Properties

Label 56.2.p.a.37.6
Level $56$
Weight $2$
Character 56.37
Analytic conductor $0.447$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [56,2,Mod(37,56)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("56.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(56, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 56.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.447162251319\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.951588245534976.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2 x^{10} - 9 x^{9} + 8 x^{8} - 13 x^{7} + 35 x^{6} - 26 x^{5} + 32 x^{4} - 72 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 37.6
Root \(1.26950 + 0.623187i\) of defining polynomial
Character \(\chi\) \(=\) 56.37
Dual form 56.2.p.a.53.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38687 - 0.276739i) q^{2} +(-1.36456 + 0.787829i) q^{3} +(1.84683 - 0.767603i) q^{4} +(-0.476087 - 0.274869i) q^{5} +(-1.67445 + 1.47024i) q^{6} +(-2.60755 - 0.447998i) q^{7} +(2.34889 - 1.57566i) q^{8} +(-0.258652 + 0.447998i) q^{9} +(-0.736339 - 0.249456i) q^{10} +(-2.07045 + 1.19538i) q^{11} +(-1.91537 + 2.50243i) q^{12} -3.96641i q^{13} +(-3.74031 + 0.100292i) q^{14} +0.866198 q^{15} +(2.82157 - 2.83527i) q^{16} +(2.10755 + 3.65038i) q^{17} +(-0.234739 + 0.692896i) q^{18} +(5.75174 + 3.32077i) q^{19} +(-1.09024 - 0.142191i) q^{20} +(3.91110 - 1.44298i) q^{21} +(-2.54065 + 2.23081i) q^{22} +(1.17445 - 2.03420i) q^{23} +(-1.96386 + 4.00060i) q^{24} +(-2.34889 - 4.06840i) q^{25} +(-1.09766 - 5.50090i) q^{26} -5.54207i q^{27} +(-5.15958 + 1.17418i) q^{28} +8.21720i q^{29} +(1.20131 - 0.239711i) q^{30} +(-0.433099 - 0.750150i) q^{31} +(3.12853 - 4.71299i) q^{32} +(1.88350 - 3.26232i) q^{33} +(3.93310 + 4.47937i) q^{34} +(1.11828 + 0.930019i) q^{35} +(-0.133802 + 1.02592i) q^{36} +(-0.229805 - 0.132678i) q^{37} +(8.89592 + 3.01376i) q^{38} +(3.12485 + 5.41240i) q^{39} +(-1.55138 + 0.104512i) q^{40} -6.24970 q^{41} +(5.02487 - 3.08358i) q^{42} -5.35027i q^{43} +(-2.90620 + 3.79694i) q^{44} +(0.246282 - 0.142191i) q^{45} +(1.06587 - 3.14619i) q^{46} +(-1.29930 + 2.25045i) q^{47} +(-1.61650 + 6.09180i) q^{48} +(6.59859 + 2.33635i) q^{49} +(-4.38350 - 4.99233i) q^{50} +(-5.75174 - 3.32077i) q^{51} +(-3.04463 - 7.32529i) q^{52} +(-9.36933 + 5.40939i) q^{53} +(-1.53370 - 7.68614i) q^{54} +1.31429 q^{55} +(-6.83074 + 3.05630i) q^{56} -10.4648 q^{57} +(2.27402 + 11.3962i) q^{58} +(-3.26891 + 1.88730i) q^{59} +(1.59972 - 0.664896i) q^{60} +(-6.18061 - 3.56837i) q^{61} +(-0.808249 - 0.920507i) q^{62} +(0.875150 - 1.05230i) q^{63} +(3.03461 - 7.40210i) q^{64} +(-1.09024 + 1.88835i) q^{65} +(1.70937 - 5.04566i) q^{66} +(2.31673 - 1.33757i) q^{67} +(6.69432 + 5.12387i) q^{68} +3.70105i q^{69} +(1.80828 + 0.980348i) q^{70} +8.76700 q^{71} +(0.0983458 + 1.45985i) q^{72} +(-2.33159 - 4.03843i) q^{73} +(-0.355428 - 0.120412i) q^{74} +(6.41041 + 3.70105i) q^{75} +(13.1715 + 1.71785i) q^{76} +(5.93432 - 2.18944i) q^{77} +(5.83159 + 6.64154i) q^{78} +(-0.308249 + 0.533903i) q^{79} +(-2.12264 + 0.574271i) q^{80} +(3.59024 + 6.21848i) q^{81} +(-8.66754 + 1.72953i) q^{82} -1.09948i q^{83} +(6.11550 - 5.66711i) q^{84} -2.31720i q^{85} +(-1.48063 - 7.42014i) q^{86} +(-6.47374 - 11.2129i) q^{87} +(-2.97977 + 6.07013i) q^{88} +(3.19779 - 5.53873i) q^{89} +(0.302212 - 0.265356i) q^{90} +(-1.77694 + 10.3426i) q^{91} +(0.607546 - 4.65834i) q^{92} +(1.18198 + 0.682416i) q^{93} +(-1.17917 + 3.48065i) q^{94} +(-1.82555 - 3.16195i) q^{95} +(-0.556038 + 8.89590i) q^{96} +12.9475 q^{97} +(9.79797 + 1.41414i) q^{98} -1.23675i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 8 q^{6} - 4 q^{7} + 4 q^{8} - 8 q^{10} - 2 q^{12} - 16 q^{14} - 20 q^{15} + 8 q^{16} - 2 q^{17} + 6 q^{18} + 8 q^{20} + 12 q^{22} + 2 q^{23} + 18 q^{24} - 4 q^{25} - 2 q^{26} + 26 q^{28}+ \cdots + 52 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/56\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38687 0.276739i 0.980667 0.195684i
\(3\) −1.36456 + 0.787829i −0.787829 + 0.454853i −0.839198 0.543827i \(-0.816975\pi\)
0.0513689 + 0.998680i \(0.483642\pi\)
\(4\) 1.84683 0.767603i 0.923416 0.383801i
\(5\) −0.476087 0.274869i −0.212913 0.122925i 0.389752 0.920920i \(-0.372561\pi\)
−0.602664 + 0.797995i \(0.705894\pi\)
\(6\) −1.67445 + 1.47024i −0.683590 + 0.600225i
\(7\) −2.60755 0.447998i −0.985560 0.169327i
\(8\) 2.34889 1.57566i 0.830460 0.557079i
\(9\) −0.258652 + 0.447998i −0.0862173 + 0.149333i
\(10\) −0.736339 0.249456i −0.232851 0.0788850i
\(11\) −2.07045 + 1.19538i −0.624265 + 0.360419i −0.778527 0.627611i \(-0.784033\pi\)
0.154263 + 0.988030i \(0.450700\pi\)
\(12\) −1.91537 + 2.50243i −0.552920 + 0.722388i
\(13\) 3.96641i 1.10008i −0.835137 0.550042i \(-0.814612\pi\)
0.835137 0.550042i \(-0.185388\pi\)
\(14\) −3.74031 + 0.100292i −0.999641 + 0.0268043i
\(15\) 0.866198 0.223651
\(16\) 2.82157 2.83527i 0.705393 0.708817i
\(17\) 2.10755 + 3.65038i 0.511155 + 0.885347i 0.999916 + 0.0129290i \(0.00411554\pi\)
−0.488761 + 0.872418i \(0.662551\pi\)
\(18\) −0.234739 + 0.692896i −0.0553285 + 0.163317i
\(19\) 5.75174 + 3.32077i 1.31954 + 0.761837i 0.983655 0.180066i \(-0.0576310\pi\)
0.335886 + 0.941903i \(0.390964\pi\)
\(20\) −1.09024 0.142191i −0.243786 0.0317948i
\(21\) 3.91110 1.44298i 0.853471 0.314884i
\(22\) −2.54065 + 2.23081i −0.541667 + 0.475610i
\(23\) 1.17445 2.03420i 0.244889 0.424160i −0.717211 0.696856i \(-0.754582\pi\)
0.962100 + 0.272695i \(0.0879151\pi\)
\(24\) −1.96386 + 4.00060i −0.400871 + 0.816620i
\(25\) −2.34889 4.06840i −0.469779 0.813681i
\(26\) −1.09766 5.50090i −0.215269 1.07882i
\(27\) 5.54207i 1.06657i
\(28\) −5.15958 + 1.17418i −0.975070 + 0.221900i
\(29\) 8.21720i 1.52590i 0.646460 + 0.762948i \(0.276249\pi\)
−0.646460 + 0.762948i \(0.723751\pi\)
\(30\) 1.20131 0.239711i 0.219328 0.0437650i
\(31\) −0.433099 0.750150i −0.0777869 0.134731i 0.824508 0.565850i \(-0.191452\pi\)
−0.902295 + 0.431120i \(0.858119\pi\)
\(32\) 3.12853 4.71299i 0.553052 0.833147i
\(33\) 1.88350 3.26232i 0.327876 0.567897i
\(34\) 3.93310 + 4.47937i 0.674521 + 0.768205i
\(35\) 1.11828 + 0.930019i 0.189023 + 0.157202i
\(36\) −0.133802 + 1.02592i −0.0223003 + 0.170987i
\(37\) −0.229805 0.132678i −0.0377797 0.0218121i 0.480991 0.876725i \(-0.340277\pi\)
−0.518771 + 0.854913i \(0.673610\pi\)
\(38\) 8.89592 + 3.01376i 1.44311 + 0.488896i
\(39\) 3.12485 + 5.41240i 0.500377 + 0.866678i
\(40\) −1.55138 + 0.104512i −0.245294 + 0.0165248i
\(41\) −6.24970 −0.976039 −0.488020 0.872833i \(-0.662281\pi\)
−0.488020 + 0.872833i \(0.662281\pi\)
\(42\) 5.02487 3.08358i 0.775354 0.475807i
\(43\) 5.35027i 0.815908i −0.913003 0.407954i \(-0.866242\pi\)
0.913003 0.407954i \(-0.133758\pi\)
\(44\) −2.90620 + 3.79694i −0.438126 + 0.572410i
\(45\) 0.246282 0.142191i 0.0367135 0.0211965i
\(46\) 1.06587 3.14619i 0.157153 0.463881i
\(47\) −1.29930 + 2.25045i −0.189522 + 0.328262i −0.945091 0.326807i \(-0.894027\pi\)
0.755569 + 0.655069i \(0.227361\pi\)
\(48\) −1.61650 + 6.09180i −0.233321 + 0.879276i
\(49\) 6.59859 + 2.33635i 0.942656 + 0.333765i
\(50\) −4.38350 4.99233i −0.619921 0.706022i
\(51\) −5.75174 3.32077i −0.805405 0.465001i
\(52\) −3.04463 7.32529i −0.422214 1.01583i
\(53\) −9.36933 + 5.40939i −1.28698 + 0.743037i −0.978114 0.208070i \(-0.933282\pi\)
−0.308863 + 0.951107i \(0.599948\pi\)
\(54\) −1.53370 7.68614i −0.208711 1.04595i
\(55\) 1.31429 0.177218
\(56\) −6.83074 + 3.05630i −0.912796 + 0.408415i
\(57\) −10.4648 −1.38610
\(58\) 2.27402 + 11.3962i 0.298593 + 1.49640i
\(59\) −3.26891 + 1.88730i −0.425575 + 0.245706i −0.697460 0.716624i \(-0.745686\pi\)
0.271884 + 0.962330i \(0.412353\pi\)
\(60\) 1.59972 0.664896i 0.206523 0.0858377i
\(61\) −6.18061 3.56837i −0.791345 0.456884i 0.0490905 0.998794i \(-0.484368\pi\)
−0.840436 + 0.541911i \(0.817701\pi\)
\(62\) −0.808249 0.920507i −0.102648 0.116904i
\(63\) 0.875150 1.05230i 0.110259 0.132577i
\(64\) 3.03461 7.40210i 0.379326 0.925263i
