.000 202.650i −0.633574 0.365794i
$$555$$ −22.5000 38.9711i −0.0405405 0.0702183i
$$556$$ −328.000 −0.589928
$$557$$ 511.500 + 295.315i 0.918312 + 0.530188i 0.883096 0.469192i $$-0.155455\pi$$
0.0352161 + 0.999380i $$0.488788\pi$$
$$558$$ 526.543i 0.943626i
$$559$$ 193.990i 0.347030i
$$560$$ −216.000 540.400i −0.385714 0.965000i
$$561$$ −425.000 −0.757576
$$562$$ −148.000 −0.263345
$$563$$ −368.500 + 638.261i −0.654529 + 1.13368i 0.327482 + 0.944857i $$0.393800\pi$$
−0.982012 + 0.188821i $$0.939534\pi$$
$$564$$ 200.918i 0.356237i
$$565$$ −549.000 + 316.965i −0.971681 + 0.561001i
$$566$$ −463.000 + 801.940i −0.818021 + 1.41685i
$$567$$ −302.500 238.157i −0.533510 0.420030i
$$568$$ 0 0
$$569$$ 60.5000 + 104.789i 0.106327 + 0.184164i 0.914280 0.405084i $$-0.132758\pi$$
−0.807953 + 0.589247i $$0.799424\pi$$
$$570$$ −63.0000 + 36.3731i −0.110526 + 0.0638124i
$$571$$ −368.500 + 638.261i −0.645359 + 1.11779i 0.338859 + 0.940837i $$0.389959\pi$$
−0.984218 + 0.176958i $$0.943374\pi$$
$$572$$ 816.000 + 471.118i 1.42657 + 0.823633i
$$573$$ 216.506i 0.377847i
$$574$$ 52.0000 360.267i 0.0905923 0.627642i
$$575$$ 10.3923i 0.0180736i
$$576$$ 256.000 + 443.405i 0.444444 + 0.769800i
$$577$$ −23.5000 + 40.7032i −0.0407279 + 0.0705428i −0.885671 0.464314i $$-0.846301\pi$$
0.844943 + 0.534857i $$0.179634\pi$$
$$578$$ 336.000 + 581.969i 0.581315 + 1.00687i
$$579$$ 36.5000 + 63.2199i 0.0630397 + 0.109188i
$$580$$ −144.000 249.415i −0.248276 0.430026i
$$581$$ −110.000 + 762.102i −0.189329 + 1.31171i
$$582$$ −22.0000 + 38.1051i −0.0378007 + 0.0654727i
$$583$$ −1351.50 + 780.289i −2.31818 + 1.33840i
$$584$$ 476.000 824.456i 0.815068 1.41174i
$$585$$ −288.000 + 498.831i −0.492308 + 0.852702i
$$586$$ 221.703i 0.378332i
$$587$$ 446.000 0.759796 0.379898 0.925028i $$-0.375959\pi$$
0.379898 + 0.925028i $$0.375959\pi$$
$$588$$ 142.000 135.100i 0.241497 0.229762i
$$589$$ 230.363i 0.391108i
$$590$$ 571.577i 0.968774i
$$591$$ −180.000 103.923i −0.304569 0.175843i
$$592$$ 120.000 69.2820i 0.202703 0.117030i
$$593$$ −107.500 186.195i −0.181282 0.313989i 0.761036 0.648710i $$-0.224691\pi$$
−0.942317 + 0.334721i $$0.891358\pi$$
$$594$$ −289.000 + 500.563i −0.486532 + 0.842698i
$$595$$ −900.000 129.904i −1.51261 0.218326i
$$596$$ −18.0000 + 10.3923i −0.0302013 + 0.0174368i
$$597$$ 55.5000 32.0429i 0.0929648 0.0536733i
$$598$$ 72.0000 + 124.708i 0.120401 + 0.208541i
$$599$$ 244.500 + 141.162i 0.408180 + 0.235663i 0.690008 0.723802i $$-0.257607\pi$$
