Properties

Label 56.10.a.c.1.3
Level $56$
Weight $10$
Character 56.1
Self dual yes
Analytic conductor $28.842$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [56,10,Mod(1,56)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("56.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(56, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 56.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,70] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.8420068252\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5576x^{2} - 170673x - 607824 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{11}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-38.9670\) of defining polynomial
Character \(\chi\) \(=\) 56.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+128.448 q^{3} -1333.35 q^{5} +2401.00 q^{7} -3184.23 q^{9} -22287.0 q^{11} +185165. q^{13} -171266. q^{15} +351739. q^{17} +1.10798e6 q^{19} +308403. q^{21} -1.99049e6 q^{23} -175297. q^{25} -2.93724e6 q^{27} +3.18384e6 q^{29} +7.42986e6 q^{31} -2.86270e6 q^{33} -3.20138e6 q^{35} +1.11534e7 q^{37} +2.37840e7 q^{39} +2.22681e7 q^{41} +1.98693e7 q^{43} +4.24571e6 q^{45} -569943. q^{47} +5.76480e6 q^{49} +4.51801e7 q^{51} -6.76141e7 q^{53} +2.97164e7 q^{55} +1.42317e8 q^{57} +6.89400e7 q^{59} -9.40859e7 q^{61} -7.64534e6 q^{63} -2.46890e8 q^{65} +7.82459e7 q^{67} -2.55673e8 q^{69} +1.61299e8 q^{71} +1.68908e8 q^{73} -2.25164e7 q^{75} -5.35110e7 q^{77} -3.52815e8 q^{79} -3.14606e8 q^{81} +1.80933e8 q^{83} -4.68993e8 q^{85} +4.08957e8 q^{87} -8.90321e8 q^{89} +4.44581e8 q^{91} +9.54347e8 q^{93} -1.47732e9 q^{95} +5.34984e8 q^{97} +7.09669e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 70 q^{3} + 1022 q^{5} + 9604 q^{7} + 12176 q^{9} - 31476 q^{11} + 11466 q^{13} + 98504 q^{15} + 397012 q^{17} + 246610 q^{19} + 168070 q^{21} + 1976552 q^{23} + 1086512 q^{25} + 3139108 q^{27} + 3718940 q^{29}+ \cdots + 1279453212 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 128.448 0.915546 0.457773 0.889069i \(-0.348647\pi\)
0.457773 + 0.889069i \(0.348647\pi\)
\(4\) 0 0
\(5\) −1333.35 −0.954069 −0.477035 0.878884i \(-0.658288\pi\)
−0.477035 + 0.878884i \(0.658288\pi\)
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 0 0
\(9\) −3184.23 −0.161776
\(10\) 0 0
\(11\) −22287.0 −0.458969 −0.229485 0.973312i \(-0.573704\pi\)
−0.229485 + 0.973312i \(0.573704\pi\)
\(12\) 0 0
\(13\) 185165. 1.79810 0.899049 0.437849i \(-0.144259\pi\)
0.899049 + 0.437849i \(0.144259\pi\)
\(14\) 0 0
\(15\) −171266. −0.873494
\(16\) 0 0
\(17\) 351739. 1.02141 0.510706 0.859755i \(-0.329384\pi\)
0.510706 + 0.859755i \(0.329384\pi\)
\(18\) 0 0
\(19\) 1.10798e6 1.95047 0.975235 0.221169i \(-0.0709873\pi\)
0.975235 + 0.221169i \(0.0709873\pi\)
\(20\) 0 0
\(21\) 308403. 0.346044
\(22\) 0 0
\(23\) −1.99049e6 −1.48315 −0.741573 0.670872i \(-0.765920\pi\)
−0.741573 + 0.670872i \(0.765920\pi\)
\(24\) 0 0
\(25\) −175297. −0.0897518
\(26\) 0 0
\(27\) −2.93724e6 −1.06366
\(28\) 0 0
\(29\) 3.18384e6 0.835912 0.417956 0.908467i \(-0.362747\pi\)
0.417956 + 0.908467i \(0.362747\pi\)
\(30\) 0 0
\(31\) 7.42986e6 1.44495 0.722476 0.691396i \(-0.243004\pi\)
0.722476 + 0.691396i \(0.243004\pi\)
\(32\) 0 0
\(33\) −2.86270e6 −0.420207
\(34\) 0 0
\(35\) −3.20138e6 −0.360604
\(36\) 0 0
\(37\) 1.11534e7 0.978360 0.489180 0.872183i \(-0.337296\pi\)
0.489180 + 0.872183i \(0.337296\pi\)
\(38\) 0 0
\(39\) 2.37840e7 1.64624
\(40\) 0 0
\(41\) 2.22681e7 1.23071 0.615354 0.788251i \(-0.289013\pi\)
0.615354 + 0.788251i \(0.289013\pi\)
\(42\) 0 0
\(43\) 1.98693e7 0.886287 0.443144 0.896451i \(-0.353863\pi\)
0.443144 + 0.896451i \(0.353863\pi\)
\(44\) 0 0
\(45\) 4.24571e6 0.154345
\(46\) 0 0
\(47\) −569943. −0.0170369 −0.00851847 0.999964i \(-0.502712\pi\)
−0.00851847 + 0.999964i \(0.502712\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 0 0
\(51\) 4.51801e7 0.935149