\(65\) −1.09024 + 1.88835i −0.135228 + 0.234222i
\(66\) 1.70937 5.04566i 0.210409 0.621078i
\(67\) 2.31673 1.33757i 0.283034 0.163410i −0.351762 0.936089i \(-0.614417\pi\)
0.634796 + 0.772680i \(0.281084\pi\)
\(68\) 6.69432 + 5.12387i 0.811806 + 0.621361i
\(69\) 3.70105i 0.445554i
\(70\) 1.80828 + 0.980348i 0.216131 + 0.117174i
\(71\) 8.76700 1.04045 0.520226 0.854029i \(-0.325848\pi\)
0.520226 + 0.854029i \(0.325848\pi\)
\(72\) 0.0983458 + 1.45985i 0.0115902 + 0.172045i
\(73\) −2.33159 4.03843i −0.272892 0.472663i 0.696709 0.717354i \(-0.254647\pi\)
−0.969601 + 0.244691i \(0.921313\pi\)
\(74\) −0.355428 0.120412i −0.0413176 0.0139976i
\(75\) 6.41041 + 3.70105i 0.740210 + 0.427361i
\(76\) 13.1715 + 1.71785i 1.51088 + 0.197051i
\(77\) 5.93432 2.18944i 0.676279 0.249510i
\(78\) 5.83159 + 6.64154i 0.660298 + 0.752006i
\(79\) −0.308249 + 0.533903i −0.0346807 + 0.0600687i −0.882845 0.469665i \(-0.844375\pi\)
0.848164 + 0.529734i \(0.177708\pi\)
\(80\) −2.12264 + 0.574271i −0.237318 + 0.0642054i
\(81\) 3.59024 + 6.21848i 0.398916 + 0.690942i
\(82\) −8.66754 + 1.72953i −0.957170 + 0.190995i
\(83\) 1.09948i 0.120683i −0.998178 0.0603416i \(-0.980781\pi\)
0.998178 0.0603416i \(-0.0192190\pi\)
\(84\) 6.11550 5.66711i 0.667256 0.618332i
\(85\) 2.31720i 0.251335i
\(86\) −1.48063 7.42014i −0.159660 0.800134i
\(87\) −6.47374 11.2129i −0.694058 1.20214i
\(88\) −2.97977 + 6.07013i −0.317644 + 0.647078i
\(89\) 3.19779 5.53873i 0.338965 0.587104i −0.645273 0.763952i \(-0.723257\pi\)
0.984238 + 0.176847i \(0.0565899\pi\)
\(90\) 0.302212 0.265356i 0.0318559 0.0279710i
\(91\) −1.77694 + 10.3426i −0.186274 + 1.08420i
\(92\) 0.607546 4.65834i 0.0633411 0.485665i
\(93\) 1.18198 + 0.682416i 0.122565 + 0.0707632i
\(94\) −1.17917 + 3.48065i −0.121622 + 0.359002i
\(95\) −1.82555 3.16195i −0.187298 0.324409i
\(96\) −0.556038 + 8.89590i −0.0567504 + 0.907934i
\(97\) 12.9475 1.31462 0.657309 0.753621i \(-0.271695\pi\)
0.657309 + 0.753621i \(0.271695\pi\)
\(98\) 9.79797 + 1.41414i 0.989744 + 0.142849i
\(99\) 1.23675i 0.124298i
\(100\) −7.46093 5.71064i −0.746093 0.571064i
\(101\) 13.7565 7.94233i 1.36882 0.790291i 0.378047 0.925787i \(-0.376596\pi\)
0.990778 + 0.135495i \(0.0432625\pi\)
\(102\) −8.89592 3.01376i −0.880827 0.298406i
\(103\) −9.38954 + 16.2632i −0.925179 + 1.60246i −0.133906 + 0.990994i \(0.542752\pi\)
−0.791273 + 0.611463i \(0.790581\pi\)
\(104\) −6.24970 9.31667i −0.612834 0.913575i
\(105\) −2.25865 0.388055i −0.220422 0.0378703i
\(106\) −11.4971 + 10.0950i −1.11670 + 0.980512i
\(107\) 0.293506 + 0.169456i 0.0283743 + 0.0163819i 0.514120 0.857718i \(-0.328119\pi\)
−0.485746 + 0.874100i \(0.661452\pi\)
\(108\) −4.25411 10.2353i −0.409352 0.984888i
\(109\) 6.75910 3.90237i 0.647404 0.373779i −0.140057 0.990143i \(-0.544729\pi\)
0.787461 + 0.616365i \(0.211395\pi\)
\(110\) 1.82275 0.363714i 0.173792 0.0346788i
\(111\) 0.418110 0.0396853
\(112\) −8.62757 + 6.12903i −0.815229 + 0.579139i
\(113\) 2.51730 0.236808 0.118404 0.992966i \(-0.462222\pi\)
0.118404 + 0.992966i \(0.462222\pi\)
\(114\) −14.5133 + 2.89601i −1.35930 + 0.271237i
\(115\) −1.11828 + 0.645638i −0.104280 + 0.0602060i
\(116\) 6.30755 + 15.1758i 0.585641 + 1.40904i
\(117\) 1.77694 + 1.02592i 0.164279 + 0.0948463i
\(118\) −4.01127 + 3.52208i −0.369267 + 0.324234i
\(119\) −3.86016 10.4627i −0.353860 0.959115i
\(120\) 2.03461 1.36483i 0.185733 0.124592i
\(121\) −2.64215 + 4.57635i −0.240196 + 0.416031i
\(122\) −9.55922 3.23847i −0.865451 0.293197i
\(123\) 8.52809 4.92369i 0.768952 0.443954i
\(124\) −1.37568 1.05295i −0.123540 0.0945579i
\(125\) 5.33124i 0.476841i
\(126\) 0.922509 1.70160i 0.0821836 0.151590i
\(127\) −5.30221 −0.470495 −0.235248 0.971935i \(-0.575590\pi\)
−0.235248 + 0.971935i \(0.575590\pi\)
\(128\) 2.16017 11.1056i 0.190933 0.981603i
\(129\) 4.21509 + 7.30075i 0.371118 + 0.642796i
\(130\) −0.989446 + 2.92062i −0.0867802 + 0.256155i
\(131\) −8.69419 5.01959i −0.759615 0.438564i 0.0695425 0.997579i \(-0.477846\pi\)
−0.829157 + 0.559015i \(0.811179\pi\)
\(132\) 0.974343 7.47074i 0.0848057 0.650244i
\(133\) −13.5102 11.2358i −1.17149 0.974270i
\(134\) 2.84286 2.49616i 0.245585 0.215636i
\(135\) −1.52334 + 2.63850i −0.131108 + 0.227086i
\(136\) 10.7021 + 5.25358i 0.917702 + 0.450491i
\(137\) −1.62485 2.81432i −0.138820 0.240444i 0.788230 0.615381i \(-0.210998\pi\)
−0.927050 + 0.374937i \(0.877664\pi\)
\(138\) 1.02422 + 5.13289i 0.0871878 + 0.436940i
\(139\) 15.3349i 1.30069i 0.759639 + 0.650346i \(0.225376\pi\)
−0.759639 + 0.650346i \(0.774624\pi\)
\(140\) 2.77916 + 0.859196i 0.234882 + 0.0726153i
\(141\) 4.09449i 0.344819i
\(142\) 12.1587 2.42617i 1.02034 0.203600i
\(143\) 4.74135 + 8.21226i 0.396491 + 0.686743i
\(144\) 0.540390 + 1.99741i 0.0450325 + 0.166451i
\(145\) 2.25865 3.91210i 0.187571 0.324882i
\(146\) −4.35121 4.95555i −0.360109 0.410124i
\(147\) −10.8448 + 2.01047i −0.894466 + 0.165821i
\(148\) −0.526255 0.0686349i −0.0432579 0.00564175i
\(149\) 6.39393 + 3.69154i 0.523812 + 0.302423i 0.738493 0.674261i \(-0.235538\pi\)
−0.214681 + 0.976684i \(0.568871\pi\)
\(150\) 9.91465 + 3.35888i 0.809528 + 0.274251i
\(151\) −4.16550 7.21485i −0.338983 0.587136i 0.645259 0.763964i \(-0.276750\pi\)
−0.984242 + 0.176828i \(0.943416\pi\)
\(152\) 18.7426 1.26264i 1.52023 0.102413i
\(153\) −2.18048 −0.176282
\(154\) 7.62425 4.67873i 0.614379 0.377023i
\(155\) 0.476182i 0.0382478i
\(156\) 9.92564 + 7.59714i 0.794688 + 0.608258i
\(157\) −6.18061 + 3.56837i −0.493266 + 0.284787i −0.725928 0.687770i \(-0.758590\pi\)
0.232662 + 0.972558i \(0.425256\pi\)
\(158\) −0.279750 + 0.825759i −0.0222557 + 0.0656939i
\(159\) 8.52334 14.7629i 0.675945 1.17077i
\(160\) −2.78491 + 1.38386i −0.220166 + 0.109404i
\(161\) −3.97374 + 4.77813i −0.313175 + 0.376569i
\(162\) 6.70010 + 7.63068i 0.526410 + 0.599523i
\(163\) 6.33023 + 3.65476i 0.495822 + 0.286263i 0.726987 0.686652i \(-0.240920\pi\)
−0.231164 + 0.972915i \(0.574254\pi\)
\(164\) −11.5421 + 4.79729i −0.901290 + 0.374605i
\(165\) −1.79342 + 1.03543i −0.139618 + 0.0806083i
\(166\) −0.304268 1.52483i −0.0236157 0.118350i
\(167\) 1.88873 0.146154 0.0730772 0.997326i \(-0.476718\pi\)
0.0730772 + 0.997326i \(0.476718\pi\)
\(168\) 6.91311 9.55195i 0.533358 0.736949i
\(169\) −2.73240 −0.210184
\(170\) −0.641258 3.21365i −0.0491822 0.246476i
\(171\) −2.97540 + 1.71785i −0.227535 + 0.131367i
\(172\) −4.10688 9.88104i −0.313147 0.753422i
\(173\) −14.3350 8.27632i −1.08987 0.629237i −0.156329 0.987705i \(-0.549966\pi\)
−0.933542 + 0.358468i \(0.883299\pi\)
\(174\) −12.0813 13.7593i −0.915880 1.04309i
\(175\) 4.30221 + 11.6609i 0.325217 + 0.881478i
\(176\) −2.45272 + 9.24312i −0.184881 + 0.696726i
\(177\) 2.97374 5.15068i 0.223520 0.387149i
\(178\) 2.90214 8.56647i 0.217525 0.642084i
\(179\) 4.79957 2.77103i 0.358737 0.207117i −0.309790 0.950805i \(-0.600259\pi\)
0.668526 + 0.743688i \(0.266925\pi\)
\(180\) 0.345695 0.451649i 0.0257666 0.0336639i
\(181\) 9.98466i 0.742154i 0.928602 + 0.371077i \(0.121011\pi\)
−0.928602 + 0.371077i \(0.878989\pi\)
\(182\) 0.397801 + 14.8356i 0.0294870 + 1.09969i
\(183\) 11.2451 0.831259
\(184\) −0.446553 6.62865i −0.0329203 0.488671i
\(185\) 0.0729381 + 0.126333i 0.00536252 + 0.00928816i
\(186\) 1.82811 + 0.619324i 0.134043 + 0.0454111i
\(187\) −8.72714 5.03862i −0.638192 0.368460i
\(188\) −0.672132 + 5.15354i −0.0490202 + 0.375861i
\(189\) −2.48284 + 14.4512i −0.180600 + 1.05117i
\(190\) −3.40684 3.88002i −0.247158 0.281486i
\(191\) −0.0842049 + 0.145847i −0.00609285 + 0.0105531i −0.869056 0.494714i \(-0.835273\pi\)
0.862963 + 0.505267i \(0.168606\pi\)
\(192\) 1.69069 + 12.4914i 0.122015 + 0.901486i
\(193\) −3.75865 6.51018i −0.270554 0.468613i 0.698450 0.715659i \(-0.253873\pi\)
−0.969004 + 0.247046i \(0.920540\pi\)
\(194\) 17.9565 3.58307i 1.28920 0.257250i
\(195\) 3.43570i 0.246035i
\(196\) 13.9799 0.750250i 0.998563 0.0535893i
\(197\) 1.34581i 0.0958847i 0.998850 + 0.0479424i \(0.0152664\pi\)