−0.281827 + 0.959465i $$0.590941\pi$$
$$600$$ −8.00000 13.8564i −0.0133333 0.0230940i
$$601$$ 266.000 0.442596 0.221298 0.975206i $$-0.428971\pi$$
0.221298 + 0.975206i $$0.428971\pi$$
$$602$$ 28.0000 193.990i 0.0465116 0.322242i
$$603$$ −136.000 −0.225539
$$604$$ −126.000 72.7461i −0.208609 0.120441i
$$605$$ 756.000 + 436.477i 1.24959 + 0.721449i
$$606$$ 135.000 77.9423i 0.222772 0.128618i
$$607$$ −571.500 + 329.956i −0.941516 + 0.543584i −0.890435 0.455110i $$-0.849600\pi$$
−0.0510805 + 0.998695i $$0.516267\pi$$
$$608$$ −112.000 193.990i −0.184211 0.319062i
$$609$$ 60.0000 76.2102i 0.0985222 0.125140i
$$610$$ 117.000 202.650i 0.191803 0.332213i
$$611$$ 348.000 + 602.754i 0.569558 + 0.986504i
$$612$$ 800.000 1.30719
$$613$$ −604.500 349.008i −0.986134 0.569345i −0.0820174 0.996631i $$-0.526136\pi$$
−0.904116 + 0.427286i $$0.859470\pi$$
$$614$$ 548.000 0.892508
$$615$$ 135.100i 0.219675i
$$616$$ 748.000 + 588.897i 1.21429 + 0.956002i
$$617$$ −118.000 −0.191248 −0.0956240 0.995418i $$-0.530485\pi$$
−0.0956240 + 0.995418i $$0.530485\pi$$
$$618$$ 322.161i 0.521297i
$$619$$ 459.500 795.877i 0.742326 1.28575i −0.209107 0.977893i $$-0.567056\pi$$
0.951434 0.307854i $$-0.0996109\pi$$
$$620$$ −684.000 −1.10323
$$621$$ −76.5000 + 44.1673i −0.123188 + 0.0711229i
$$622$$ 87.0000 + 50.2295i 0.139871 + 0.0807548i
$$623$$ 461.500 184.463i 0.740770 0.296089i
$$624$$ 192.000 + 110.851i 0.307692 + 0.177646i
$$625$$ 335.500 + 581.103i 0.536800 + 0.929765i
$$626$$ −409.000 708.409i −0.653355 1.13164i
$$627$$ 59.5000 103.057i 0.0948963 0.164365i
$$628$$ −1074.00 620.074i −1.71019 0.987379i
$$629$$ 216.506i 0.344207i
$$630$$ −360.000 + 457.261i −0.571429 + 0.725812i
$$631$$ 166.277i 0.263513i −0.991282 0.131757i $$-0.957938\pi$$
0.991282 0.131757i $$-0.0420617\pi$$
$$632$$ −516.000 + 297.913i −0.816456 + 0.471381i
$$633$$ −151.000 + 261.540i −0.238547 + 0.413175i
$$634$$ −327.000 + 188.794i −0.515773 + 0.297782i
$$635$$ 432.000 + 748.246i 0.680315 + 1.17834i
$$636$$ −318.000 + 183.597i −0.500000 + 0.288675i
$$637$$ −192.000 + 651.251i −0.301413 + 1.02237i
$$638$$ 408.000 + 235.559i 0.639498 + 0.369215i
$$639$$ 0 0
$$640$$ 576.000 332.554i 0.900000 0.519615i
$$641$$ 0.500000 0.866025i 0.000780031 0.00135105i −0.865635 0.500675i $$-0.833085\pi$$
0.866415 + 0.499324i $$0.166418\pi$$
$$642$$ −130.000 −0.202492
$$643$$ −514.000 −0.799378 −0.399689 0.916651i $$-0.630882\pi$$