\(52\) 0 0
\(53\) −6.76141e7 −1.17705 −0.588527 0.808478i \(-0.700292\pi\)
−0.588527 + 0.808478i \(0.700292\pi\)
\(54\) 0 0
\(55\) 2.97164e7 0.437889
\(56\) 0 0
\(57\) 1.42317e8 1.78575
\(58\) 0 0
\(59\) 6.89400e7 0.740691 0.370345 0.928894i \(-0.379239\pi\)
0.370345 + 0.928894i \(0.379239\pi\)
\(60\) 0 0
\(61\) −9.40859e7 −0.870042 −0.435021 0.900420i \(-0.643259\pi\)
−0.435021 + 0.900420i \(0.643259\pi\)
\(62\) 0 0
\(63\) −7.64534e6 −0.0611455
\(64\) 0 0
\(65\) −2.46890e8 −1.71551
\(66\) 0 0
\(67\) 7.82459e7 0.474378 0.237189 0.971463i \(-0.423774\pi\)
0.237189 + 0.971463i \(0.423774\pi\)
\(68\) 0 0
\(69\) −2.55673e8 −1.35789
\(70\) 0 0
\(71\) 1.61299e8 0.753302 0.376651 0.926355i \(-0.377076\pi\)
0.376651 + 0.926355i \(0.377076\pi\)
\(72\) 0 0
\(73\) 1.68908e8 0.696142 0.348071 0.937468i \(-0.386837\pi\)
0.348071 + 0.937468i \(0.386837\pi\)
\(74\) 0 0
\(75\) −2.25164e7 −0.0821719
\(76\) 0 0
\(77\) −5.35110e7 −0.173474
\(78\) 0 0
\(79\) −3.52815e8 −1.01912 −0.509559 0.860436i \(-0.670192\pi\)
−0.509559 + 0.860436i \(0.670192\pi\)
\(80\) 0 0
\(81\) −3.14606e8 −0.812053
\(82\) 0 0
\(83\) 1.80933e8 0.418471 0.209235 0.977865i \(-0.432902\pi\)
0.209235 + 0.977865i \(0.432902\pi\)
\(84\) 0 0
\(85\) −4.68993e8 −0.974498
\(86\) 0 0
\(87\) 4.08957e8 0.765316
\(88\) 0 0
\(89\) −8.90321e8 −1.50415 −0.752076 0.659076i \(-0.770947\pi\)
−0.752076 + 0.659076i \(0.770947\pi\)
\(90\) 0 0
\(91\) 4.44581e8 0.679617
\(92\) 0 0
\(93\) 9.54347e8 1.32292
\(94\) 0 0
\(95\) −1.47732e9 −1.86088
\(96\) 0 0
\(97\) 5.34984e8 0.613576 0.306788 0.951778i \(-0.400746\pi\)
0.306788 + 0.951778i \(0.400746\pi\)
\(98\) 0 0
\(99\) 7.09669e7 0.0742501
\(100\) 0 0
\(101\) −1.68385e9 −1.61012 −0.805059 0.593194i \(-0.797867\pi\)
−0.805059 + 0.593194i \(0.797867\pi\)
\(102\) 0 0
\(103\) −3.93045e8 −0.344092 −0.172046 0.985089i \(-0.555038\pi\)
−0.172046 + 0.985089i \(0.555038\pi\)
\(104\) 0 0
\(105\) −4.11209e8 −0.330150
\(106\) 0 0
\(107\) −5.83255e8 −0.430161 −0.215081 0.976596i \(-0.569001\pi\)
−0.215081 + 0.976596i \(0.569001\pi\)
\(108\) 0 0
\(109\) −1.78621e9 −1.21203 −0.606013 0.795455i \(-0.707232\pi\)
−0.606013 + 0.795455i \(0.707232\pi\)
\(110\) 0 0
\(111\) 1.43262e9 0.895733
\(112\) 0 0
\(113\) 9.58596e8 0.553073 0.276537 0.961003i \(-0.410813\pi\)
0.276537 + 0.961003i \(0.410813\pi\)
\(114\) 0 0
\(115\) 2.65402e9 1.41502
\(116\) 0 0
\(117\) −5.89608e8 −0.290889
\(118\) 0 0
\(119\) 8.44526e8 0.386057
\(120\) 0 0
\(121\) −1.86124e9 −0.789347
\(122\) 0 0
\(123\) 2.86028e9 1.12677
\(124\) 0 0
\(125\) 2.83794e9 1.03970
\(126\) 0 0
\(127\) −1.76411e9 −0.601741 −0.300870 0.953665i \(-0.597277\pi\)
−0.300870 + 0.953665i \(0.597277\pi\)
\(128\) 0 0
\(129\) 2.55216e9 0.811437
\(130\) 0 0
\(131\) 6.26391e9 1.85834 0.929169 0.369656i \(-0.120524\pi\)
0.929169 + 0.369656i \(0.120524\pi\)
\(132\) 0 0
\(133\) 2.66025e9 0.737209
\(134\) 0 0
\(135\) 3.91638e9 1.01480
\(136\) 0 0
\(137\) 7.81567e8 0.189550 0.0947750 0.995499i \(-0.469787\pi\)
0.0947750 + 0.995499i \(0.469787\pi\)
\(138\) 0 0
\(139\) −1.55133e9 −0.352484 −0.176242 0.984347i \(-0.556394\pi\)
−0.176242 + 0.984347i \(0.556394\pi\)
\(140\) 0 0
\(141\) −7.32078e7 −0.0155981
\(142\) 0 0
\(143\) −4.12676e9 −0.825271
\(144\) 0 0
\(145\) −4.24518e9 −0.797518
\(146\) 0 0
\(147\) 7.40474e8 0.130792
\(148\) 0 0
\(149\) 7.91062e9 1.31484 0.657419 0.753525i \(-0.271648\pi\)
0.657419 + 0.753525i \(0.271648\pi\)
\(150\) 0 0
\(151\) −4.28928e9 −0.671411 −0.335705 0.941967i \(-0.608975\pi\)
−0.335705 + 0.941967i \(0.608975\pi\)
\(152\) 0 0
\(153\) −1.12002e9 −0.165240
\(154\) 0 0
\(155\) −9.90662e9 −1.37858
\(156\) 0 0
\(157\) 9.14889e9 1.20177 0.600883 0.799337i \(-0.294816\pi\)
0.600883 + 0.799337i \(0.294816\pi\)
\(158\) 0 0
\(159\) −8.68487e9 −1.07765
\(160\) 0 0
\(161\) −4.77916e9 −0.560577
\(162\) 0 0
\(163\) −1.15239e10 −1.27866 −0.639329 0.768933i \(-0.720788\pi\)