−0.998850 + 0.0479424i \(0.984734\pi\)
\(198\) −0.342255 1.71521i −0.0243230 0.121895i
\(199\) 6.38059 + 11.0515i 0.452308 + 0.783420i 0.998529 0.0542208i \(-0.0172675\pi\)
−0.546221 + 0.837641i \(0.683934\pi\)
\(200\) −11.9277 5.85520i −0.843417 0.414025i
\(201\) −2.10755 + 3.65038i −0.148655 + 0.257478i
\(202\) 16.8806 14.8220i 1.18771 1.04287i
\(203\) 3.68129 21.4267i 0.258376 1.50386i
\(204\) −13.1715 1.71785i −0.922192 0.120273i
\(205\) 2.97540 + 1.71785i 0.207811 + 0.119980i
\(206\) −8.52145 + 25.1534i −0.593717 + 1.75252i
\(207\) 0.607546 + 1.05230i 0.0422274 + 0.0731400i
\(208\) −11.2458 11.1915i −0.779758 0.775991i
\(209\) −15.8783 −1.09832
\(210\) −3.23985 + 0.0868731i −0.223571 + 0.00599482i
\(211\) 8.46353i 0.582653i −0.956624 0.291327i \(-0.905903\pi\)
0.956624 0.291327i \(-0.0940967\pi\)
\(212\) −13.1513 + 17.1822i −0.903236 + 1.18008i
\(213\) −11.9631 + 6.90690i −0.819698 + 0.473253i
\(214\) 0.453951 + 0.153789i 0.0310315 + 0.0105128i
\(215\) −1.47062 + 2.54719i −0.100296 + 0.173717i
\(216\) −8.73240 13.0177i −0.594164 0.885744i
\(217\) 0.793260 + 2.15008i 0.0538500 + 0.145957i
\(218\) 8.29407 7.28259i 0.561745 0.493239i
\(219\) 6.36319 + 3.67379i 0.429984 + 0.248252i
\(220\) 2.42726 1.00885i 0.163646 0.0680166i
\(221\) 14.4789 8.35939i 0.973955 0.562313i
\(222\) 0.579866 0.115707i 0.0389180 0.00776577i
\(223\) −5.80161 −0.388505 −0.194252 0.980952i \(-0.562228\pi\)
−0.194252 + 0.980952i \(0.562228\pi\)
\(224\) −10.2692 + 10.8878i −0.686140 + 0.727469i
\(225\) 2.43018 0.162012
\(226\) 3.49118 0.696636i 0.232230 0.0463395i
\(227\) 9.89265 5.71152i 0.656598 0.379087i −0.134382 0.990930i \(-0.542905\pi\)
0.790980 + 0.611843i \(0.209571\pi\)
\(228\) −19.3267 + 8.03281i −1.27994 + 0.531986i
\(229\) 16.0260 + 9.25263i 1.05903 + 0.611431i 0.925164 0.379568i \(-0.123928\pi\)
0.133866 + 0.990999i \(0.457261\pi\)
\(230\) −1.37224 + 1.20489i −0.0904825 + 0.0794480i
\(231\) −6.37283 + 7.66285i −0.419302 + 0.504178i
\(232\) 12.9475 + 19.3013i 0.850044 + 1.26719i
\(233\) 5.52566 9.57072i 0.361998 0.626999i −0.626292 0.779589i \(-0.715428\pi\)
0.988290 + 0.152590i \(0.0487615\pi\)
\(234\) 2.74831 + 0.931070i 0.179663 + 0.0608660i
\(235\) 1.23716 0.714273i 0.0807032 0.0465940i
\(236\) −4.58842 + 5.99475i −0.298681 + 0.390225i
\(237\) 0.971389i 0.0630985i
\(238\) −8.24899 13.4422i −0.534702 0.871327i
\(239\) −22.6107 −1.46256 −0.731281 0.682076i \(-0.761077\pi\)
−0.731281 + 0.682076i \(0.761077\pi\)
\(240\) 2.44404 2.45590i 0.157762 0.158528i
\(241\) −6.96479 12.0634i −0.448642 0.777070i 0.549656 0.835391i \(-0.314759\pi\)
−0.998298 + 0.0583207i \(0.981425\pi\)
\(242\) −2.39788 + 7.07799i −0.154142 + 0.454991i
\(243\) 4.60051 + 2.65611i 0.295123 + 0.170389i
\(244\) −14.1536 1.84593i −0.906093 0.118174i
\(245\) −2.49931 2.92606i −0.159675 0.186939i
\(246\) 10.4648 9.18859i 0.667211 0.585843i
\(247\) 13.1715 22.8138i 0.838085 1.45161i
\(248\) −2.19928 1.07961i −0.139655 0.0685551i
\(249\) 0.866198 + 1.50030i 0.0548931 + 0.0950776i
\(250\) 1.47536 + 7.39375i 0.0933100 + 0.467622i
\(251\) 0.706033i 0.0445644i −0.999752 0.0222822i \(-0.992907\pi\)
0.999752 0.0222822i \(-0.00709323\pi\)
\(252\) 0.808505 2.61519i 0.0509310 0.164741i
\(253\) 5.61562i 0.353051i
\(254\) −7.35349 + 1.46733i −0.461399 + 0.0920683i
\(255\) 1.82555 + 3.16195i 0.114321 + 0.198009i
\(256\) −0.0774679 15.9998i −0.00484175 0.999988i
\(257\) −10.3919 + 17.9992i −0.648226 + 1.12276i 0.335320 + 0.942104i \(0.391156\pi\)
−0.983546 + 0.180656i \(0.942178\pi\)
\(258\) 7.86620 + 8.95874i 0.489728 + 0.557747i
\(259\) 0.539788 + 0.448917i 0.0335408 + 0.0278943i
\(260\) −0.563987 + 4.32435i −0.0349770 + 0.268185i
\(261\) −3.68129 2.12540i −0.227866 0.131559i
\(262\) −13.4469 4.55552i −0.830749 0.281441i
\(263\) 11.3895 + 19.7273i 0.702309 + 1.21644i 0.967654 + 0.252281i \(0.0811809\pi\)
−0.265345 + 0.964154i \(0.585486\pi\)
\(264\) −0.716153 10.6306i −0.0440762 0.654268i
\(265\) 5.94749 0.365351
\(266\) −21.8464 11.8439i −1.33949 0.726194i
\(267\) 10.0772i 0.616717i
\(268\) 3.25189 4.24859i 0.198641 0.259524i
\(269\) 2.59376 1.49751i 0.158145 0.0913048i −0.418839 0.908060i \(-0.637563\pi\)
0.576984 + 0.816756i \(0.304230\pi\)
\(270\) −1.38250 + 4.08084i −0.0841365 + 0.248352i
\(271\) 12.5926 21.8109i 0.764943 1.32492i −0.175333 0.984509i \(-0.556100\pi\)
0.940277 0.340412i \(-0.110566\pi\)
\(272\) 16.2964 + 4.32435i 0.988113 + 0.262202i
\(273\) −5.72345 15.5130i −0.346399 0.938890i
\(274\) −3.03229 3.45345i −0.183188 0.208630i
\(275\) 9.72654 + 5.61562i 0.586533 + 0.338635i
\(276\) 2.84094 + 6.83522i 0.171004 + 0.411432i
\(277\) 8.17940 4.72238i 0.491453 0.283740i −0.233724 0.972303i \(-0.575091\pi\)
0.725177 + 0.688563i \(0.241758\pi\)
\(278\) 4.24377 + 21.2676i 0.254524 + 1.27554i
\(279\) 0.448088 0.0268263
\(280\) 4.09211 + 0.422495i 0.244550 + 0.0252489i
\(281\) 26.8425 1.60129 0.800644 0.599141i \(-0.204491\pi\)
0.800644 + 0.599141i \(0.204491\pi\)
\(282\) −1.13311 5.67854i −0.0674755 0.338152i
\(283\) 11.2429 6.49111i 0.668323 0.385856i −0.127118 0.991888i \(-0.540573\pi\)
0.795441 + 0.606031i \(0.207239\pi\)
\(284\) 16.1912 6.72958i 0.960770 0.399327i
\(285\) 4.98215 + 2.87645i 0.295117 + 0.170386i
\(286\) 8.84830 + 10.0772i 0.523211 + 0.595880i
\(287\) 16.2964 + 2.79986i 0.961945 + 0.165270i
\(288\) 1.30221 + 2.62060i 0.0767336 + 0.154420i
\(289\) −0.383502 + 0.664245i −0.0225590 + 0.0390733i
\(290\) 2.04983 6.05064i 0.120370 0.355306i
\(291\) −17.6676 + 10.2004i −1.03569 + 0.597958i
\(292\) −7.40597 5.66857i −0.433401 0.331728i
\(293\) 9.56300i 0.558677i −0.960193 0.279338i \(-0.909885\pi\)
0.960193 0.279338i \(-0.0901151\pi\)
\(294\) −14.4840 + 5.78945i −0.844725 + 0.337647i
\(295\) 2.07504 0.120814
\(296\) −0.748843 + 0.0504474i −0.0435256 + 0.00293220i
\(297\) 6.62485 + 11.4746i 0.384413 + 0.665823i
\(298\) 9.88916 + 3.35025i 0.572864 + 0.194075i
\(299\) −8.06848 4.65834i −0.466612 0.269399i
\(300\) 14.6799 + 1.91457i 0.847544 + 0.110538i
\(301\) −2.39691 + 13.9511i −0.138156 + 0.804126i
\(302\) −7.77364 8.85332i −0.447323 0.509452i
\(303\) −12.5144 + 21.6756i −0.718933 + 1.24523i
\(304\) 25.6442 6.93793i 1.47080 0.397918i
\(305\) 1.96167 + 3.39771i 0.112325 + 0.194552i
\(306\) −3.02405 + 0.603425i −0.172874 + 0.0344955i
\(307\) 12.2217i 0.697527i 0.937211 + 0.348763i \(0.113398\pi\)
−0.937211 + 0.348763i \(0.886602\pi\)
\(308\) 9.27908 8.59873i 0.528724 0.489958i
\(309\) 29.5894i 1.68328i
\(310\) 0.131778 + 0.660404i 0.00748449 + 0.0375084i
\(311\) −15.9415 27.6114i −0.903957 1.56570i −0.822311 0.569038i \(-0.807316\pi\)
−0.0816453 0.996661i \(-0.526017\pi\)
\(312\) 15.8680 + 7.78946i 0.898350 + 0.440991i
\(313\) −10.7618 + 18.6399i −0.608291 + 1.05359i 0.383230 + 0.923653i \(0.374811\pi\)
−0.991522 + 0.129939i \(0.958522\pi\)
\(314\) −7.58420 + 6.65929i −0.428001 + 0.375806i
\(315\) −0.705892 + 0.260435i −0.0397725 + 0.0146739i
\(316\) −0.159458 + 1.22264i −0.00897023 + 0.0687789i
\(317\) −20.0481 11.5747i −1.12601 0.650103i −0.183082 0.983098i \(-0.558607\pi\)
−0.942929 + 0.332995i \(0.891941\pi\)
\(318\) 7.73533 22.8329i 0.433776 1.28041i
\(319\) −9.82264 17.0133i −0.549962 0.952562i
\(320\) −3.47935 + 2.68993i −0.194501 + 0.150371i
\(321\) −0.534009 −0.0298055
\(322\) −4.18878 + 7.72634i −0.233432 + 0.430572i
\(323\) 27.9947i 1.55767i
\(324\) 11.4039 + 8.72861i 0.633550 + 0.484923i
\(325\) −16.1370 + 9.31667i −0.895117 + 0.516796i
\(326\) 9.79064 + 3.31687i 0.542253 + 0.183704i
\(327\) −6.14879 + 10.6500i −0.340029 + 0.588947i
\(328\) −14.6799 + 9.84739i −0.810561 + 0.543731i
\(329\) 4.39618 5.28607i 0.242369 0.291430i
\(330\) −2.20070 + 1.93232i −0.121145 + 0.106371i
\(331\) −25.5615 14.7579i −1.40499 0.811169i −0.410086 0.912047i \(-0.634501\pi\)
−0.994899 + 0.100878i \(0.967835\pi\)
\(332\) −0.843961 2.03055i −0.0463184 0.111441i
\(333\) 0.118879 0.0686349i 0.00651454 0.00376117i
\(334\) 2.61943 0.522685i 0.143329 0.0286001i