−0.399689 + 0.916651i $$0.630882\pi$$
$$644$$ 54.0000 + 135.100i 0.0838509 + 0.209783i
$$645$$ 72.7461i 0.112785i
$$646$$ −350.000 −0.541796
$$647$$ 52.5000 + 30.3109i 0.0811437 + 0.0468484i 0.540023 0.841650i $$-0.318416\pi$$
−0.458879 + 0.888499i $$0.651749\pi$$
$$648$$ 220.000 381.051i 0.339506 0.588042i
$$649$$ 467.500 + 809.734i 0.720339 + 1.24766i
$$650$$ 48.0000 + 27.7128i 0.0738462 + 0.0426351i
$$651$$ −85.5000 213.908i −0.131336 0.328584i
$$652$$ −34.0000 58.8897i −0.0521472 0.0903217i
$$653$$ 283.500 163.679i 0.434150 0.250657i −0.266963 0.963707i $$-0.586020\pi$$
0.701113 + 0.713050i $$0.252687\pi$$
$$654$$ 15.0000 8.66025i 0.0229358 0.0132420i
$$655$$ 76.5000 + 44.1673i 0.116794 + 0.0674310i
$$656$$ 416.000 0.634146
$$657$$ −952.000 −1.44901
$$658$$ 261.000 + 652.983i 0.396657 + 0.992376i
$$659$$ 542.000 0.822458 0.411229 0.911532i $$-0.365100\pi$$
0.411229 + 0.911532i $$0.365100\pi$$
$$660$$ 306.000 + 176.669i 0.463636 + 0.267681i
$$661$$ −1024.50 591.495i −1.54992 0.894849i −0.998146 0.0608582i $$-0.980616\pi$$
−0.551778 0.833991i $$1.31395\pi$$
$$662$$ −295.000 510.955i −0.445619 0.771835i
$$663$$ 300.000 173.205i 0.452489 0.261244i
$$664$$ −880.000 −1.32530
$$665$$ 157.500 200.052i 0.236842 0.300830i
$$666$$ −120.000 69.2820i −0.180180 0.104027i
$$667$$ 36.0000 + 62.3538i 0.0539730 + 0.0934840i
$$668$$ 55.4256i 0.0829725i
$$669$$ −120.000 69.2820i −0.179372 0.103561i
$$670$$ 176.669i 0.263685i
$$671$$ 382.783i 0.570467i
$$672$$ 176.000 + 138.564i 0.261905 + 0.206197i
$$673$$ 218.000 0.323923 0.161961 0.986797i $$-0.448218\pi$$
0.161961 + 0.986797i $$0.448218\pi$$
$$674$$ −52.0000 −0.0771513
$$675$$ −17.0000 + 29.4449i −0.0251852 + 0.0436220i
$$676$$ −92.0000 −0.136095
$$677$$ −556.500 + 321.295i −0.822009 + 0.474587i −0.851109 0.524989i $$-0.824069\pi$$
0.0290999 + 0.999577i $$0.490736\pi$$
$$678$$ 122.000 211.310i 0.179941 0.311667i
$$679$$ 22.0000 152.420i 0.0324006 0.224478i
$$680$$ 1039.23i 1.52828i
$$681$$ 27.5000 + 47.6314i 0.0403818 + 0.0699433i
$$682$$ 969.000 559.452i 1.42082 0.820311i
$$683$$ 183.500 317.831i 0.268668 0.465346i −0.699850 0.714289i $$-0.746750\pi$$
0.968518 + 0.248943i $$0.0800833\pi$$
$$684$$ −112.000 + 193.990i −0.163743 + 0.283611i
$$685$$ 753.442i 1.09992i
$$686$$ −286.000 + 623.538i −0.416910 + 0.908948i
$$687$$ 327.358i 0.476503i
$$688$$ 224.000 0.325581
$$689$$ 636.000 1101.58i 0.923077 1.59882i
$$690$$ 27.0000 + 46.7654i 0.0391304 + 0.0677759i