−0.639329 + 0.768933i \(0.720788\pi\)
\(164\) 0 0
\(165\) 3.81699e9 0.400907
\(166\) 0 0
\(167\) 1.41989e9 0.141264 0.0706321 0.997502i \(-0.477498\pi\)
0.0706321 + 0.997502i \(0.477498\pi\)
\(168\) 0 0
\(169\) 2.36815e10 2.23315
\(170\) 0 0
\(171\) −3.52806e9 −0.315539
\(172\) 0 0
\(173\) −1.29140e10 −1.09611 −0.548055 0.836442i \(-0.684631\pi\)
−0.548055 + 0.836442i \(0.684631\pi\)
\(174\) 0 0
\(175\) −4.20887e8 −0.0339230
\(176\) 0 0
\(177\) 8.85517e9 0.678136
\(178\) 0 0
\(179\) 1.18543e10 0.863050 0.431525 0.902101i \(-0.357976\pi\)
0.431525 + 0.902101i \(0.357976\pi\)
\(180\) 0 0
\(181\) −1.65050e10 −1.14304 −0.571519 0.820589i \(-0.693646\pi\)
−0.571519 + 0.820589i \(0.693646\pi\)
\(182\) 0 0
\(183\) −1.20851e10 −0.796564
\(184\) 0 0
\(185\) −1.48714e10 −0.933423
\(186\) 0 0
\(187\) −7.83920e9 −0.468797
\(188\) 0 0
\(189\) −7.05231e9 −0.402025
\(190\) 0 0
\(191\) 1.10136e10 0.598795 0.299398 0.954128i \(-0.403214\pi\)
0.299398 + 0.954128i \(0.403214\pi\)
\(192\) 0 0
\(193\) 2.86468e10 1.48617 0.743083 0.669199i \(-0.233363\pi\)
0.743083 + 0.669199i \(0.233363\pi\)
\(194\) 0 0
\(195\) −3.17124e10 −1.57063
\(196\) 0 0
\(197\) −2.40217e10 −1.13633 −0.568166 0.822914i \(-0.692347\pi\)
−0.568166 + 0.822914i \(0.692347\pi\)
\(198\) 0 0
\(199\) −3.60955e9 −0.163160 −0.0815801 0.996667i \(-0.525997\pi\)
−0.0815801 + 0.996667i \(0.525997\pi\)
\(200\) 0 0
\(201\) 1.00505e10 0.434315
\(202\) 0 0
\(203\) 7.64441e9 0.315945
\(204\) 0 0
\(205\) −2.96912e10 −1.17418
\(206\) 0 0
\(207\) 6.33818e9 0.239937
\(208\) 0 0
\(209\) −2.46934e10 −0.895206
\(210\) 0 0
\(211\) −1.67653e10 −0.582292 −0.291146 0.956679i \(-0.594037\pi\)
−0.291146 + 0.956679i \(0.594037\pi\)
\(212\) 0 0
\(213\) 2.07185e10 0.689682
\(214\) 0 0
\(215\) −2.64928e10 −0.845579
\(216\) 0 0
\(217\) 1.78391e10 0.546140
\(218\) 0 0
\(219\) 2.16958e10 0.637350
\(220\) 0 0
\(221\) 6.51297e10 1.83660
\(222\) 0 0
\(223\) 4.85947e10 1.31588 0.657942 0.753069i \(-0.271427\pi\)
0.657942 + 0.753069i \(0.271427\pi\)
\(224\) 0 0
\(225\) 5.58185e8 0.0145197
\(226\) 0 0
\(227\) 1.54430e10 0.386025 0.193013 0.981196i \(-0.438174\pi\)
0.193013 + 0.981196i \(0.438174\pi\)
\(228\) 0 0
\(229\) −6.16550e10 −1.48152 −0.740761 0.671768i \(-0.765535\pi\)
−0.740761 + 0.671768i \(0.765535\pi\)
\(230\) 0 0
\(231\) −6.87335e9 −0.158823
\(232\) 0 0
\(233\) 1.58392e10 0.352073 0.176037 0.984384i \(-0.443672\pi\)
0.176037 + 0.984384i \(0.443672\pi\)
\(234\) 0 0
\(235\) 7.59935e8 0.0162544
\(236\) 0 0
\(237\) −4.53182e10 −0.933050
\(238\) 0 0
\(239\) −3.09957e10 −0.614484 −0.307242 0.951631i \(-0.599406\pi\)
−0.307242 + 0.951631i \(0.599406\pi\)
\(240\) 0 0
\(241\) 5.28203e10 1.00861 0.504306 0.863525i \(-0.331748\pi\)
0.504306 + 0.863525i \(0.331748\pi\)
\(242\) 0 0
\(243\) 1.74033e10 0.320187
\(244\) 0 0
\(245\) −7.68651e9 −0.136296
\(246\) 0 0
\(247\) 2.05158e11 3.50714
\(248\) 0 0
\(249\) 2.32403e10 0.383129
\(250\) 0 0
\(251\) 1.86620e10 0.296775 0.148387 0.988929i \(-0.452592\pi\)
0.148387 + 0.988929i \(0.452592\pi\)
\(252\) 0 0
\(253\) 4.43619e10 0.680719
\(254\) 0 0
\(255\) −6.02409e10 −0.892197
\(256\) 0 0
\(257\) −3.71525e10 −0.531237 −0.265619 0.964078i \(-0.585576\pi\)
−0.265619 + 0.964078i \(0.585576\pi\)
\(258\) 0 0
\(259\) 2.67793e10 0.369785
\(260\) 0 0
\(261\) −1.01381e10 −0.135230
\(262\) 0 0
\(263\) 7.63904e10 0.984550 0.492275 0.870440i \(-0.336165\pi\)
0.492275 + 0.870440i \(0.336165\pi\)
\(264\) 0 0
\(265\) 9.01535e10 1.12299
\(266\) 0 0
\(267\) −1.14360e11 −1.37712
\(268\) 0 0
\(269\) −1.97181e10 −0.229604 −0.114802 0.993388i \(-0.536623\pi\)
−0.114802 + 0.993388i \(0.536623\pi\)
\(270\) 0 0
\(271\) 4.51685e10 0.508714 0.254357 0.967110i \(-0.418136\pi\)
0.254357 + 0.967110i \(0.418136\pi\)
\(272\) 0 0
\(273\) 5.71053e10 0.622220
\(274\) 0 0
\(275\) 3.90683e9 0.0411933
\(276\) 0 0
\(277\) −1.19051e11 −1.21500 −0.607498 0.794321i \(-0.707827\pi\)