\(335\) −1.47062 −0.0803486
\(336\) 6.94421 15.1605i 0.378838 0.827071i
\(337\) −3.28431 −0.178908 −0.0894538 0.995991i \(-0.528512\pi\)
−0.0894538 + 0.995991i \(0.528512\pi\)
\(338\) −3.78949 + 0.756160i −0.206121 + 0.0411297i
\(339\) −3.43501 + 1.98320i −0.186564 + 0.107713i
\(340\) −1.77869 4.27947i −0.0964628 0.232087i
\(341\) 1.79342 + 1.03543i 0.0971192 + 0.0560718i
\(342\) −3.65111 + 3.20585i −0.197429 + 0.173352i
\(343\) −16.1595 9.04831i −0.872529 0.488563i
\(344\) −8.43018 12.5672i −0.454525 0.677578i
\(345\) 1.01730 1.76202i 0.0547698 0.0948641i
\(346\) −22.1712 7.51115i −1.19193 0.403802i
\(347\) −27.4329 + 15.8384i −1.47267 + 0.850248i −0.999528 0.0307361i \(-0.990215\pi\)
−0.473146 + 0.880984i \(0.656882\pi\)
\(348\) −20.5629 15.7390i −1.10229 0.843698i
\(349\) 28.4807i 1.52454i −0.647260 0.762269i \(-0.724085\pi\)
0.647260 0.762269i \(-0.275915\pi\)
\(350\) 9.19363 + 14.9815i 0.491420 + 0.800796i
\(351\) −21.9821 −1.17332
\(352\) −0.843679 + 13.4978i −0.0449682 + 0.719435i
\(353\) −10.1196 17.5277i −0.538613 0.932905i −0.998979 0.0451760i \(-0.985615\pi\)
0.460366 0.887729i \(-0.347718\pi\)
\(354\) 2.69881 7.96628i 0.143440 0.423403i
\(355\) −4.17386 2.40978i −0.221525 0.127898i
\(356\) 1.65423 12.6837i 0.0876740 0.672237i
\(357\) 13.5102 + 11.2358i 0.715038 + 0.594663i
\(358\) 5.88954 5.17130i 0.311272 0.273312i
\(359\) −12.5611 + 21.7564i −0.662948 + 1.14826i 0.316889 + 0.948463i \(0.397362\pi\)
−0.979837 + 0.199797i \(0.935972\pi\)
\(360\) 0.354446 0.722047i 0.0186809 0.0380552i
\(361\) 12.5550 + 21.7460i 0.660791 + 1.14452i
\(362\) 2.76314 + 13.8474i 0.145228 + 0.727806i
\(363\) 8.32626i 0.437015i
\(364\) 4.65729 + 20.4650i 0.244108 + 1.07266i
\(365\) 2.56353i 0.134181i
\(366\) 15.5955 3.11195i 0.815189 0.162664i
\(367\) 15.1912 + 26.3118i 0.792972 + 1.37347i 0.924119 + 0.382104i \(0.124801\pi\)
−0.131147 + 0.991363i \(0.541866\pi\)
\(368\) −2.45372 9.06952i −0.127909 0.472781i
\(369\) 1.61650 2.79986i 0.0841515 0.145755i
\(370\) 0.136117 + 0.155022i 0.00707639 + 0.00805923i
\(371\) 26.8544 9.90778i 1.39421 0.514386i
\(372\) 2.70674 + 0.353016i 0.140338 + 0.0183031i
\(373\) 4.86327 + 2.80781i 0.251811 + 0.145383i 0.620593 0.784133i \(-0.286892\pi\)
−0.368782 + 0.929516i \(0.620225\pi\)
\(374\) −13.4978 4.57278i −0.697956 0.236453i
\(375\) −4.20010 7.27479i −0.216892 0.375669i
\(376\) 0.494024 + 7.33331i 0.0254774 + 0.378187i
\(377\) 32.5928 1.67861
\(378\) 0.555827 + 20.7291i 0.0285887 + 1.06619i
\(379\) 8.07009i 0.414533i −0.978285 0.207266i \(-0.933543\pi\)
0.978285 0.207266i \(-0.0664566\pi\)
\(380\) −5.79861 4.43829i −0.297462 0.227679i
\(381\) 7.23518 4.17723i 0.370670 0.214006i
\(382\) −0.0764199 + 0.225574i −0.00390998 + 0.0115414i
\(383\) 12.8166 22.1990i 0.654898 1.13432i −0.327022 0.945017i \(-0.606045\pi\)
0.981919 0.189299i \(-0.0606216\pi\)
\(384\) 5.80161 + 16.8560i 0.296062 + 0.860182i
\(385\) −3.42706 0.588798i −0.174659 0.0300079i
\(386\) −7.01439 7.98862i −0.357023 0.406610i
\(387\) 2.39691 + 1.38386i 0.121842 + 0.0703454i
\(388\) 23.9118 9.93853i 1.21394 0.504552i
\(389\) −22.9905 + 13.2736i −1.16566 + 0.672997i −0.952655 0.304053i \(-0.901660\pi\)
−0.213010 + 0.977050i \(0.568327\pi\)
\(390\) −0.950790 4.76487i −0.0481451 0.241279i
\(391\) 9.90081 0.500705
\(392\) 19.1807 4.90928i 0.968771 0.247956i
\(393\) 15.8183 0.797929
\(394\) 0.372437 + 1.86646i 0.0187631 + 0.0940310i
\(395\) 0.293506 0.169456i 0.0147679 0.00852626i
\(396\) −0.949329 2.28406i −0.0477056 0.114778i
\(397\) 29.5283 + 17.0482i 1.48198 + 0.855624i 0.999791 0.0204418i \(-0.00650729\pi\)
0.482192 + 0.876065i \(0.339841\pi\)
\(398\) 11.9074 + 13.5613i 0.596866 + 0.679765i
\(399\) 27.2874 + 4.68821i 1.36608 + 0.234704i
\(400\) −18.1626 4.81955i −0.908129 0.240978i
\(401\) −9.17676 + 15.8946i −0.458266 + 0.793739i −0.998869 0.0475379i \(-0.984862\pi\)
0.540604 + 0.841277i \(0.318196\pi\)
\(402\) −1.91270 + 5.64585i −0.0953967 + 0.281589i
\(403\) −2.97540 + 1.71785i −0.148215 + 0.0855721i
\(404\) 19.3094 25.2277i 0.960679 1.25512i
\(405\) 3.94738i 0.196147i
\(406\) −0.824123 30.7349i −0.0409005 1.52535i
\(407\) 0.634401 0.0314461
\(408\) −18.7426 + 1.26264i −0.927899 + 0.0625099i
\(409\) −5.87455 10.1750i −0.290478 0.503122i 0.683445 0.730002i \(-0.260481\pi\)
−0.973923 + 0.226880i \(0.927148\pi\)
\(410\) 4.60190 + 1.55903i 0.227271 + 0.0769949i
\(411\) 4.43441 + 2.56021i 0.218733 + 0.126286i
\(412\) −4.85725 + 37.2427i −0.239299 + 1.83482i
\(413\) 9.36933 3.45677i 0.461035 0.170096i
\(414\) 1.13380 + 1.29128i 0.0557233 + 0.0634627i
\(415\) −0.302212 + 0.523446i −0.0148350 + 0.0256949i
\(416\) −18.6936 12.4090i −0.916532 0.608403i
\(417\) −12.0813 20.9254i −0.591623 1.02472i
\(418\) −22.0211 + 4.39413i −1.07709 + 0.214924i
\(419\) 11.0841i 0.541495i −0.962650 0.270748i \(-0.912729\pi\)
0.962650 0.270748i \(-0.0872709\pi\)
\(420\) −4.46922 + 1.01707i −0.218076 + 0.0496282i
\(421\) 0.137270i 0.00669012i 0.999994 + 0.00334506i \(0.00106477\pi\)
−0.999994 + 0.00334506i \(0.998935\pi\)
\(422\) −2.34219 11.7378i −0.114016 0.571389i
\(423\) −0.672132 1.16417i −0.0326802 0.0566037i
\(424\) −13.4842 + 27.4689i −0.654852 + 1.33401i
\(425\) 9.90081 17.1487i 0.480260 0.831834i
\(426\) −14.6799 + 12.8896i −0.711243 + 0.624505i
\(427\) 14.5176 + 12.0736i 0.702555 + 0.584283i
\(428\) 0.672132 + 0.0876603i 0.0324887 + 0.00423722i
\(429\) −12.9397 7.47074i −0.624735 0.360691i
\(430\) −1.33466 + 3.93961i −0.0643629 + 0.189985i
\(431\) −6.23008 10.7908i −0.300092 0.519775i 0.676064 0.736843i \(-0.263684\pi\)
−0.976157 + 0.217067i \(0.930351\pi\)
\(432\) −15.7132 15.6373i −0.756003 0.752352i
\(433\) −14.1563 −0.680310 −0.340155 0.940369i \(-0.610480\pi\)
−0.340155 + 0.940369i \(0.610480\pi\)
\(434\) 1.69516 + 2.76236i 0.0813703 + 0.132597i
\(435\) 7.11772i 0.341269i
\(436\) 9.48744 12.3953i 0.454366 0.593628i
\(437\) 13.5102 7.80014i 0.646282 0.373131i
\(438\) 9.84161 + 3.33413i 0.470250 + 0.159311i
\(439\) 2.72948 4.72760i 0.130271 0.225636i −0.793510 0.608557i \(-0.791749\pi\)
0.923781 + 0.382921i \(0.125082\pi\)
\(440\) 3.08712 2.07086i 0.147173 0.0987246i
\(441\) −2.75342 + 2.35186i −0.131115 + 0.111993i
\(442\) 17.7670 15.6003i 0.845090 0.742030i
\(443\) 28.8691 + 16.6676i 1.37161 + 0.791900i 0.991131 0.132889i \(-0.0424254\pi\)
0.380480 + 0.924789i \(0.375759\pi\)
\(444\) 0.772179 0.320943i 0.0366460 0.0152313i
\(445\) −3.04485 + 1.75794i −0.144340 + 0.0833346i
\(446\) −8.04610 + 1.60553i −0.380994 + 0.0760241i
\(447\) −11.6332 −0.550232
\(448\) −11.2290 + 17.9418i −0.530521 + 0.847672i
\(449\) −26.9716 −1.27287 −0.636435 0.771330i \(-0.719592\pi\)
−0.636435 + 0.771330i \(0.719592\pi\)
\(450\) 3.37036 0.672526i 0.158880 0.0317032i
\(451\) 12.9397 7.47074i 0.609307 0.351783i
\(452\) 4.64904 1.93229i 0.218672 0.0908873i
\(453\) 11.3681 + 6.56339i 0.534121 + 0.308375i
\(454\) 12.1392 10.6588i 0.569723 0.500244i
\(455\) 3.68884 4.43555i 0.172935 0.207942i
\(456\) −24.5807 + 16.4889i −1.15110 + 0.772165i
\(457\) −9.54668 + 16.5353i −0.446575 + 0.773491i −0.998160 0.0606278i \(-0.980690\pi\)
0.551585 + 0.834118i \(0.314023\pi\)
\(458\) 24.7866 + 8.39720i 1.15820 + 0.392375i
\(459\) 20.2306 11.6802i 0.944285 0.545183i
\(460\) −1.56968 + 2.05078i −0.0731865 + 0.0956180i
\(461\) 18.9177i 0.881087i 0.897731 + 0.440543i \(0.145214\pi\)
−0.897731 + 0.440543i \(0.854786\pi\)
\(462\) −6.71770 + 12.3910i −0.312536 + 0.576482i
\(463\) 0.860370 0.0399848 0.0199924 0.999800i \(-0.493636\pi\)
0.0199924 + 0.999800i \(0.493636\pi\)
\(464\) 23.2979 + 23.1854i 1.08158 + 1.07636i
\(465\) −0.375150 0.649778i −0.0173972 0.0301328i
\(466\) 5.01479 14.8025i 0.232306 0.685714i
\(467\) −16.1842 9.34394i −0.748914 0.432386i 0.0763871 0.997078i \(-0.475662\pi\)
−0.825302 + 0.564692i \(0.808995\pi\)
\(468\) 4.06922 + 0.530712i 0.188100 + 0.0245322i
\(469\) −6.64022 + 2.44987i −0.306617 + 0.113125i
\(470\) 1.51811 1.33297i 0.0700253 0.0614855i