$$691$$ −248.500 430.415i −0.359624 0.622887i 0.628274 0.777992i $$-0.283762\pi$$
−0.987898 + 0.155105i $$0.950428\pi$$
$$692$$ 366.000 211.310i 0.528902 0.305362i
$$693$$ 136.000 942.236i 0.196248 1.35965i
$$694$$ 377.000 652.983i 0.543228 0.940898i
$$695$$ 369.000 213.042i 0.530935 0.306536i
$$696$$ 96.0000 + 55.4256i 0.137931 + 0.0796345i
$$697$$ 325.000 562.917i 0.466284 0.807628i
$$698$$ 193.990i 0.277922i
$$699$$ −385.000 −0.550787
$$700$$ 44.0000 + 34.6410i 0.0628571 + 0.0494872i
$$701$$ 332.554i 0.474399i −0.971461 0.237200i $$-0.923770\pi$$
0.971461 0.237200i $$-0.0762295\pi$$
$$702$$ 471.118i 0.671108i
$$703$$ 52.5000 + 30.3109i 0.0746799 + 0.0431165i
$$704$$ −544.000 + 942.236i −0.772727 + 1.33840i
$$705$$ 130.500 + 226.033i 0.185106 + 0.320614i
$$706$$ 503.000 871.222i 0.712465 1.23402i
$$707$$ −337.500 + 428.683i −0.477369 + 0.606340i
$$708$$ 110.000 + 190.526i 0.155367 + 0.269104i
$$709$$ 343.500 198.320i 0.484485 0.279718i −0.237799 0.971314i $$-0.576426\pi$$
0.722284 + 0.691597i $$0.243092\pi$$
$$710$$ 0 0
$$711$$ 516.000 + 297.913i 0.725738 + 0.419005i
$$712$$ 284.000 + 491.902i 0.398876 + 0.690874i
$$713$$ 171.000 0.239832
$$714$$ 325.000 129.904i 0.455182 0.181938i
$$715$$ −1224.00 −1.71189
$$716$$ −178.000 + 308.305i −0.248603 + 0.430594i
$$717$$ 372.000 + 214.774i 0.518828 + 0.299546i
$$718$$ −321.000 + 185.329i −0.447075 + 0.258119i
$$719$$ −55.5000 + 32.0429i −0.0771905 + 0.0445660i −0.538098 0.842882i $$-0.680857\pi$$
0.460908 + 0.887448i $$0.347524\pi$$
$$720$$ −576.000 332.554i −0.800000 0.461880i
$$721$$ −418.500 1047.02i −0.580444 1.45218i
$$722$$ −312.000 + 540.400i −0.432133 + 0.748476i
$$723$$ 72.5000 + 125.574i 0.100277 + 0.173684i
$$724$$ 997.661i 1.37799i
$$725$$ 24.0000 + 13.8564i 0.0331034 + 0.0191123i
$$726$$ −336.000 −0.462810
$$727$$ 55.4256i 0.0762388i 0.999273 + 0.0381194i $$0.0121367\pi$$
−0.999273 + 0.0381194i $$0.987863\pi$$
$$728$$ −768.000 110.851i −1.05495 0.152268i
$$729$$ −287.000 −0.393690
$$730$$ 1236.68i 1.69409i
$$731$$ 175.000 303.109i 0.239398 0.414650i
$$732$$ 90.0666i 0.123042i
$$733$$ 715.500 413.094i 0.976126 0.563566i 0.0750273 0.997181i $$-0.476096\pi$$
0.901098 + 0.433615i $$0.142762\pi$$
$$734$$ −513.000 296.181i −0.698910 0.403516i
$$735$$ −72.0000 + 244.219i −0.0979592 + 0.332271i
$$736$$ −144.000 + 83.1384i −0.195652 + 0.112960i
$$737$$ −144.500 250.281i −0.196065 0.339595i
$$738$$ −208.000 360.267i −0.281843 0.488166i