−0.607498 + 0.794321i \(0.707827\pi\)
\(278\) 0 0
\(279\) −2.36584e10 −0.233758
\(280\) 0 0
\(281\) −1.45380e11 −1.39099 −0.695496 0.718530i \(-0.744815\pi\)
−0.695496 + 0.718530i \(0.744815\pi\)
\(282\) 0 0
\(283\) 1.18157e11 1.09502 0.547508 0.836800i \(-0.315576\pi\)
0.547508 + 0.836800i \(0.315576\pi\)
\(284\) 0 0
\(285\) −1.89759e11 −1.70372
\(286\) 0 0
\(287\) 5.34656e10 0.465164
\(288\) 0 0
\(289\) 5.13275e9 0.0432822
\(290\) 0 0
\(291\) 6.87174e10 0.561757
\(292\) 0 0
\(293\) −1.09887e11 −0.871050 −0.435525 0.900177i \(-0.643437\pi\)
−0.435525 + 0.900177i \(0.643437\pi\)
\(294\) 0 0
\(295\) −9.19212e10 −0.706670
\(296\) 0 0
\(297\) 6.54621e10 0.488187
\(298\) 0 0
\(299\) −3.68568e11 −2.66684
\(300\) 0 0
\(301\) 4.77062e10 0.334985
\(302\) 0 0
\(303\) −2.16287e11 −1.47414
\(304\) 0 0
\(305\) 1.25450e11 0.830081
\(306\) 0 0
\(307\) 3.01613e10 0.193788 0.0968940 0.995295i \(-0.469109\pi\)
0.0968940 + 0.995295i \(0.469109\pi\)
\(308\) 0 0
\(309\) −5.04857e10 −0.315032
\(310\) 0 0
\(311\) 2.23160e11 1.35268 0.676339 0.736590i \(-0.263565\pi\)
0.676339 + 0.736590i \(0.263565\pi\)
\(312\) 0 0
\(313\) −2.17968e11 −1.28364 −0.641821 0.766854i \(-0.721821\pi\)
−0.641821 + 0.766854i \(0.721821\pi\)
\(314\) 0 0
\(315\) 1.01939e10 0.0583371
\(316\) 0 0
\(317\) 7.47610e9 0.0415823 0.0207912 0.999784i \(-0.493381\pi\)
0.0207912 + 0.999784i \(0.493381\pi\)
\(318\) 0 0
\(319\) −7.09582e10 −0.383658
\(320\) 0 0
\(321\) −7.49176e10 −0.393832
\(322\) 0 0
\(323\) 3.89719e11 1.99223
\(324\) 0 0
\(325\) −3.24587e10 −0.161383
\(326\) 0 0
\(327\) −2.29434e11 −1.10967
\(328\) 0 0
\(329\) −1.36843e9 −0.00643935
\(330\) 0 0
\(331\) 3.15127e11 1.44298 0.721489 0.692426i \(-0.243458\pi\)
0.721489 + 0.692426i \(0.243458\pi\)
\(332\) 0 0
\(333\) −3.55150e10 −0.158275
\(334\) 0 0
\(335\) −1.04329e11 −0.452590
\(336\) 0 0
\(337\) 1.49538e11 0.631565 0.315782 0.948832i \(-0.397733\pi\)
0.315782 + 0.948832i \(0.397733\pi\)
\(338\) 0 0
\(339\) 1.23129e11 0.506364
\(340\) 0 0
\(341\) −1.65589e11 −0.663188
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 0 0
\(345\) 3.40902e11 1.29552
\(346\) 0 0
\(347\) −4.08977e11 −1.51431 −0.757157 0.653233i \(-0.773412\pi\)
−0.757157 + 0.653233i \(0.773412\pi\)
\(348\) 0 0
\(349\) 3.94310e10 0.142273 0.0711366 0.997467i \(-0.477337\pi\)
0.0711366 + 0.997467i \(0.477337\pi\)
\(350\) 0 0
\(351\) −5.43873e11 −1.91256
\(352\) 0 0
\(353\) −9.27700e10 −0.317996 −0.158998 0.987279i \(-0.550826\pi\)
−0.158998 + 0.987279i \(0.550826\pi\)
\(354\) 0 0
\(355\) −2.15068e11 −0.718702
\(356\) 0 0
\(357\) 1.08477e11 0.353453
\(358\) 0 0
\(359\) −6.16203e10 −0.195794 −0.0978969 0.995197i \(-0.531212\pi\)
−0.0978969 + 0.995197i \(0.531212\pi\)
\(360\) 0 0
\(361\) 9.04925e11 2.80434
\(362\) 0 0
\(363\) −2.39072e11 −0.722684
\(364\) 0 0
\(365\) −2.25214e11 −0.664168
\(366\) 0 0
\(367\) 3.96168e11 1.13994 0.569969 0.821666i \(-0.306955\pi\)
0.569969 + 0.821666i \(0.306955\pi\)
\(368\) 0 0
\(369\) −7.09067e10 −0.199099
\(370\) 0 0
\(371\) −1.62342e11 −0.444884
\(372\) 0 0
\(373\) 1.29472e11 0.346327 0.173164 0.984893i \(-0.444601\pi\)
0.173164 + 0.984893i \(0.444601\pi\)
\(374\) 0 0
\(375\) 3.64526e11 0.951892
\(376\) 0 0
\(377\) 5.89535e11 1.50305
\(378\) 0 0
\(379\) 6.61542e10 0.164695 0.0823476 0.996604i \(-0.473758\pi\)
0.0823476 + 0.996604i \(0.473758\pi\)
\(380\) 0 0
\(381\) −2.26596e11 −0.550921
\(382\) 0 0
\(383\) −2.57103e11 −0.610538 −0.305269 0.952266i \(-0.598746\pi\)
−0.305269 + 0.952266i \(0.598746\pi\)
\(384\) 0 0
\(385\) 7.13490e10 0.165506
\(386\) 0 0
\(387\) −6.32685e10 −0.143380
\(388\) 0 0
\(389\) −3.51966e11 −0.779341 −0.389670 0.920954i \(-0.627411\pi\)
−0.389670 + 0.920954i \(0.627411\pi\)
\(390\) 0 0
\(391\) −7.00133e11 −1.51490
\(392\) 0 0
\(393\) 8.04584e11 1.70139
\(394\) 0 0
\(395\) 4.70426e11 0.972310
\(396\) 0 0