\(471\) 5.62253 9.73852i 0.259073 0.448727i
\(472\) −4.70457 + 9.58375i −0.216545 + 0.441128i
\(473\) 6.39558 + 11.0775i 0.294069 + 0.509342i
\(474\) −0.268821 1.34719i −0.0123474 0.0618786i
\(475\) 31.2006i 1.43158i
\(476\) −15.1603 16.3598i −0.694870 0.749849i
\(477\) 5.59660i 0.256251i
\(478\) −31.3581 + 6.25725i −1.43429 + 0.286200i
\(479\) 9.27364 + 16.0624i 0.423723 + 0.733911i 0.996300 0.0859405i \(-0.0273895\pi\)
−0.572577 + 0.819851i \(0.694056\pi\)
\(480\) 2.70993 4.08238i 0.123691 0.186335i
\(481\) −0.526255 + 0.911501i −0.0239952 + 0.0415609i
\(482\) −12.9977 14.8029i −0.592028 0.674255i
\(483\) 1.65807 9.65067i 0.0754446 0.439120i
\(484\) −1.36680 + 10.4799i −0.0621271 + 0.476357i
\(485\) −6.16413 3.55886i −0.279899 0.161600i
\(486\) 7.11537 + 2.41054i 0.322760 + 0.109344i
\(487\) 11.4588 + 19.8471i 0.519246 + 0.899360i 0.999750 + 0.0223676i \(0.00712041\pi\)
−0.480504 + 0.876993i \(0.659546\pi\)
\(488\) −20.1401 + 1.35678i −0.911701 + 0.0614187i
\(489\) −11.5173 −0.520830
\(490\) −4.27598 3.36641i −0.193169 0.152079i
\(491\) 24.7987i 1.11915i 0.828780 + 0.559575i \(0.189036\pi\)
−0.828780 + 0.559575i \(0.810964\pi\)
\(492\) 11.9705 15.6394i 0.539672 0.705079i
\(493\) −29.9959 + 17.3181i −1.35095 + 0.779969i
\(494\) 11.9538 35.2849i 0.537826 1.58754i
\(495\) −0.339943 + 0.588798i −0.0152793 + 0.0264645i
\(496\) −3.34889 0.888650i −0.150370 0.0399016i
\(497\) −22.8604 3.92760i −1.02543 0.176177i
\(498\) 1.61650 + 1.84101i 0.0724370 + 0.0824978i
\(499\) −33.9707 19.6130i −1.52074 0.877997i −0.999701 0.0244624i \(-0.992213\pi\)
−0.521035 0.853535i \(-0.674454\pi\)
\(500\) 4.09228 + 9.84590i 0.183012 + 0.440322i
\(501\) −2.57729 + 1.48800i −0.115145 + 0.0664788i
\(502\) −0.195387 0.979178i −0.00872054 0.0437028i
\(503\) 7.59396 0.338598 0.169299 0.985565i \(-0.445850\pi\)
0.169299 + 0.985565i \(0.445850\pi\)
\(504\) 0.397568 3.85068i 0.0177091 0.171523i
\(505\) −8.73240 −0.388587
\(506\) 1.55406 + 7.78815i 0.0690864 + 0.346226i
\(507\) 3.72852 2.15266i 0.165589 0.0956030i
\(508\) −9.79229 + 4.06999i −0.434463 + 0.180577i
\(509\) −3.79222 2.18944i −0.168087 0.0970451i 0.413596 0.910460i \(-0.364272\pi\)
−0.581684 + 0.813415i \(0.697606\pi\)
\(510\) 3.40684 + 3.88002i 0.150858 + 0.171810i
\(511\) 4.27052 + 11.5749i 0.188917 + 0.512046i
\(512\) −4.53521 22.1683i −0.200430 0.979708i
\(513\) 18.4039 31.8765i 0.812553 1.40738i
\(514\) −9.43110 + 27.8385i −0.415988 + 1.22790i
\(515\) 8.94047 5.16178i 0.393964 0.227455i
\(516\) 13.3886 + 10.2477i 0.589402 + 0.451132i
\(517\) 6.21259i 0.273230i
\(518\) 0.872850 + 0.473210i 0.0383508 + 0.0207916i
\(519\) 26.0813 1.14484
\(520\) 0.414537 + 6.15339i 0.0181786 + 0.269844i
\(521\) 5.37827 + 9.31544i 0.235626 + 0.408117i 0.959455 0.281863i \(-0.0909525\pi\)
−0.723828 + 0.689980i \(0.757619\pi\)
\(522\) −5.69366 1.92890i −0.249205 0.0844255i
\(523\) 2.43561 + 1.40620i 0.106502 + 0.0614889i 0.552305 0.833642i \(-0.313748\pi\)
−0.445803 + 0.895131i \(0.647082\pi\)
\(524\) −19.9098 2.59666i −0.869762 0.113435i
\(525\) −15.0574 12.5225i −0.657158 0.546528i
\(526\) 21.2551 + 24.2073i 0.926768 + 1.05549i
\(527\) 1.82555 3.16195i 0.0795223 0.137737i
\(528\) −3.93511 14.5451i −0.171254 0.632994i
\(529\) 8.74135 + 15.1405i 0.380059 + 0.658281i
\(530\) 8.24841 1.64590i 0.358288 0.0714934i
\(531\) 1.95262i 0.0847365i
\(532\) −33.5758 10.3802i −1.45570 0.450039i
\(533\) 24.7889i 1.07372i
\(534\) 2.78876 + 13.9758i 0.120682 + 0.604794i
\(535\) −0.0931564 0.161352i −0.00402750 0.00697584i
\(536\) 3.33421 6.79218i 0.144016 0.293377i
\(537\) −4.36620 + 7.56248i −0.188415 + 0.326345i
\(538\) 3.18280 2.79465i 0.137220 0.120486i
\(539\) −16.4549 + 3.05049i −0.708762 + 0.131394i
\(540\) −0.788031 + 6.04219i −0.0339114 + 0.260015i
\(541\) 27.0699 + 15.6288i 1.16383 + 0.671935i 0.952218 0.305419i \(-0.0987966\pi\)
0.211608 + 0.977355i \(0.432130\pi\)
\(542\) 11.4283 33.7339i 0.490889 1.44899i
\(543\) −7.86620 13.6247i −0.337571 0.584690i
\(544\) 23.7977 + 1.48748i 1.02032 + 0.0637750i
\(545\) −4.29055 −0.183787
\(546\) −12.2307 19.9307i −0.523427 0.852954i
\(547\) 29.4711i 1.26010i −0.776556 0.630048i \(-0.783035\pi\)
0.776556 0.630048i \(-0.216965\pi\)
\(548\) −5.16111 3.95034i −0.220472 0.168750i
\(549\) 3.19725 1.84593i 0.136455 0.0787826i
\(550\) 15.0435 + 5.09644i 0.641458 + 0.217313i
\(551\) −27.2874 + 47.2632i −1.16248 + 2.01348i
\(552\) 5.83159 + 8.69338i 0.248209 + 0.370015i
\(553\) 1.04296 1.25408i 0.0443512 0.0533289i
\(554\) 10.0369 8.81290i 0.426428 0.374424i
\(555\) −0.199057 0.114926i −0.00844949 0.00487832i
\(556\) 11.7711 + 28.3210i 0.499207 + 1.20108i
\(557\) −19.3751 + 11.1862i −0.820950 + 0.473976i −0.850744 0.525580i \(-0.823848\pi\)
0.0297941 + 0.999556i \(0.490515\pi\)
\(558\) 0.621441 0.124003i 0.0263077 0.00524948i
\(559\) −21.2213 −0.897567
\(560\) 5.79215 0.546498i 0.244763 0.0230938i
\(561\) 15.8783 0.670381
\(562\) 37.2271 7.42835i 1.57033 0.313346i
\(563\) −28.0528 + 16.1963i −1.18229 + 0.682593i −0.956542 0.291594i \(-0.905814\pi\)
−0.225743 + 0.974187i \(0.572481\pi\)
\(564\) −3.14295 7.56184i −0.132342 0.318411i
\(565\) −1.19846 0.691928i −0.0504194 0.0291097i
\(566\) 13.7962 12.1137i 0.579896 0.509177i
\(567\) −6.57585 17.8234i −0.276160 0.748513i
\(568\) 20.5928 13.8138i 0.864053 0.579614i
\(569\) 18.5288 32.0928i 0.776767 1.34540i −0.157029 0.987594i \(-0.550192\pi\)
0.933796 0.357806i \(-0.116475\pi\)
\(570\) 7.70563 + 2.61051i 0.322753 + 0.109342i
\(571\) −19.4303 + 11.2181i −0.813132 + 0.469462i −0.848042 0.529928i \(-0.822219\pi\)
0.0349102 + 0.999390i \(0.488885\pi\)
\(572\) 15.0602 + 11.5272i 0.629699 + 0.481976i
\(573\) 0.265356i 0.0110854i
\(574\) 23.3758 0.626798i 0.975689 0.0261620i
\(575\) −11.0346 −0.460175
\(576\) 2.53122 + 3.27407i 0.105468 + 0.136420i
\(577\) −4.78431 8.28667i −0.199173 0.344978i 0.749087 0.662471i \(-0.230492\pi\)
−0.948261 + 0.317493i \(0.897159\pi\)
\(578\) −0.348046 + 1.02735i −0.0144768 + 0.0427323i
\(579\) 10.2578 + 5.92235i 0.426300 + 0.246124i
\(580\) 1.16841 8.95874i 0.0485156 0.371991i
\(581\) −0.492563 + 2.86693i −0.0204350 + 0.118940i
\(582\) −21.6799 + 19.0360i −0.898660 + 0.789067i
\(583\) 12.9325 22.3997i 0.535609 0.927703i
\(584\) −11.8398 5.81206i −0.489936 0.240505i
\(585\) −0.563987 0.976854i −0.0233180 0.0403879i
\(586\) −2.64645 13.2627i −0.109324 0.547876i
\(587\) 23.6894i 0.977766i 0.872349 + 0.488883i \(0.162595\pi\)
−0.872349 + 0.488883i \(0.837405\pi\)
\(588\) −18.4853 + 12.0375i −0.762321 + 0.496419i
\(589\) 5.75289i 0.237044i
\(590\) 2.87782 0.574245i 0.118478 0.0236413i
\(591\) −1.06026 1.83643i −0.0436135 0.0755407i
\(592\) −1.02459 + 0.277198i −0.0421104 + 0.0113928i
\(593\) 3.72404 6.45023i 0.152928 0.264879i −0.779375 0.626558i \(-0.784463\pi\)
0.932303 + 0.361679i \(0.117796\pi\)
\(594\) 12.3633 + 14.0804i 0.507272 + 0.577727i
\(595\) −1.03810 + 6.04219i −0.0425579 + 0.247706i
\(596\) 14.6422 + 1.90965i 0.599766 + 0.0782222i
\(597\) −17.4134 10.0536i −0.712682 0.411467i
\(598\) −12.4791 4.22766i −0.510308 0.172882i
\(599\) −0.837627 1.45081i −0.0342245 0.0592786i 0.848406 0.529346i \(-0.177563\pi\)
−0.882630 + 0.470068i \(0.844229\pi\)
\(600\) 20.8890 1.40723i 0.852788 0.0574499i
\(601\) −8.27385 −0.337497 −0.168749 0.985659i \(-0.553973\pi\)
−0.168749 + 0.985659i \(0.553973\pi\)
\(602\) 0.536591 + 20.0117i 0.0218698 + 0.815615i
\(603\) 1.38386i 0.0563550i
\(604\) −13.2311 10.1272i −0.538366 0.412068i
\(605\) 2.51579 1.45249i 0.102281 0.0590522i
\(606\) −11.3574 + 33.5245i −0.461363 + 1.36184i
\(607\) 13.2647 22.9751i 0.538397 0.932531i −0.460593 0.887611i \(-0.652363\pi\)
0.998991 0.0449200i \(-0.0143033\pi\)
\(608\) 33.6453 16.7188i 1.36450 0.678036i
\(609\) 11.8572 + 32.1383i 0.480480 + 1.30231i
\(610\) 3.66087 + 4.16932i 0.148224 + 0.168811i
\(611\) 8.92620 + 5.15354i 0.361115 + 0.208490i
\(612\) −4.02699 + 1.67375i −0.162781 + 0.0676572i