$$739$$ −356.500 + 617.476i −0.482409 + 0.835556i −0.999796 0.0201950i $$-0.993571\pi$$
0.517387 + 0.855751i $$0.326905\pi$$
$$740$$ −90.0000 + 155.885i −0.121622 + 0.210655i
$$741$$ 96.9948i 0.130897i
$$742$$ 795.000 1009.79i 1.07143 1.36090i
$$743$$ 637.395i 0.857866i −0.903336 0.428933i $$-0.858890\pi$$
0.903336 0.428933i $$-0.141110\pi$$
$$744$$ 228.000 131.636i 0.306452 0.176930i
$$745$$ 13.5000 23.3827i 0.0181208 0.0313862i
$$746$$ −207.000 + 119.512i −0.277480 + 0.160203i
$$747$$ 440.000 + 762.102i 0.589023 + 1.02022i
$$748$$ 850.000 + 1472.24i 1.13636 + 1.96824i
$$749$$ 422.500 168.875i 0.564085 0.225467i
$$750$$ −207.000 119.512i −0.276000 0.159349i
$$751$$ 1012.50 584.567i 1.34820 0.778385i 0.360208 0.932872i $$-0.382706\pi$$
0.987995 + 0.154487i $$0.0493725\pi$$
$$752$$ −696.000 + 401.836i −0.925532 + 0.534356i
$$753$$ 29.0000 50.2295i 0.0385126 0.0667058i
$$754$$ −384.000 −0.509284
$$755$$ 189.000 0.250331
$$756$$ 68.0000 471.118i 0.0899471 0.623172i
$$757$$ 1039.23i 1.37283i −0.727211 0.686414i $$-0.759184\pi$$
0.727211 0.686414i $$-0.240816\pi$$
$$758$$ 1268.00 1.67282
$$759$$ −76.5000 44.1673i −0.100791 0.0581914i
$$760$$ 252.000 + 145.492i 0.331579 + 0.191437i
$$761$$ −431.500 747.380i −0.567017 0.982102i −0.996859 0.0791982i $$-0.974764\pi$$
0.429842 0.902904i $$-0.358569\pi$$
$$762$$ −288.000 166.277i −0.377953 0.218211i
$$763$$ −37.5000 + 47.6314i −0.0491481 + 0.0624265i
$$764$$ −750.000 + 433.013i −0.981675 + 0.566771i
$$765$$ −900.000 + 519.615i −1.17647 + 0.679236i
$$766$$ 423.000 244.219i 0.552219 0.318824i
$$767$$ −660.000 381.051i −0.860495 0.496807i
$$768$$ −128.000 + 221.703i −0.166667 + 0.288675i
$$769$$ 410.000 0.533160 0.266580 0.963813i $$-0.414106\pi$$
0.266580 + 0.963813i $$0.414106\pi$$
$$770$$ −1224.00 176.669i −1.58961 0.229440i
$$771$$ 119.000 0.154345
$$772$$ 146.000 252.879i 0.189119 0.327564i
$$773$$ 691.500 + 399.238i 0.894567 + 0.516478i 0.875433 0.483339i $$-0.160576\pi$$
0.0191332 + 0.999817i $$0.493909\pi$$
$$774$$ −112.000 193.990i −0.144703 0.250633i
$$775$$ 57.0000 32.9090i 0.0735484 0.0424632i
$$776$$ 176.000 0.226804
$$777$$ −60.0000 8.66025i −0.0772201 0.0111458i
$$778$$ 1017.00 + 587.165i 1.30720 + 0.754711i
$$779$$ 91.0000 + 157.617i 0.116816 + 0.202332i
$$780$$ −288.000 −0.369231
$$781$$ 0 0
$$782$$ 259.808i 0.332235i
$$783$$ 235.559i 0.300842i
$$784$$ −752.000 221.703i −0.959184 0.282784i
$$785$$ 1611.00 2.05223
$$786$$ −34.0000 −0.0432570