\(397\) 6.13801e10 0.124014 0.0620070 0.998076i \(-0.480250\pi\)
0.0620070 + 0.998076i \(0.480250\pi\)
\(398\) 0 0
\(399\) 3.41703e11 0.674948
\(400\) 0 0
\(401\) 6.84492e11 1.32196 0.660981 0.750403i \(-0.270141\pi\)
0.660981 + 0.750403i \(0.270141\pi\)
\(402\) 0 0
\(403\) 1.37575e12 2.59816
\(404\) 0 0
\(405\) 4.19480e11 0.774755
\(406\) 0 0
\(407\) −2.48575e11 −0.449037
\(408\) 0 0
\(409\) 5.35688e11 0.946580 0.473290 0.880907i \(-0.343066\pi\)
0.473290 + 0.880907i \(0.343066\pi\)
\(410\) 0 0
\(411\) 1.00390e11 0.173542
\(412\) 0 0
\(413\) 1.65525e11 0.279955
\(414\) 0 0
\(415\) −2.41247e11 −0.399250
\(416\) 0 0
\(417\) −1.99265e11 −0.322715
\(418\) 0 0
\(419\) −8.57177e11 −1.35865 −0.679324 0.733838i \(-0.737727\pi\)
−0.679324 + 0.733838i \(0.737727\pi\)
\(420\) 0 0
\(421\) −1.06825e12 −1.65731 −0.828655 0.559759i \(-0.810894\pi\)
−0.828655 + 0.559759i \(0.810894\pi\)
\(422\) 0 0
\(423\) 1.81483e9 0.00275616
\(424\) 0 0
\(425\) −6.16587e10 −0.0916736
\(426\) 0 0
\(427\) −2.25900e11 −0.328845
\(428\) 0 0
\(429\) −5.30072e11 −0.755574
\(430\) 0 0
\(431\) −1.82289e11 −0.254455 −0.127228 0.991874i \(-0.540608\pi\)
−0.127228 + 0.991874i \(0.540608\pi\)
\(432\) 0 0
\(433\) −3.16598e11 −0.432826 −0.216413 0.976302i \(-0.569436\pi\)
−0.216413 + 0.976302i \(0.569436\pi\)
\(434\) 0 0
\(435\) −5.45283e11 −0.730164
\(436\) 0 0
\(437\) −2.20541e12 −2.89283
\(438\) 0 0
\(439\) 1.35181e12 1.73710 0.868552 0.495597i \(-0.165051\pi\)
0.868552 + 0.495597i \(0.165051\pi\)
\(440\) 0 0
\(441\) −1.83565e10 −0.0231108
\(442\) 0 0
\(443\) 8.80722e11 1.08648 0.543240 0.839577i \(-0.317197\pi\)
0.543240 + 0.839577i \(0.317197\pi\)
\(444\) 0 0
\(445\) 1.18711e12 1.43507
\(446\) 0 0
\(447\) 1.01610e12 1.20379
\(448\) 0 0
\(449\) −1.53710e12 −1.78481 −0.892406 0.451233i \(-0.850984\pi\)
−0.892406 + 0.451233i \(0.850984\pi\)
\(450\) 0 0
\(451\) −4.96287e11 −0.564857
\(452\) 0 0
\(453\) −5.50947e11 −0.614707
\(454\) 0 0
\(455\) −5.92782e11 −0.648402
\(456\) 0 0
\(457\) −6.06859e9 −0.00650826 −0.00325413 0.999995i \(-0.501036\pi\)
−0.00325413 + 0.999995i \(0.501036\pi\)
\(458\) 0 0
\(459\) −1.03314e12 −1.08643
\(460\) 0 0
\(461\) 1.63752e11 0.168862 0.0844309 0.996429i \(-0.473093\pi\)
0.0844309 + 0.996429i \(0.473093\pi\)
\(462\) 0 0
\(463\) 3.53914e10 0.0357918 0.0178959 0.999840i \(-0.494303\pi\)
0.0178959 + 0.999840i \(0.494303\pi\)
\(464\) 0 0
\(465\) −1.27248e12 −1.26216
\(466\) 0 0
\(467\) −1.34951e12 −1.31295 −0.656476 0.754347i \(-0.727954\pi\)
−0.656476 + 0.754347i \(0.727954\pi\)
\(468\) 0 0
\(469\) 1.87868e11 0.179298
\(470\) 0 0
\(471\) 1.17515e12 1.10027
\(472\) 0 0
\(473\) −4.42826e11 −0.406779
\(474\) 0 0
\(475\) −1.94225e11 −0.175058
\(476\) 0 0
\(477\) 2.15299e11 0.190419
\(478\) 0 0
\(479\) 5.48236e11 0.475837 0.237918 0.971285i \(-0.423535\pi\)
0.237918 + 0.971285i \(0.423535\pi\)
\(480\) 0 0
\(481\) 2.06521e12 1.75919
\(482\) 0 0
\(483\) −6.13871e11 −0.513234
\(484\) 0 0
\(485\) −7.13323e11 −0.585394
\(486\) 0 0
\(487\) −1.53461e12 −1.23628 −0.618139 0.786069i \(-0.712113\pi\)
−0.618139 + 0.786069i \(0.712113\pi\)
\(488\) 0 0
\(489\) −1.48021e12 −1.17067
\(490\) 0 0
\(491\) 1.44127e12 1.11913 0.559563 0.828788i \(-0.310969\pi\)
0.559563 + 0.828788i \(0.310969\pi\)
\(492\) 0 0
\(493\) 1.11988e12 0.853811
\(494\) 0 0
\(495\) −9.46238e10 −0.0708398
\(496\) 0 0
\(497\) 3.87279e11 0.284721
\(498\) 0 0
\(499\) −1.37787e12 −0.994849 −0.497425 0.867507i \(-0.665721\pi\)
−0.497425 + 0.867507i \(0.665721\pi\)
\(500\) 0 0
\(501\) 1.82382e11 0.129334
\(502\) 0 0
\(503\) −6.19613e10 −0.0431583 −0.0215792 0.999767i \(-0.506869\pi\)
−0.0215792 + 0.999767i \(0.506869\pi\)
\(504\) 0 0
\(505\) 2.24517e12 1.53616
\(506\) 0 0
\(507\) 3.04183e12 2.04455
\(508\) 0 0
\(509\) −1.28353e12 −0.847568 −0.423784 0.905763i \(-0.639298\pi\)
−0.423784 + 0.905763i \(0.639298\pi\)
\(510\) 0 0
\(511\) 4.05548e11 0.263117
\(512\) 0 0
\(513\) −3.25439e12 −2.07464