\(613\) 27.3692 15.8016i 1.10543 0.638220i 0.167788 0.985823i \(-0.446338\pi\)
0.937642 + 0.347603i \(0.113004\pi\)
\(614\) 3.38221 + 16.9499i 0.136495 + 0.684042i
\(615\) −5.41348 −0.218293
\(616\) 10.4893 14.4932i 0.422626 0.583948i
\(617\) 10.1113 0.407064 0.203532 0.979068i \(-0.434758\pi\)
0.203532 + 0.979068i \(0.434758\pi\)
\(618\) −8.18853 41.0367i −0.329391 1.65074i
\(619\) −4.79105 + 2.76611i −0.192568 + 0.111179i −0.593184 0.805067i \(-0.702129\pi\)
0.400616 + 0.916246i \(0.368796\pi\)
\(620\) 0.365519 + 0.879428i 0.0146796 + 0.0353187i
\(621\) −11.2737 6.50886i −0.452397 0.261192i
\(622\) −29.7499 33.8819i −1.19286 1.35854i
\(623\) −10.8197 + 13.0099i −0.433483 + 0.521230i
\(624\) 24.1626 + 6.41169i 0.967277 + 0.256673i
\(625\) −10.2791 + 17.8039i −0.411163 + 0.712155i
\(626\) −9.76682 + 28.8294i −0.390360 + 1.15226i
\(627\) 21.6668 12.5094i 0.865290 0.499576i
\(628\) −8.67544 + 11.3344i −0.346188 + 0.452293i
\(629\) 1.11850i 0.0445975i
\(630\) −0.906910 + 0.556538i −0.0361322 + 0.0221730i
\(631\) 35.5582 1.41555 0.707774 0.706439i \(-0.249700\pi\)
0.707774 + 0.706439i \(0.249700\pi\)
\(632\) 0.117204 + 1.73978i 0.00466211 + 0.0692046i
\(633\) 6.66781 + 11.5490i 0.265022 + 0.459031i
\(634\) −31.0073 10.5046i −1.23146 0.417192i
\(635\) 2.52431 + 1.45741i 0.100174 + 0.0578357i
\(636\) 4.40916 33.8071i 0.174835 1.34054i
\(637\) 9.26693 26.1727i 0.367169 1.03700i
\(638\) −18.3310 20.8770i −0.725731 0.826528i
\(639\) −2.26760 + 3.92760i −0.0897050 + 0.155374i
\(640\) −4.08100 + 4.69345i −0.161316 + 0.185525i
\(641\) −4.73300 8.19779i −0.186942 0.323793i 0.757287 0.653082i \(-0.226524\pi\)
−0.944229 + 0.329289i \(0.893191\pi\)
\(642\) −0.740603 + 0.147781i −0.0292293 + 0.00583245i
\(643\) 13.0085i 0.513007i 0.966543 + 0.256503i \(0.0825705\pi\)
−0.966543 + 0.256503i \(0.917430\pi\)
\(644\) −3.67113 + 11.8746i −0.144663 + 0.467927i
\(645\) 4.63439i 0.182479i
\(646\) 7.74722 + 38.8251i 0.304810 + 1.52755i
\(647\) −13.7610 23.8347i −0.540999 0.937039i −0.998847 0.0480078i \(-0.984713\pi\)
0.457848 0.889031i \(-0.348621\pi\)
\(648\) 18.2313 + 8.94956i 0.716193 + 0.351572i
\(649\) 4.51207 7.81514i 0.177114 0.306771i
\(650\) −19.8016 + 17.3868i −0.776683 + 0.681965i
\(651\) −2.77634 2.30896i −0.108813 0.0904951i
\(652\) 14.4963 + 1.89062i 0.567718 + 0.0740425i
\(653\) 30.4390 + 17.5740i 1.19117 + 0.687723i 0.958572 0.284850i \(-0.0919439\pi\)
0.232598 + 0.972573i \(0.425277\pi\)
\(654\) −5.58032 + 16.4718i −0.218208 + 0.644099i
\(655\) 2.75946 + 4.77952i 0.107821 + 0.186751i
\(656\) −17.6340 + 17.7196i −0.688491 + 0.691833i
\(657\) 2.41228 0.0941121
\(658\) 4.63408 8.54769i 0.180655 0.333224i
\(659\) 3.86719i 0.150644i −0.997159 0.0753222i \(-0.976001\pi\)
0.997159 0.0753222i \(-0.0239985\pi\)
\(660\) −2.51735 + 3.28890i −0.0979875 + 0.128020i
\(661\) 14.4295 8.33085i 0.561241 0.324033i −0.192403 0.981316i \(-0.561628\pi\)
0.753643 + 0.657284i \(0.228295\pi\)
\(662\) −39.5346 13.3935i −1.53656 0.520553i
\(663\) −13.1715 + 22.8138i −0.511540 + 0.886013i
\(664\) −1.73240 2.58255i −0.0672300 0.100222i
\(665\) 3.34366 + 9.06278i 0.129662 + 0.351439i
\(666\) 0.145876 0.128086i 0.00565259 0.00496325i
\(667\) 16.7154 + 9.65067i 0.647225 + 0.373675i
\(668\) 3.48817 1.44980i 0.134961 0.0560943i
\(669\) 7.91664 4.57068i 0.306075 0.176713i
\(670\) −2.03956 + 0.406978i −0.0787953 + 0.0157229i
\(671\) 17.0622 0.658679
\(672\) 5.43525 22.9474i 0.209669 0.885214i
\(673\) −3.95795 −0.152568 −0.0762838 0.997086i \(-0.524306\pi\)
−0.0762838 + 0.997086i \(0.524306\pi\)
\(674\) −4.55492 + 0.908896i −0.175449 + 0.0350094i
\(675\) −22.5474 + 13.0177i −0.867848 + 0.501053i
\(676\) −5.04628 + 2.09740i −0.194088 + 0.0806691i
\(677\) −35.6839 20.6021i −1.37144 0.791804i −0.380334 0.924849i \(-0.624191\pi\)
−0.991110 + 0.133045i \(0.957524\pi\)
\(678\) −4.21509 + 3.70105i −0.161880 + 0.142138i
\(679\) −33.7612 5.80045i −1.29564 0.222601i
\(680\) −3.65111 5.44285i −0.140014 0.208724i
\(681\) −8.99940 + 15.5874i −0.344858 + 0.597311i
\(682\) 2.77379 + 0.939703i 0.106214 + 0.0359831i
\(683\) 28.6643 16.5493i 1.09681 0.633242i 0.161427 0.986885i \(-0.448390\pi\)
0.935381 + 0.353642i \(0.115057\pi\)
\(684\) −4.17644 + 5.45650i −0.159690 + 0.208635i
\(685\) 1.78648i 0.0682580i
\(686\) −24.9151 8.07690i −0.951264 0.308378i
\(687\) −29.1580 −1.11245
\(688\) −15.1694 15.0962i −0.578329 0.575536i
\(689\) 21.4558 + 37.1626i 0.817402 + 1.41578i
\(690\) 0.923251 2.72523i 0.0351476 0.103748i
\(691\) 12.9010 + 7.44840i 0.490777 + 0.283350i 0.724897 0.688857i \(-0.241887\pi\)
−0.234120 + 0.972208i \(0.575221\pi\)
\(692\) −32.8273 4.28137i −1.24791 0.162753i
\(693\) −0.554060 + 3.22487i −0.0210470 + 0.122503i
\(694\) −33.6628 + 29.5575i −1.27782 + 1.12199i
\(695\) 4.21509 7.30075i 0.159888 0.276933i
\(696\) −32.8738 16.1374i −1.24608 0.611687i
\(697\) −13.1715 22.8138i −0.498907 0.864133i
\(698\) −7.88172 39.4992i −0.298328 1.49506i
\(699\) 17.4131i 0.658623i
\(700\) 16.8964 + 18.2332i 0.638623 + 0.689152i
\(701\) 32.5746i 1.23032i −0.788401 0.615162i \(-0.789090\pi\)
0.788401 0.615162i \(-0.210910\pi\)
\(702\) −30.4864 + 6.08330i −1.15063 + 0.229599i
\(703\) −0.881187 1.52626i −0.0332346 0.0575640i
\(704\) 2.56529 + 18.9532i 0.0966829 + 0.714325i
\(705\) −1.12545 + 1.94934i −0.0423869 + 0.0734162i
\(706\) −18.8852 21.5082i −0.710755 0.809471i
\(707\) −39.4289 + 14.5471i −1.48288 + 0.547100i
\(708\) 1.53833 11.7951i 0.0578140 0.443286i
\(709\) 9.95635 + 5.74830i 0.373918 + 0.215882i 0.675169 0.737663i \(-0.264071\pi\)
−0.301251 + 0.953545i \(0.597404\pi\)
\(710\) −6.45548 2.18699i −0.242270 0.0820761i
\(711\) −0.159458 0.276190i −0.00598016 0.0103579i
\(712\) −1.21588 18.0485i −0.0455669 0.676397i
\(713\) −2.03461 −0.0761967
\(714\) 21.8464 + 11.8439i 0.817580 + 0.443246i
\(715\) 5.21300i 0.194955i
\(716\) 6.73694 8.80179i 0.251771 0.328938i
\(717\) 30.8536 17.8133i 1.15225 0.665251i
\(718\) −11.3998 + 33.6495i −0.425435 + 1.25579i
\(719\) 13.4887 23.3632i 0.503045 0.871299i −0.496949 0.867780i \(-0.665546\pi\)
0.999994 0.00351948i \(-0.00112029\pi\)
\(720\) 0.291753 1.09948i 0.0108730 0.0409750i
\(721\) 31.7695 38.2004i 1.18316 1.42266i
\(722\) 23.4302 + 26.6844i 0.871981 + 0.993091i
\(723\) 19.0077 + 10.9741i 0.706906 + 0.408132i
\(724\) 7.66425 + 18.4400i 0.284840 + 0.685316i
\(725\) 33.4309 19.3013i 1.24159 0.716833i
\(726\) −2.30420 11.5475i −0.0855168 0.428566i
\(727\) −27.0230 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(728\) 12.1225 + 27.0935i 0.449291 + 1.00415i
\(729\) −29.9117 −1.10784
\(730\) 0.709427 + 3.55528i 0.0262571 + 0.131587i
\(731\) 19.5305 11.2759i 0.722361 0.417055i
\(732\) 20.7677 8.63175i 0.767598 0.319039i
\(733\) −17.9059 10.3380i −0.661371 0.381843i 0.131428 0.991326i \(-0.458044\pi\)
−0.792799 + 0.609483i \(0.791377\pi\)
\(734\) 28.3497 + 32.2872i 1.04641 + 1.19174i
\(735\) 5.71569 + 2.02375i 0.210826 + 0.0746470i
\(736\) −5.91288 11.8992i −0.217952 0.438611i
\(737\) −3.19779 + 5.53873i −0.117792 + 0.204022i
\(738\) 1.46705 4.33039i 0.0540028 0.159404i
\(739\) −9.30563 + 5.37261i −0.342313 + 0.197635i −0.661294 0.750126i \(-0.729993\pi\)
0.318981 + 0.947761i \(0.396659\pi\)
\(740\) 0.231678 + 0.177327i 0.00851664 + 0.00651869i
\(741\) 41.5076i 1.52482i
\(742\) 34.5017 21.1725i 1.26660 0.777266i
\(743\) 11.8708 0.435498 0.217749 0.976005i \(-0.430129\pi\)
0.217749 + 0.976005i \(0.430129\pi\)
\(744\) 3.85160 0.259471i 0.141206 0.00951267i
\(745\) −2.02938 3.51499i −0.0743507 0.128779i
\(746\) 7.52177 + 2.54822i 0.275391 + 0.0932970i
\(747\) 0.492563 + 0.284382i 0.0180219 + 0.0104050i
\(748\) −19.9852 2.60650i −0.730732 0.0953030i
\(749\) −0.689416 0.573355i −0.0251907 0.0209499i
\(750\) −7.83823 8.92688i −0.286212 0.325964i
\(751\) −8.53229 + 14.7784i −0.311348 + 0.539270i −0.978654 0.205513i \(-0.934114\pi\)
0.667307 + 0.744783i \(0.267447\pi\)
\(752\) 2.71456 + 10.0337i 0.0989899 + 0.365890i
\(753\) 0.556233 + 0.963424i 0.0202703 + 0.0351091i
