Properties

Label 56.3.g.a
Level 56
Weight 3
Character orbit 56.g
Analytic conductor 1.526
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 56.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.52588948042\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-7})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( 2 - \beta_{2} ) q^{3} + ( -3 + \beta_{3} ) q^{4} + ( 2 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{5} + ( 1 + 2 \beta_{1} + \beta_{3} ) q^{6} -\beta_{3} q^{7} + ( -2 \beta_{1} + 4 \beta_{2} ) q^{8} + ( -3 - 4 \beta_{2} ) q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( 2 - \beta_{2} ) q^{3} + ( -3 + \beta_{3} ) q^{4} + ( 2 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{5} + ( 1 + 2 \beta_{1} + \beta_{3} ) q^{6} -\beta_{3} q^{7} + ( -2 \beta_{1} + 4 \beta_{2} ) q^{8} + ( -3 - 4 \beta_{2} ) q^{9} + ( -7 - 2 \beta_{1} - 8 \beta_{2} + \beta_{3} ) q^{10} + ( 4 + 6 \beta_{2} ) q^{11} + ( -6 + 2 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} ) q^{12} + ( -2 \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{13} + ( -\beta_{1} - 4 \beta_{2} ) q^{14} -2 \beta_{3} q^{15} + ( 2 - 6 \beta_{3} ) q^{16} + ( 18 - 4 \beta_{2} ) q^{17} + ( 4 - 3 \beta_{1} + 4 \beta_{3} ) q^{18} + ( 2 + 19 \beta_{2} ) q^{19} + ( 14 - 6 \beta_{1} + 4 \beta_{2} + 6 \beta_{3} ) q^{20} + ( -2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{21} + ( -6 + 4 \beta_{1} - 6 \beta_{3} ) q^{22} + ( -16 \beta_{1} - 8 \beta_{2} - 2 \beta_{3} ) q^{23} + ( -10 - 4 \beta_{1} + 8 \beta_{2} - 2 \beta_{3} ) q^{24} + ( -17 - 28 \beta_{2} ) q^{25} + ( 7 + 2 \beta_{1} + 8 \beta_{2} - \beta_{3} ) q^{26} + ( -16 + 4 \beta_{2} ) q^{27} + ( 7 + 3 \beta_{3} ) q^{28} + ( 12 \beta_{1} + 6 \beta_{2} ) q^{29} + ( -2 \beta_{1} - 8 \beta_{2} ) q^{30} + ( 8 \beta_{1} + 4 \beta_{2} + 12 \beta_{3} ) q^{31} + ( -4 \beta_{1} - 24 \beta_{2} ) q^{32} + ( -4 + 8 \beta_{2} ) q^{33} + ( 4 + 18 \beta_{1} + 4 \beta_{3} ) q^{34} + ( -14 - 7 \beta_{2} ) q^{35} + ( 9 + 8 \beta_{1} + 16 \beta_{2} - 3 \beta_{3} ) q^{36} + ( 20 \beta_{1} + 10 \beta_{2} + 8 \beta_{3} ) q^{37} + ( -19 + 2 \beta_{1} - 19 \beta_{3} ) q^{38} + 2 \beta_{3} q^{39} + ( 14 + 20 \beta_{1} + 24 \beta_{2} - 10 \beta_{3} ) q^{40} + ( -10 + 12 \beta_{2} ) q^{41} + ( 7 - 2 \beta_{1} - 8 \beta_{2} - \beta_{3} ) q^{42} + ( -20 - 2 \beta_{2} ) q^{43} + ( -12 - 12 \beta_{1} - 24 \beta_{2} + 4 \beta_{3} ) q^{44} + ( -22 \beta_{1} - 11 \beta_{2} + 14 \beta_{3} ) q^{45} + ( 56 - 2 \beta_{1} - 8 \beta_{2} - 8 \beta_{3} ) q^{46} + ( 8 \beta_{1} + 4 \beta_{2} + 8 \beta_{3} ) q^{47} + ( 4 - 12 \beta_{1} - 8 \beta_{2} - 12 \beta_{3} ) q^{48} -7 q^{49} + ( 28 - 17 \beta_{1} + 28 \beta_{3} ) q^{50} + ( 44 - 26 \beta_{2} ) q^{51} + ( -14 + 6 \beta_{1} - 4 \beta_{2} - 6 \beta_{3} ) q^{52} + ( -24 \beta_{1} - 12 \beta_{2} - 20 \beta_{3} ) q^{53} + ( -4 - 16 \beta_{1} - 4 \beta_{3} ) q^{54} + ( 32 \beta_{1} + 16 \beta_{2} - 20 \beta_{3} ) q^{55} + ( 10 \beta_{1} + 12 \beta_{2} ) q^{56} + ( -34 + 36 \beta_{2} ) q^{57} + ( -42 + 6 \beta_{3} ) q^{58} + ( 46 - 11 \beta_{2} ) q^{59} + ( 14 + 6 \beta_{3} ) q^{60} + ( 6 \beta_{1} + 3 \beta_{2} + 10 \beta_{3} ) q^{61} + ( -28 + 12 \beta_{1} + 48 \beta_{2} + 4 \beta_{3} ) q^{62} + ( -8 \beta_{1} - 4 \beta_{2} + 3 \beta_{3} ) q^{63} + ( 36 + 20 \beta_{3} ) q^{64} + ( 42 + 28 \beta_{2} ) q^{65} + ( -8 - 4 \beta_{1} - 8 \beta_{3} ) q^{66} + ( -56 - 16 \beta_{2} ) q^{67} + ( -54 + 8 \beta_{1} + 16 \beta_{2} + 18 \beta_{3} ) q^{68} + ( -36 \beta_{1} - 18 \beta_{2} - 20 \beta_{3} ) q^{69} + ( 7 - 14 \beta_{1} + 7 \beta_{3} ) q^{70} + ( -32 \beta_{1} - 16 \beta_{2} - 16 \beta_{3} ) q^{71} + ( -40 + 6 \beta_{1} - 12 \beta_{2} - 8 \beta_{3} ) q^{72} + ( 58 - 8 \beta_{2} ) q^{73} + ( -70 + 8 \beta_{1} + 32 \beta_{2} + 10 \beta_{3} ) q^{74} + ( 22 - 39 \beta_{2} ) q^{75} + ( -6 - 38 \beta_{1} - 76 \beta_{2} + 2 \beta_{3} ) q^{76} + ( 12 \beta_{1} + 6 \beta_{2} - 4 \beta_{3} ) q^{77} + ( 2 \beta_{1} + 8 \beta_{2} ) q^{78} + ( -32 \beta_{1} - 16 \beta_{2} + 8 \beta_{3} ) q^{79} + ( -84 + 4 \beta_{1} - 40 \beta_{2} - 4 \beta_{3} ) q^{80} + ( -13 + 60 \beta_{2} ) q^{81} + ( -12 - 10 \beta_{1} - 12 \beta_{3} ) q^{82} + ( 22 + 13 \beta_{2} ) q^{83} + ( 14 + 6 \beta_{1} - 4 \beta_{2} + 6 \beta_{3} ) q^{84} + ( 20 \beta_{1} + 10 \beta_{2} - 28 \beta_{3} ) q^{85} + ( 2 - 20 \beta_{1} + 2 \beta_{3} ) q^{86} + ( 24 \beta_{1} + 12 \beta_{2} + 12 \beta_{3} ) q^{87} + ( 60 - 8 \beta_{1} + 16 \beta_{2} + 12 \beta_{3} ) q^{88} + ( 78 + 24 \beta_{2} ) q^{89} + ( 77 + 14 \beta_{1} + 56 \beta_{2} - 11 \beta_{3} ) q^{90} + ( 14 + 7 \beta_{2} ) q^{91} + ( 14 + 48 \beta_{1} - 32 \beta_{2} + 6 \beta_{3} ) q^{92} + ( 40 \beta_{1} + 20 \beta_{2} + 32 \beta_{3} ) q^{93} + ( -28 + 8 \beta_{1} + 32 \beta_{2} + 4 \beta_{3} ) q^{94} + ( 80 \beta_{1} + 40 \beta_{2} - 42 \beta_{3} ) q^{95} + ( 44 - 8 \beta_{1} - 48 \beta_{2} - 4 \beta_{3} ) q^{96} + ( -34 - 92 \beta_{2} ) q^{97} -7 \beta_{1} q^{98} + ( -60 - 34 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 8q^{3} - 12q^{4} + 4q^{6} - 12q^{9} + O(q^{10}) \) \( 4q + 8q^{3} - 12q^{4} + 4q^{6} - 12q^{9} - 28q^{10} + 16q^{11} - 24q^{12} + 8q^{16} + 72q^{17} + 16q^{18} + 8q^{19} + 56q^{20} - 24q^{22} - 40q^{24} - 68q^{25} + 28q^{26} - 64q^{27} + 28q^{28} - 16q^{33} + 16q^{34} - 56q^{35} + 36q^{36} - 76q^{38} + 56q^{40} - 40q^{41} + 28q^{42} - 80q^{43} - 48q^{44} + 224q^{46} + 16q^{48} - 28q^{49} + 112q^{50} + 176q^{51} - 56q^{52} - 16q^{54} - 136q^{57} - 168q^{58} + 184q^{59} + 56q^{60} - 112q^{62} + 144q^{64} + 168q^{65} - 32q^{66} - 224q^{67} - 216q^{68} + 28q^{70} - 160q^{72} + 232q^{73} - 280q^{74} + 88q^{75} - 24q^{76} - 336q^{80} - 52q^{81} - 48q^{82} + 88q^{83} + 56q^{84} + 8q^{86} + 240q^{88} + 312q^{89} + 308q^{90} + 56q^{91} + 56q^{92} - 112q^{94} + 176q^{96} - 136q^{97} - 240q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 6 x^{2} + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 2 \nu \)\()/4\)
\(\beta_{3}\)\(=\)\( \nu^{2} + 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} - 3\)
\(\nu^{3}\)\(=\)\(4 \beta_{2} - 2 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/56\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(29\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1
−0.707107 1.87083i
−0.707107 + 1.87083i
0.707107 1.87083i
0.707107 + 1.87083i
−0.707107 1.87083i 0.585786 −3.00000 + 2.64575i 9.03316i −0.414214 1.09591i 2.64575i 7.07107 + 3.74166i −8.65685 −16.8995 + 6.38741i
43.2 −0.707107 + 1.87083i 0.585786 −3.00000 2.64575i 9.03316i −0.414214 + 1.09591i 2.64575i 7.07107 3.74166i −8.65685 −16.8995 6.38741i
43.3 0.707107 1.87083i 3.41421 −3.00000 2.64575i 1.54985i 2.41421 6.38741i 2.64575i −7.07107 + 3.74166i 2.65685 2.89949 + 1.09591i
43.4 0.707107 + 1.87083i 3.41421 −3.00000 + 2.64575i 1.54985i 2.41421 + 6.38741i 2.64575i −7.07107 3.74166i 2.65685 2.89949 1.09591i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 56.3.g.a 4
3.b odd 2 1 504.3.g.a 4
4.b odd 2 1 224.3.g.a 4
7.b odd 2 1 392.3.g.h 4
7.c even 3 2 392.3.k.i 8
7.d odd 6 2 392.3.k.j 8
8.b even 2 1 224.3.g.a 4
8.d odd 2 1 inner 56.3.g.a 4
12.b even 2 1 2016.3.g.a 4
16.e even 4 2 1792.3.d.g 8
16.f odd 4 2 1792.3.d.g 8
24.f even 2 1 504.3.g.a 4
24.h odd 2 1 2016.3.g.a 4
28.d even 2 1 1568.3.g.h 4
56.e even 2 1 392.3.g.h 4
56.h odd 2 1 1568.3.g.h 4
56.k odd 6 2 392.3.k.i 8