\(514\) 0 0
\(515\) 5.24068e11 0.328288
\(516\) 0 0
\(517\) 1.27023e10 0.00781943
\(518\) 0 0
\(519\) −1.65877e12 −1.00354
\(520\) 0 0
\(521\) −2.47356e12 −1.47080 −0.735398 0.677636i \(-0.763005\pi\)
−0.735398 + 0.677636i \(0.763005\pi\)
\(522\) 0 0
\(523\) 1.16606e12 0.681499 0.340749 0.940154i \(-0.389319\pi\)
0.340749 + 0.940154i \(0.389319\pi\)
\(524\) 0 0
\(525\) −5.40619e10 −0.0310581
\(526\) 0 0
\(527\) 2.61338e12 1.47589
\(528\) 0 0
\(529\) 2.16089e12 1.19972
\(530\) 0 0
\(531\) −2.19521e11 −0.119826
\(532\) 0 0
\(533\) 4.12326e12 2.21293
\(534\) 0 0
\(535\) 7.77684e11 0.410403
\(536\) 0 0
\(537\) 1.52265e12 0.790162
\(538\) 0 0
\(539\) −1.28480e11 −0.0655670
\(540\) 0 0
\(541\) −1.92562e12 −0.966457 −0.483229 0.875494i \(-0.660536\pi\)
−0.483229 + 0.875494i \(0.660536\pi\)
\(542\) 0 0
\(543\) −2.12002e12 −1.04650
\(544\) 0 0
\(545\) 2.38164e12 1.15636
\(546\) 0 0
\(547\) 7.68308e11 0.366938 0.183469 0.983026i \(-0.441267\pi\)
0.183469 + 0.983026i \(0.441267\pi\)
\(548\) 0 0
\(549\) 2.99592e11 0.140752
\(550\) 0 0
\(551\) 3.52762e12 1.63042
\(552\) 0 0
\(553\) −8.47108e11 −0.385191
\(554\) 0 0
\(555\) −1.91019e12 −0.854592
\(556\) 0 0
\(557\) −3.12571e12 −1.37594 −0.687971 0.725739i \(-0.741498\pi\)
−0.687971 + 0.725739i \(0.741498\pi\)
\(558\) 0 0
\(559\) 3.67909e12 1.59363
\(560\) 0 0
\(561\) −1.00693e12 −0.429205
\(562\) 0 0
\(563\) 9.23093e11 0.387220 0.193610 0.981079i \(-0.437980\pi\)
0.193610 + 0.981079i \(0.437980\pi\)
\(564\) 0 0
\(565\) −1.27815e12 −0.527670
\(566\) 0 0
\(567\) −7.55369e11 −0.306927
\(568\) 0 0
\(569\) −2.57947e11 −0.103163 −0.0515816 0.998669i \(-0.516426\pi\)
−0.0515816 + 0.998669i \(0.516426\pi\)
\(570\) 0 0
\(571\) −4.59120e12 −1.80744 −0.903720 0.428124i \(-0.859175\pi\)
−0.903720 + 0.428124i \(0.859175\pi\)
\(572\) 0 0
\(573\) 1.41467e12 0.548225
\(574\) 0 0
\(575\) 3.48926e11 0.133115
\(576\) 0 0
\(577\) −2.30955e12 −0.867434 −0.433717 0.901049i \(-0.642798\pi\)
−0.433717 + 0.901049i \(0.642798\pi\)
\(578\) 0 0
\(579\) 3.67961e12 1.36065
\(580\) 0 0
\(581\) 4.34419e11 0.158167
\(582\) 0 0
\(583\) 1.50691e12 0.540231
\(584\) 0 0
\(585\) 7.86155e11 0.277528
\(586\) 0 0
\(587\) −9.87038e11 −0.343133 −0.171566 0.985173i \(-0.554883\pi\)
−0.171566 + 0.985173i \(0.554883\pi\)
\(588\) 0 0
\(589\) 8.23212e12 2.81834
\(590\) 0 0
\(591\) −3.08552e12 −1.04036
\(592\) 0 0
\(593\) −7.39847e11 −0.245695 −0.122847 0.992426i \(-0.539203\pi\)
−0.122847 + 0.992426i \(0.539203\pi\)
\(594\) 0 0
\(595\) −1.12605e12 −0.368326
\(596\) 0 0
\(597\) −4.63638e11 −0.149381
\(598\) 0 0
\(599\) −7.64932e11 −0.242774 −0.121387 0.992605i \(-0.538734\pi\)
−0.121387 + 0.992605i \(0.538734\pi\)
\(600\) 0 0
\(601\) 2.33332e12 0.729524 0.364762 0.931101i \(-0.381150\pi\)
0.364762 + 0.931101i \(0.381150\pi\)
\(602\) 0 0
\(603\) −2.49153e11 −0.0767430
\(604\) 0 0
\(605\) 2.48169e12 0.753092
\(606\) 0 0
\(607\) −2.30933e12 −0.690459 −0.345229 0.938518i \(-0.612199\pi\)
−0.345229 + 0.938518i \(0.612199\pi\)
\(608\) 0 0
\(609\) 9.81905e11 0.289262
\(610\) 0 0
\(611\) −1.05533e11 −0.0306341
\(612\) 0 0
\(613\) −4.10547e12 −1.17433 −0.587166 0.809467i \(-0.699756\pi\)
−0.587166 + 0.809467i \(0.699756\pi\)
\(614\) 0 0
\(615\) −3.81376e12 −1.07502
\(616\) 0 0
\(617\) 2.03654e12 0.565730 0.282865 0.959160i \(-0.408715\pi\)
0.282865 + 0.959160i \(0.408715\pi\)
\(618\) 0 0
\(619\) 3.96655e12 1.08594 0.542970 0.839752i \(-0.317300\pi\)
0.542970 + 0.839752i \(0.317300\pi\)
\(620\) 0 0
\(621\) 5.84654e12 1.57756
\(622\) 0 0
\(623\) −2.13766e12 −0.568516
\(624\) 0 0
\(625\) −3.44159e12 −0.902193
\(626\) 0 0
\(627\) −3.17181e12 −0.819602
\(628\) 0 0
\(629\) 3.92308e12 0.999308
\(630\) 0 0
\(631\) −7.21178e12 −1.81097 −0.905483 0.424382i \(-0.860492\pi\)
−0.905483 + 0.424382i \(0.860492\pi\)
\(632\) 0 0
\(633\) −2.15346e12 −0.533115
\(634\) 0 0
\(635\) 2.35218e12 0.574102