\(754\) 45.2020 9.01968i 1.64616 0.328477i
\(755\) 4.57986i 0.166678i
\(756\) 6.50740 + 28.5947i 0.236672 + 1.03998i
\(757\) 46.3272i 1.68379i 0.539641 + 0.841895i \(0.318560\pi\)
−0.539641 + 0.841895i \(0.681440\pi\)
\(758\) −2.23331 11.1922i −0.0811173 0.406518i
\(759\) −4.42415 7.66285i −0.160586 0.278144i
\(760\) −9.27018 4.55064i −0.336265 0.165069i
\(761\) 7.30474 12.6522i 0.264796 0.458641i −0.702714 0.711473i \(-0.748029\pi\)
0.967510 + 0.252832i \(0.0813619\pi\)
\(762\) 8.87827 7.79555i 0.321626 0.282403i
\(763\) −19.3729 + 7.14753i −0.701346 + 0.258758i
\(764\) −0.0435595 + 0.333991i −0.00157593 + 0.0120834i
\(765\) 1.03810 + 0.599347i 0.0375326 + 0.0216694i
\(766\) 11.6317 34.3340i 0.420269 1.24054i
\(767\) 7.48582 + 12.9658i 0.270297 + 0.468169i
\(768\) 12.7108 + 21.7717i 0.458662 + 0.785617i
\(769\) 49.3177 1.77844 0.889221 0.457477i \(-0.151247\pi\)
0.889221 + 0.457477i \(0.151247\pi\)
\(770\) −4.91584 + 0.131813i −0.177155 + 0.00475021i
\(771\) 32.7480i 1.17939i
\(772\) −11.9388 9.13804i −0.429688 0.328885i
\(773\) −0.902744 + 0.521200i −0.0324695 + 0.0187462i −0.516147 0.856500i \(-0.672634\pi\)
0.483677 + 0.875246i \(0.339301\pi\)
\(774\) 3.70718 + 1.25592i 0.133252 + 0.0451429i
\(775\) −2.03461 + 3.52404i −0.0730853 + 0.126587i
\(776\) 30.4123 20.4008i 1.09174 0.732346i
\(777\) −1.09024 0.187313i −0.0391122 0.00671981i
\(778\) −28.2116 + 24.7711i −1.01143 + 0.888087i
\(779\) −35.9467 20.7538i −1.28792 0.743583i
\(780\) −2.63725 6.34515i −0.0944287 0.227193i
\(781\) −18.1517 + 10.4799i −0.649517 + 0.374999i
\(782\) 13.7312 2.73994i 0.491025 0.0979800i
\(783\) 45.5403 1.62748
\(784\) 25.2426 12.1166i 0.901521 0.432735i
\(785\) 3.92334 0.140030
\(786\) 21.9380 4.37754i 0.782502 0.156142i
\(787\) 34.8899 20.1437i 1.24369 0.718045i 0.273847 0.961773i \(-0.411704\pi\)
0.969844 + 0.243728i \(0.0783705\pi\)
\(788\) 1.03304 + 2.48548i 0.0368007 + 0.0885415i
\(789\) −31.0834 17.9460i −1.10660 0.638895i
\(790\) 0.360161 0.316239i 0.0128140 0.0112513i
\(791\) −6.56399 1.12775i −0.233388 0.0400981i
\(792\) −1.94869 2.90498i −0.0692436 0.103224i
\(793\) −14.1536 + 24.5148i −0.502610 + 0.870546i
\(794\) 45.6699 + 15.4720i 1.62076 + 0.549082i
\(795\) −8.11570 + 4.68560i −0.287834 + 0.166181i
\(796\) 20.2670 + 15.5125i 0.718346 + 0.549826i
\(797\) 32.2902i 1.14378i 0.820331 + 0.571889i \(0.193789\pi\)
−0.820331 + 0.571889i \(0.806211\pi\)
\(798\) 39.1416 1.04954i 1.38560 0.0371533i
\(799\) −10.9533 −0.387501
\(800\) −26.5229 1.65782i −0.937728 0.0586126i
\(801\) 1.65423 + 2.86521i 0.0584493 + 0.101237i
\(802\) −8.32834 + 24.5834i −0.294084 + 0.868069i
\(803\) 9.65489 + 5.57425i 0.340714 + 0.196711i
\(804\) −1.09024 + 8.35939i −0.0384499 + 0.294813i
\(805\) 3.20521 1.18254i 0.112969 0.0416792i
\(806\) −3.65111 + 3.20585i −0.128605 + 0.112921i
\(807\) −2.35956 + 4.08688i −0.0830605 + 0.143865i
\(808\) 19.7982 40.3313i 0.696499 1.41885i
\(809\) −20.8131 36.0493i −0.731749 1.26743i −0.956135 0.292926i \(-0.905371\pi\)
0.224386 0.974500i \(-0.427962\pi\)
\(810\) −1.09239 5.47452i −0.0383828 0.192355i
\(811\) 18.7227i 0.657444i 0.944427 + 0.328722i \(0.106618\pi\)
−0.944427 + 0.328722i \(0.893382\pi\)
\(812\) −9.64849 42.3973i −0.338596 1.48785i
\(813\) 39.6831i 1.39175i
\(814\) 0.879833 0.175563i 0.0308381 0.00615349i
\(815\) −2.00916 3.47997i −0.0703778 0.121898i
\(816\) −25.6442 + 6.93793i −0.897727 + 0.242876i
\(817\) 17.7670 30.7734i 0.621589 1.07662i
\(818\) −10.9631 12.4857i −0.383315 0.436554i
\(819\) −4.17386 3.47120i −0.145846 0.121294i
\(820\) 6.81369 + 0.888650i 0.237944 + 0.0310330i
\(821\) −16.2308 9.37088i −0.566460 0.327046i 0.189274 0.981924i \(-0.439386\pi\)
−0.755734 + 0.654878i \(0.772720\pi\)
\(822\) 6.85847 + 2.32351i 0.239217 + 0.0810417i
\(823\) 10.2211 + 17.7035i 0.356286 + 0.617106i 0.987337 0.158636i \(-0.0507095\pi\)
−0.631051 + 0.775741i \(0.717376\pi\)
\(824\) 3.57013 + 52.9951i 0.124371 + 1.84617i
\(825\) −17.6966 −0.616116
\(826\) 12.0375 7.38695i 0.418837 0.257025i
\(827\) 48.6254i 1.69087i −0.534079 0.845435i \(-0.679341\pi\)
0.534079 0.845435i \(-0.320659\pi\)
\(828\) 1.92978 + 1.47707i 0.0670647 + 0.0513317i
\(829\) −6.06173 + 3.49974i −0.210532 + 0.121551i −0.601559 0.798829i \(-0.705453\pi\)
0.391026 + 0.920379i \(0.372120\pi\)
\(830\) −0.274271 + 0.809586i −0.00952009 + 0.0281012i
\(831\) −7.44085 + 12.8879i −0.258120 + 0.447078i
\(832\) −29.3598 12.0365i −1.01787 0.417290i
\(833\) 5.37827 + 29.0113i 0.186346 + 1.00518i
\(834\) −22.5461 25.6775i −0.780707 0.889140i
\(835\) −0.899200 0.519154i −0.0311181 0.0179660i
\(836\) −29.3245 + 12.1882i −1.01421 + 0.421538i
\(837\) −4.15738 + 2.40026i −0.143700 + 0.0829653i
\(838\) −3.06741 15.3723i −0.105962 0.531027i
\(839\) 40.1867 1.38740 0.693700 0.720264i \(-0.255979\pi\)
0.693700 + 0.720264i \(0.255979\pi\)
\(840\) −5.91678 + 2.64736i −0.204148 + 0.0913426i
\(841\) −38.5224 −1.32836
\(842\) 0.0379879 + 0.190376i 0.00130915 + 0.00656078i
\(843\) −36.6281 + 21.1473i −1.26154 + 0.728350i
\(844\) −6.49663 15.6307i −0.223623 0.538031i
\(845\) 1.30086 + 0.751051i 0.0447509 + 0.0258369i
\(846\) −1.25433 1.42855i −0.0431248 0.0491144i
\(847\) 8.93974 10.7494i 0.307173 0.369352i
\(848\) −11.0992 + 41.8275i −0.381148 + 1.43636i
\(849\) −10.2278 + 17.7150i −0.351016 + 0.607978i
\(850\) 8.98545 26.5230i 0.308198 0.909731i
\(851\) −0.539788 + 0.311647i −0.0185037 + 0.0106831i
\(852\) −16.7921 + 21.9388i −0.575287 + 0.751610i
\(853\) 30.8071i 1.05482i −0.849612 0.527408i \(-0.823164\pi\)
0.849612 0.527408i \(-0.176836\pi\)
\(854\) 23.4753 + 12.7270i 0.803308 + 0.435508i
\(855\) 1.88873 0.0645933
\(856\) 0.956420 0.0644313i 0.0326898 0.00220222i
\(857\) −6.84889 11.8626i −0.233954 0.405220i 0.725014 0.688734i \(-0.241833\pi\)
−0.958968 + 0.283514i \(0.908500\pi\)
\(858\) −20.0132 6.78005i −0.683238 0.231467i
\(859\) 7.52869 + 4.34669i 0.256876 + 0.148307i 0.622908 0.782295i \(-0.285951\pi\)
−0.366033 + 0.930602i \(0.619284\pi\)
\(860\) −0.760758 + 5.83309i −0.0259416 + 0.198907i
\(861\) −24.4432 + 9.01819i −0.833022 + 0.307339i
\(862\) −11.6266 13.2414i −0.396002 0.451003i
\(863\) 0.296174 0.512989i 0.0100819 0.0174623i −0.860940 0.508706i \(-0.830124\pi\)
0.871022 + 0.491243i \(0.163457\pi\)
\(864\) −26.1197 17.3385i −0.888610 0.589869i
\(865\) 4.54981 + 7.88049i 0.154698 + 0.267945i
\(866\) −19.6330 + 3.91761i −0.667158 + 0.133126i
\(867\) 1.20854i 0.0410440i
\(868\) 3.11542 + 3.36192i 0.105744 + 0.114111i
\(869\) 1.47389i 0.0499984i
\(870\) 1.96975 + 9.87138i 0.0667808 + 0.334671i
\(871\) −5.30533 9.18911i −0.179764 0.311361i
\(872\) 9.72761 19.8163i 0.329418 0.671063i
\(873\) −3.34889 + 5.80045i −0.113343 + 0.196316i
\(874\) 16.5784 14.5566i 0.560772 0.492385i
\(875\) 2.38839 13.9015i 0.0807422 0.469955i
\(876\) 14.5717 + 1.90046i 0.492333 + 0.0642108i
\(877\) −13.2310 7.63892i −0.446779 0.257948i 0.259690 0.965692i \(-0.416380\pi\)
−0.706469 + 0.707744i \(0.749713\pi\)
\(878\) 2.47713 7.31194i 0.0835992 0.246766i
\(879\) 7.53401 + 13.0493i 0.254116 + 0.440142i
\(880\) 3.70835 3.72635i 0.125009 0.125615i
\(881\) −43.1280 −1.45302 −0.726509 0.687157i \(-0.758859\pi\)
−0.726509 + 0.687157i \(0.758859\pi\)
\(882\) −3.16780 + 4.02371i −0.106665 + 0.135485i
\(883\) 20.2255i 0.680642i 0.940309 + 0.340321i \(0.110536\pi\)
−0.940309 + 0.340321i \(0.889464\pi\)
\(884\) 20.3234 26.5524i 0.683549 0.893054i
\(885\) −2.83152 + 1.63478i −0.0951805 + 0.0549525i
\(886\) 44.6503 + 15.1266i 1.50006 + 0.508188i
\(887\) −10.7820 + 18.6750i −0.362024 + 0.627044i −0.988294 0.152563i \(-0.951247\pi\)
0.626270 + 0.779606i \(0.284581\pi\)
\(888\) 0.982097 0.658799i 0.0329570 0.0221078i
\(889\) 13.8258 + 2.37538i 0.463701 + 0.0796678i
\(890\) −3.73633 + 3.28067i −0.125242 + 0.109968i
\(891\) −14.8668 8.58338i −0.498058 0.287554i
\(892\) −10.7146 + 4.45333i −0.358751 + 0.149109i
\(893\) −14.9465 + 8.62934i −0.500164 + 0.288770i
