Properties

Label 56.10.a.d
Level $56$
Weight $10$
Character orbit 56.a
Self dual yes
Analytic conductor $28.842$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [56,10,Mod(1,56)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(56, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("56.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 56.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.8420068252\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 63x^{2} - 176x + 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{3}\cdot 17 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 21) q^{3} + (\beta_{2} - 2 \beta_1 + 385) q^{5} - 2401 q^{7} + (\beta_{3} + 9 \beta_{2} + \cdots + 12015) q^{9} + ( - 4 \beta_{3} - \beta_{2} + \cdots - 13254) q^{11} + (25 \beta_{2} - 416 \beta_1 + 43183) q^{13}+ \cdots + ( - 10060 \beta_{3} - 267885 \beta_{2} + \cdots - 763698366) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 84 q^{3} + 1540 q^{5} - 9604 q^{7} + 48060 q^{9} - 53016 q^{11} + 172732 q^{13} + 228096 q^{15} - 128352 q^{17} + 85148 q^{19} - 201684 q^{21} - 342368 q^{23} + 4030196 q^{25} + 11284056 q^{27} + 6392064 q^{29}+ \cdots - 3054793464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 63x^{2} - 176x + 28 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -6\nu^{2} + 48\nu + 189 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -32\nu^{3} + 70\nu^{2} + 1552\nu + 2019 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -288\nu^{3} + 1332\nu^{2} + 13248\nu - 3942 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 9\beta_{2} + 117\beta_1 ) / 4896 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 9\beta_{2} + 15\beta _1 + 19278 ) / 612 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 22\beta_{3} - 249\beta_{2} + 1979\beta _1 + 215424 ) / 1632 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.150939
9.06007
−3.74786
−5.46315
0 −175.108 0 2247.52 0 −2401.00 0 10979.9 0
1.2 0 −110.374 0 −1849.79 0 −2401.00 0 −7500.49 0
1.3 0 96.1756 0 −594.465 0 −2401.00 0 −10433.3 0
1.4 0 273.307 0 1736.73 0 −2401.00 0 55013.8 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 56.10.a.d 4
4.b odd 2 1 112.10.a.j 4
7.b odd 2 1 392.10.a.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.10.a.d 4 1.a even 1 1 trivial
112.10.a.j 4 4.b odd 2 1
392.10.a.e 4 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 84T_{3}^{3} - 59868T_{3}^{2} + 362880T_{3} + 508032000 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(56))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 84 T^{3} + \cdots + 508032000 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 4292242257920 \) Copy content Toggle raw display
$7$ \( (T + 2401)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 27\!\cdots\!76 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 85\!\cdots\!64 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 66\!\cdots\!72 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 22\!\cdots\!68 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 79\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 27\!\cdots\!04 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 37\!\cdots\!56 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 25\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 11\!\cdots\!72 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 56\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 16\!\cdots\!12 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 80\!\cdots\!48 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 17\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 10\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 99\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 60\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 16\!\cdots\!12 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 12\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 28\!\cdots\!28 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 46\!\cdots\!76 \) Copy content Toggle raw display
show more
show less