56.m even 6 2 392.3.k.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.3.g.a 4 1.a even 1 1 trivial
56.3.g.a 4 8.d odd 2 1 inner
224.3.g.a 4 4.b odd 2 1
224.3.g.a 4 8.b even 2 1
392.3.g.h 4 7.b odd 2 1
392.3.g.h 4 56.e even 2 1
392.3.k.i 8 7.c even 3 2
392.3.k.i 8 56.k odd 6 2
392.3.k.j 8 7.d odd 6 2
392.3.k.j 8 56.m even 6 2
504.3.g.a 4 3.b odd 2 1
504.3.g.a 4 24.f even 2 1
1568.3.g.h 4 28.d even 2 1
1568.3.g.h 4 56.h odd 2 1
1792.3.d.g 8 16.e even 4 2
1792.3.d.g 8 16.f odd 4 2
2016.3.g.a 4 12.b even 2 1
2016.3.g.a 4 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 4 T_{3} + 2 \) acting on \(S_{3}^{\mathrm{new}}(56, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 6 T^{2} + 16 T^{4} \)
$3$ \( ( 1 - 4 T + 20 T^{2} - 36 T^{3} + 81 T^{4} )^{2} \)
$5$ \( 1 - 16 T^{2} - 254 T^{4} - 10000 T^{6} + 390625 T^{8} \)
$7$ \( ( 1 + 7 T^{2} )^{2} \)
$11$ \( ( 1 - 8 T + 186 T^{2} - 968 T^{3} + 14641 T^{4} )^{2} \)
$13$ \( 1 - 592 T^{2} + 143170 T^{4} - 16908112 T^{6} + 815730721 T^{8} \)
$17$ \( ( 1 - 36 T + 870 T^{2} - 10404 T^{3} + 83521 T^{4} )^{2} \)
$19$ \( ( 1 - 4 T + 4 T^{2} - 1444 T^{3} + 130321 T^{4} )^{2} \)
$23$ \( 1 - 268 T^{2} + 477286 T^{4} - 74997388 T^{6} + 78310985281 T^{8} \)
$29$ \( ( 1 - 1178 T^{2} + 707281 T^{4} )^{2} \)
$31$ \( 1 - 1380 T^{2} + 1419974 T^{4} - 1274458980 T^{6} + 852891037441 T^{8} \)
$37$ \( 1 - 1780 T^{2} + 2031622 T^{4} - 3336006580 T^{6} + 3512479453921 T^{8} \)
$41$ \( ( 1 + 20 T + 3174 T^{2} + 33620 T^{3} + 2825761 T^{4} )^{2} \)
$43$ \( ( 1 + 40 T + 4090 T^{2} + 73960 T^{3} + 3418801 T^{4} )^{2} \)
$47$ \( 1 - 7492 T^{2} + 23390470 T^{4} - 36558570052 T^{6} + 23811286661761 T^{8} \)
$53$ \( 1 - 1604 T^{2} - 6155034 T^{4} - 12656331524 T^{6} + 62259690411361 T^{8} \)
$59$ \( ( 1 - 92 T + 8836 T^{2} - 320252 T^{3} + 12117361 T^{4} )^{2} \)
$61$ \( 1 - 13232 T^{2} + 71110338 T^{4} - 183208168112 T^{6} + 191707312997281 T^{8} \)
$67$ \( ( 1 + 112 T + 11602 T^{2} + 502768 T^{3} + 20151121 T^{4} )^{2} \)
$71$ \( 1 - 9412 T^{2} + 47279686 T^{4} - 239174741572 T^{6} + 645753531245761 T^{8} \)
$73$ \( ( 1 - 116 T + 13894 T^{2} - 618164 T^{3} + 28398241 T^{4} )^{2} \)
$79$ \( 1 - 16900 T^{2} + 142880134 T^{4} - 658256368900 T^{6} + 1517108809906561 T^{8} \)
$83$ \( ( 1 - 44 T + 13924 T^{2} - 303116 T^{3} + 47458321 T^{4} )^{2} \)
$89$ \( ( 1 - 156 T + 20774 T^{2} - 1235676 T^{3} + 62742241 T^{4} )^{2} \)
$97$ \( ( 1 + 68 T + 3046 T^{2} + 639812 T^{3} + 88529281 T^{4} )^{2} \)
show more
show less