\(636\) 0 0
\(637\) 1.06744e12 0.256871
\(638\) 0 0
\(639\) −5.13614e11 −0.121866
\(640\) 0 0
\(641\) −5.26172e11 −0.123102 −0.0615512 0.998104i \(-0.519605\pi\)
−0.0615512 + 0.998104i \(0.519605\pi\)
\(642\) 0 0
\(643\) −1.12420e12 −0.259355 −0.129677 0.991556i \(-0.541394\pi\)
−0.129677 + 0.991556i \(0.541394\pi\)
\(644\) 0 0
\(645\) −3.40293e12 −0.774167
\(646\) 0 0
\(647\) −4.10610e12 −0.921214 −0.460607 0.887604i \(-0.652368\pi\)
−0.460607 + 0.887604i \(0.652368\pi\)
\(648\) 0 0
\(649\) −1.53646e12 −0.339954
\(650\) 0 0
\(651\) 2.29139e12 0.500016
\(652\) 0 0
\(653\) −6.06598e12 −1.30554 −0.652772 0.757555i \(-0.726394\pi\)
−0.652772 + 0.757555i \(0.726394\pi\)
\(654\) 0 0
\(655\) −8.35200e12 −1.77298
\(656\) 0 0
\(657\) −5.37843e11 −0.112619
\(658\) 0 0
\(659\) −5.94402e12 −1.22771 −0.613856 0.789418i \(-0.710382\pi\)
−0.613856 + 0.789418i \(0.710382\pi\)
\(660\) 0 0
\(661\) −8.08693e12 −1.64770 −0.823848 0.566811i \(-0.808177\pi\)
−0.823848 + 0.566811i \(0.808177\pi\)
\(662\) 0 0
\(663\) 8.36575e12 1.68149
\(664\) 0 0
\(665\) −3.54705e12 −0.703348
\(666\) 0 0
\(667\) −6.33740e12 −1.23978
\(668\) 0 0
\(669\) 6.24187e12 1.20475
\(670\) 0 0
\(671\) 2.09689e12 0.399323
\(672\) 0 0
\(673\) 2.55058e12 0.479260 0.239630 0.970864i \(-0.422974\pi\)
0.239630 + 0.970864i \(0.422974\pi\)
\(674\) 0 0
\(675\) 5.14888e11 0.0954654
\(676\) 0 0
\(677\) 5.64109e12 1.03208 0.516041 0.856564i \(-0.327405\pi\)
0.516041 + 0.856564i \(0.327405\pi\)
\(678\) 0 0
\(679\) 1.28450e12 0.231910
\(680\) 0 0
\(681\) 1.98362e12 0.353424
\(682\) 0 0
\(683\) 1.20725e12 0.212277 0.106138 0.994351i \(-0.466151\pi\)
0.106138 + 0.994351i \(0.466151\pi\)
\(684\) 0 0
\(685\) −1.04210e12 −0.180844
\(686\) 0 0
\(687\) −7.91943e12 −1.35640
\(688\) 0 0
\(689\) −1.25198e13 −2.11646
\(690\) 0 0
\(691\) 5.21659e12 0.870433 0.435216 0.900326i \(-0.356672\pi\)
0.435216 + 0.900326i \(0.356672\pi\)
\(692\) 0 0
\(693\) 1.70391e11 0.0280639
\(694\) 0 0
\(695\) 2.06848e12 0.336294
\(696\) 0 0
\(697\) 7.83256e12 1.25706
\(698\) 0 0
\(699\) 2.03451e12 0.322339
\(700\) 0 0
\(701\) 1.25403e13 1.96144 0.980722 0.195407i \(-0.0626027\pi\)
0.980722 + 0.195407i \(0.0626027\pi\)
\(702\) 0 0
\(703\) 1.23577e13 1.90826
\(704\) 0 0
\(705\) 9.76118e10 0.0148817
\(706\) 0 0
\(707\) −4.04293e12 −0.608568
\(708\) 0 0
\(709\) 8.32940e12 1.23796 0.618979 0.785408i \(-0.287547\pi\)
0.618979 + 0.785408i \(0.287547\pi\)
\(710\) 0 0
\(711\) 1.12344e12 0.164869
\(712\) 0 0
\(713\) −1.47890e13 −2.14307
\(714\) 0 0
\(715\) 5.50242e12 0.787366
\(716\) 0 0
\(717\) −3.98132e12 −0.562589
\(718\) 0 0
\(719\) 6.67548e12 0.931542 0.465771 0.884905i \(-0.345777\pi\)
0.465771 + 0.884905i \(0.345777\pi\)
\(720\) 0 0
\(721\) −9.43702e11 −0.130055
\(722\) 0 0
\(723\) 6.78464e12 0.923431
\(724\) 0 0
\(725\) −5.58117e11 −0.0750247
\(726\) 0 0
\(727\) −5.59131e12 −0.742350 −0.371175 0.928563i \(-0.621045\pi\)
−0.371175 + 0.928563i \(0.621045\pi\)
\(728\) 0 0
\(729\) 8.42780e12 1.10520
\(730\) 0 0
\(731\) 6.98882e12 0.905264
\(732\) 0 0
\(733\) −7.00621e12 −0.896427 −0.448214 0.893927i \(-0.647940\pi\)
−0.448214 + 0.893927i \(0.647940\pi\)
\(734\) 0 0
\(735\) −9.87313e11 −0.124785
\(736\) 0 0
\(737\) −1.74386e12 −0.217725
\(738\) 0 0
\(739\) −1.44169e12 −0.177817 −0.0889085 0.996040i \(-0.528338\pi\)
−0.0889085 + 0.996040i \(0.528338\pi\)
\(740\) 0 0
\(741\) 2.63521e13 3.21094
\(742\) 0 0
\(743\) 1.25229e13 1.50749 0.753746 0.657166i \(-0.228245\pi\)
0.753746 + 0.657166i \(0.228245\pi\)
\(744\) 0 0
\(745\) −1.05476e13 −1.25445
\(746\) 0 0
\(747\) −5.76132e11 −0.0676985
\(748\) 0 0
\(749\) −1.40039e12 −0.162586
\(750\) 0 0
\(751\) −1.02604e13 −1.17702 −0.588509 0.808491i \(-0.700285\pi\)
−0.588509 + 0.808491i \(0.700285\pi\)
\(752\) 0 0
\(753\) 2.39709e12 0.271711
\(754\) 0 0
\(755\) 5.71912e12 0.640572
\(756\) 0 0
\(757\) −1.27370e13 −1.40973 −0.704865 0.709342i \(-0.748992\pi\)