\(894\) −16.1338 + 3.21936i −0.539594 + 0.107671i
\(895\) −3.04668 −0.101839
\(896\) −10.6080 + 27.9905i −0.354389 + 0.935098i
\(897\) 14.6799 0.490147
\(898\) −37.4062 + 7.46410i −1.24826 + 0.249080i
\(899\) 6.16413 3.55886i 0.205585 0.118695i
\(900\) 4.48814 1.86542i 0.149605 0.0621806i
\(901\) −39.4926 22.8011i −1.31569 0.759614i
\(902\) 15.8783 13.9419i 0.528689 0.464214i
\(903\) −7.72032 20.9254i −0.256916 0.696354i
\(904\) 5.91288 3.96641i 0.196659 0.131921i
\(905\) 2.74447 4.75356i 0.0912293 0.158014i
\(906\) 17.5825 + 5.95659i 0.584139 + 0.197894i
\(907\) 27.3384 15.7838i 0.907757 0.524094i 0.0280482 0.999607i \(-0.491071\pi\)
0.879709 + 0.475513i \(0.157737\pi\)
\(908\) 13.8859 18.1418i 0.460819 0.602058i
\(909\) 8.21720i 0.272547i
\(910\) 3.88846 7.17238i 0.128901 0.237762i
\(911\) 15.6873 0.519744 0.259872 0.965643i \(-0.416320\pi\)
0.259872 + 0.965643i \(0.416320\pi\)
\(912\) −29.5272 + 29.6705i −0.977742 + 0.982488i
\(913\) 1.31429 + 2.27641i 0.0434965 + 0.0753382i
\(914\) −8.66406 + 25.5743i −0.286582 + 0.845924i
\(915\) −5.35363 3.09092i −0.176986 0.102183i
\(916\) 36.6997 + 4.78642i 1.21259 + 0.158148i
\(917\) 20.4217 + 16.9838i 0.674385 + 0.560855i
\(918\) 24.8250 21.7975i 0.819346 0.719425i
\(919\) −7.79407 + 13.4997i −0.257103 + 0.445315i −0.965464 0.260535i \(-0.916101\pi\)
0.708362 + 0.705849i \(0.249434\pi\)
\(920\) −1.60941 + 3.27856i −0.0530607 + 0.108091i
\(921\) −9.62857 16.6772i −0.317272 0.549532i
\(922\) 5.23527 + 26.2365i 0.172414 + 0.864052i
\(923\) 34.7735i 1.14458i
\(924\) −5.88753 + 19.0438i −0.193685 + 0.626495i
\(925\) 1.24659i 0.0409875i
\(926\) 1.19322 0.238098i 0.0392118 0.00782438i
\(927\) −4.85725 8.41300i −0.159533 0.276319i
\(928\) 38.7276 + 25.7078i 1.27130 + 0.843899i
\(929\) −20.6926 + 35.8406i −0.678901 + 1.17589i 0.296411 + 0.955060i \(0.404210\pi\)
−0.975312 + 0.220830i \(0.929123\pi\)
\(930\) −0.700104 0.797341i −0.0229573 0.0261459i
\(931\) 30.1949 + 35.3505i 0.989599 + 1.15857i
\(932\) 2.85844 21.9170i 0.0936315 0.717916i
\(933\) 43.5061 + 25.1183i 1.42433 + 0.822335i
\(934\) −25.0312 8.48006i −0.819047 0.277476i
\(935\) 2.76992 + 4.79764i 0.0905860 + 0.156900i
\(936\) 5.79035 0.390080i 0.189264 0.0127501i
\(937\) −23.9308 −0.781785 −0.390892 0.920436i \(-0.627834\pi\)
−0.390892 + 0.920436i \(0.627834\pi\)
\(938\) −8.53116 + 5.23527i −0.278552 + 0.170938i
\(939\) 33.9137i 1.10673i
\(940\) 1.73654 2.26879i 0.0566398 0.0739997i
\(941\) 33.3285 19.2422i 1.08648 0.627278i 0.153841 0.988096i \(-0.450836\pi\)
0.932636 + 0.360818i \(0.117502\pi\)
\(942\) 5.10271 15.0621i 0.166255 0.490748i
\(943\) −7.33994 + 12.7132i −0.239021 + 0.413997i
\(944\) −3.87244 + 14.5934i −0.126037 + 0.474974i
\(945\) 5.15423 6.19757i 0.167667 0.201607i
\(946\) 11.9354 + 13.5931i 0.388054 + 0.441951i
\(947\) 8.36198 + 4.82779i 0.271728 + 0.156882i 0.629673 0.776861i \(-0.283189\pi\)
−0.357945 + 0.933743i \(0.616522\pi\)
\(948\) −0.745641 1.79399i −0.0242173 0.0582661i
\(949\) −16.0181 + 9.24804i −0.519969 + 0.300204i
\(950\) −8.63440 43.2712i −0.280137 1.40390i
\(951\) 36.4757 1.18280
\(952\) −25.5527 18.4935i −0.828169 0.599378i
\(953\) −19.3777 −0.627704 −0.313852 0.949472i \(-0.601620\pi\)
−0.313852 + 0.949472i \(0.601620\pi\)
\(954\) −1.54880 7.76177i −0.0501441 0.251296i
\(955\) 0.0801777 0.0462906i 0.00259449 0.00149793i
\(956\) −41.7581 + 17.3560i −1.35055 + 0.561334i
\(957\) 26.8071 + 15.4771i 0.866552 + 0.500304i
\(958\) 17.3065 + 19.7101i 0.559146 + 0.636806i
\(959\) 2.97606 + 8.06641i 0.0961020 + 0.260478i
\(960\) 2.62857 6.41169i 0.0848368 0.206936i
\(961\) 15.1249 26.1970i 0.487898 0.845065i
\(962\) −0.477602 + 1.40977i −0.0153985 + 0.0454529i
\(963\) −0.151832 + 0.0876603i −0.00489272 + 0.00282481i
\(964\) −22.1227 16.9328i −0.712524 0.545370i
\(965\) 4.13255i 0.133031i
\(966\) −0.371188 13.8431i −0.0119428 0.445394i
\(967\) 34.8845 1.12181 0.560905 0.827880i \(-0.310453\pi\)
0.560905 + 0.827880i \(0.310453\pi\)
\(968\) 1.00461 + 14.9125i 0.0322894 + 0.479305i
\(969\) −22.0550 38.2004i −0.708510 1.22717i
\(970\) −9.53374 3.22983i −0.306110 0.103704i
\(971\) 38.4767 + 22.2146i 1.23478 + 0.712899i 0.968022 0.250865i \(-0.0807151\pi\)
0.266755 + 0.963764i \(0.414048\pi\)
\(972\) 10.5352 + 1.37402i 0.337917 + 0.0440716i
\(973\) 6.87002 39.9865i 0.220243 1.28191i
\(974\) 21.3843 + 24.3544i 0.685197 + 0.780365i
\(975\) 14.6799 25.4263i 0.470133 0.814294i
\(976\) −27.5563 + 7.45524i −0.882056 + 0.238636i
\(977\) 13.5436 + 23.4581i 0.433297 + 0.750492i 0.997155 0.0753795i \(-0.0240168\pi\)
−0.563858 + 0.825872i \(0.690684\pi\)
\(978\) −15.9730 + 3.18728i −0.510761 + 0.101918i
\(979\) 15.2902i 0.488678i
\(980\) −6.86186 3.48545i −0.219194 0.111339i
\(981\) 4.03742i 0.128905i
\(982\) 6.86276 + 34.3926i 0.219000 + 1.09751i
\(983\) −12.5444 21.7275i −0.400103 0.692999i 0.593635 0.804735i \(-0.297692\pi\)
−0.993738 + 0.111736i \(0.964359\pi\)
\(984\) 12.2735 25.0026i 0.391266 0.797053i
\(985\) 0.369920 0.640721i 0.0117866 0.0204151i
\(986\) −36.8079 + 32.3191i −1.17220 + 1.02925i
\(987\) −1.83433 + 10.6766i −0.0583873 + 0.339839i
\(988\) 6.81369 52.2437i 0.216772 1.66209i
\(989\) −10.8835 6.28360i −0.346076 0.199807i
\(990\) −0.308514 + 0.910663i −0.00980522 + 0.0289428i
\(991\) −8.81972 15.2762i −0.280168 0.485265i 0.691258 0.722608i \(-0.257057\pi\)
−0.971426 + 0.237343i \(0.923723\pi\)
\(992\) −4.89041 0.305675i −0.155271 0.00970519i
\(993\) 46.5068 1.47585
\(994\) −32.7913 + 0.879264i −1.04008 + 0.0278886i
\(995\) 7.01530i 0.222400i
\(996\) 2.75136 + 2.10590i 0.0871801 + 0.0667281i
\(997\) −26.5529 + 15.3303i −0.840939 + 0.485516i −0.857583 0.514345i \(-0.828035\pi\)
0.0166442 + 0.999861i \(0.494702\pi\)
\(998\) −52.5407 17.7997i −1.66315 0.563440i
\(999\) −0.735311 + 1.27360i −0.0232642 + 0.0402948i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 56.2.p.a.37.6 yes 12
3.2 odd 2 504.2.cj.c.37.1 12
4.3 odd 2 224.2.t.a.177.5 12
7.2 even 3 392.2.b.e.197.1 6
7.3 odd 6 392.2.p.g.165.3 12
7.4 even 3 inner 56.2.p.a.53.3 yes 12
7.5 odd 6 392.2.b.f.197.1 6
7.6 odd 2 392.2.p.g.373.6 12
8.3 odd 2 224.2.t.a.177.2 12
8.5 even 2 inner 56.2.p.a.37.3 12
12.11 even 2 2016.2.cr.c.1297.4 12
21.11 odd 6 504.2.cj.c.109.4 12
24.5 odd 2 504.2.cj.c.37.4 12
24.11 even 2 2016.2.cr.c.1297.3 12
28.3 even 6 1568.2.t.g.753.5 12
28.11 odd 6 224.2.t.a.81.2 12
28.19 even 6 1568.2.b.e.785.2 6
28.23 odd 6 1568.2.b.f.785.5 6
28.27 even 2 1568.2.t.g.177.2 12
56.3 even 6 1568.2.t.g.753.2 12
56.5 odd 6 392.2.b.f.197.2 6
56.11 odd 6 224.2.t.a.81.5 12
56.13 odd 2 392.2.p.g.373.3 12
56.19 even 6 1568.2.b.e.785.5 6
56.27 even 2 1568.2.t.g.177.5 12
56.37 even 6 392.2.b.e.197.2 6
56.45 odd 6 392.2.p.g.165.6 12
56.51 odd 6 1568.2.b.f.785.2 6
56.53 even 6 inner 56.2.p.a.53.6 yes 12
84.11 even 6 2016.2.cr.c.1873.3 12
168.11 even 6 2016.2.cr.c.1873.4 12
168.53 odd 6 504.2.cj.c.109.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.p.a.37.3 12 8.5 even 2 inner
56.2.p.a.37.6 yes 12 1.1 even 1 trivial
56.2.p.a.53.3 yes 12 7.4 even 3 inner
56.2.p.a.53.6 yes 12 56.53 even 6 inner
224.2.t.a.81.2 12 28.11 odd 6
224.2.t.a.81.5 12 56.11 odd 6
224.2.t.a.177.2 12 8.3 odd 2
224.2.t.a.177.5 12 4.3 odd 2
392.2.b.e.197.1 6 7.2 even 3
392.2.b.e.197.2 6 56.37 even 6
392.2.b.f.197.1 6 7.5 odd 6
392.2.b.f.197.2 6 56.5 odd 6
392.2.p.g.165.3 12 7.3 odd 6
392.2.p.g.165.6 12 56.45 odd 6
392.2.p.g.373.3 12 56.13 odd 2
392.2.p.g.373.6 12 7.6 odd 2
504.2.cj.c.37.1 12 3.2 odd 2
504.2.cj.c.37.4 12 24.5 odd 2
504.2.cj.c.109.1 12 168.53 odd 6
504.2.cj.c.109.4 12 21.11 odd 6
1568.2.b.e.785.2 6 28.19 even 6
1568.2.b.e.785.5 6 56.19 even 6
1568.2.b.f.785.2 6 56.51 odd 6
1568.2.b.f.785.5 6 28.23 odd 6
1568.2.t.g.177.2 12 28.27 even 2
1568.2.t.g.177.5 12 56.27 even 2
1568.2.t.g.753.2 12 56.3 even 6
1568.2.t.g.753.5 12 28.3 even 6
2016.2.cr.c.1297.3 12 24.11 even 2
2016.2.cr.c.1297.4 12 12.11 even 2
2016.2.cr.c.1873.3 12 84.11 even 6
2016.2.cr.c.1873.4 12 168.11 even 6