−0.704865 + 0.709342i \(0.748992\pi\)
\(758\) 0 0
\(759\) 5.69818e12 0.623229
\(760\) 0 0
\(761\) −1.58031e13 −1.70810 −0.854048 0.520194i \(-0.825860\pi\)
−0.854048 + 0.520194i \(0.825860\pi\)
\(762\) 0 0
\(763\) −4.28868e12 −0.458103
\(764\) 0 0
\(765\) 1.49338e12 0.157650
\(766\) 0 0
\(767\) 1.27652e13 1.33183
\(768\) 0 0
\(769\) −1.03153e13 −1.06369 −0.531844 0.846843i \(-0.678501\pi\)
−0.531844 + 0.846843i \(0.678501\pi\)
\(770\) 0 0
\(771\) −4.77214e12 −0.486372
\(772\) 0 0
\(773\) 1.24848e13 1.25769 0.628843 0.777532i \(-0.283529\pi\)
0.628843 + 0.777532i \(0.283529\pi\)
\(774\) 0 0
\(775\) −1.30243e12 −0.129687
\(776\) 0 0
\(777\) 3.43973e12 0.338555
\(778\) 0 0
\(779\) 2.46725e13 2.40046
\(780\) 0 0
\(781\) −3.59486e12 −0.345742
\(782\) 0 0
\(783\) −9.35171e12 −0.889126
\(784\) 0 0
\(785\) −1.21987e13 −1.14657
\(786\) 0 0
\(787\) −6.89443e12 −0.640638 −0.320319 0.947310i \(-0.603790\pi\)
−0.320319 + 0.947310i \(0.603790\pi\)
\(788\) 0 0
\(789\) 9.81215e12 0.901400
\(790\) 0 0
\(791\) 2.30159e12 0.209042
\(792\) 0 0
\(793\) −1.74214e13 −1.56442
\(794\) 0 0
\(795\) 1.15800e13 1.02815
\(796\) 0 0
\(797\) −8.25529e12 −0.724719 −0.362360 0.932038i \(-0.618029\pi\)
−0.362360 + 0.932038i \(0.618029\pi\)
\(798\) 0 0
\(799\) −2.00472e11 −0.0174017
\(800\) 0 0
\(801\) 2.83499e12 0.243335
\(802\) 0 0
\(803\) −3.76445e12 −0.319508
\(804\) 0 0
\(805\) 6.37230e12 0.534829
\(806\) 0 0
\(807\) −2.53274e12 −0.210213
\(808\) 0 0
\(809\) 1.13656e13 0.932875 0.466438 0.884554i \(-0.345537\pi\)
0.466438 + 0.884554i \(0.345537\pi\)
\(810\) 0 0
\(811\) −2.28367e13 −1.85370 −0.926849 0.375434i \(-0.877494\pi\)
−0.926849 + 0.375434i \(0.877494\pi\)
\(812\) 0 0
\(813\) 5.80178e12 0.465751
\(814\) 0 0
\(815\) 1.53654e13 1.21993
\(816\) 0 0
\(817\) 2.20147e13 1.72868
\(818\) 0 0
\(819\) −1.41565e12 −0.109946
\(820\) 0 0
\(821\) −1.17716e13 −0.904260 −0.452130 0.891952i \(-0.649336\pi\)
−0.452130 + 0.891952i \(0.649336\pi\)
\(822\) 0 0
\(823\) 2.41292e12 0.183334 0.0916671 0.995790i \(-0.470780\pi\)
0.0916671 + 0.995790i \(0.470780\pi\)
\(824\) 0 0
\(825\) 5.01822e11 0.0377144
\(826\) 0 0
\(827\) 8.35379e11 0.0621024 0.0310512 0.999518i \(-0.490115\pi\)
0.0310512 + 0.999518i \(0.490115\pi\)
\(828\) 0 0
\(829\) 6.81892e12 0.501441 0.250721 0.968059i \(-0.419332\pi\)
0.250721 + 0.968059i \(0.419332\pi\)
\(830\) 0 0
\(831\) −1.52918e13 −1.11238
\(832\) 0 0
\(833\) 2.02771e12 0.145916
\(834\) 0 0
\(835\) −1.89322e12 −0.134776
\(836\) 0 0
\(837\) −2.18233e13 −1.53694
\(838\) 0 0
\(839\) 1.60099e13 1.11548 0.557738 0.830017i \(-0.311669\pi\)
0.557738 + 0.830017i \(0.311669\pi\)
\(840\) 0 0
\(841\) −4.37029e12 −0.301251
\(842\) 0 0
\(843\) −1.86736e13 −1.27352
\(844\) 0 0
\(845\) −3.15758e13 −2.13058
\(846\) 0 0
\(847\) −4.46884e12 −0.298345
\(848\) 0 0
\(849\) 1.51770e13 1.00254
\(850\) 0 0
\(851\) −2.22007e13 −1.45105
\(852\) 0 0
\(853\) 7.40758e12 0.479078 0.239539 0.970887i \(-0.423004\pi\)
0.239539 + 0.970887i \(0.423004\pi\)
\(854\) 0 0
\(855\) 4.70414e12 0.301046
\(856\) 0 0
\(857\) −1.13540e13 −0.719008 −0.359504 0.933144i \(-0.617054\pi\)
−0.359504 + 0.933144i \(0.617054\pi\)
\(858\) 0 0
\(859\) −3.09711e13 −1.94083 −0.970416 0.241440i \(-0.922380\pi\)
−0.970416 + 0.241440i \(0.922380\pi\)
\(860\) 0 0
\(861\) 6.86753e12 0.425879
\(862\) 0 0
\(863\) 5.56922e12 0.341780 0.170890 0.985290i \(-0.445336\pi\)
0.170890 + 0.985290i \(0.445336\pi\)
\(864\) 0 0
\(865\) 1.72189e13 1.04576
\(866\) 0 0
\(867\) 6.59289e11 0.0396269
\(868\) 0 0
\(869\) 7.86317e12 0.467744
\(870\) 0 0
\(871\) 1.44884e13 0.852979
\(872\) 0 0
\(873\) −1.70352e12 −0.0992617
\(874\) 0 0
\(875\) 6.81388e12 0.392969
\(876\) 0 0
\(877\) −5.51008e12 −0.314528 −0.157264 0.987557i \(-0.550267\pi\)
−0.157264 + 0.987557i \(0.550267\pi\)
\(878\) 0 0
\(879\) −1.41147e13 −0.797486
\(880\) 0 0
\(881\) 1.96782e13 1.10051 0.550256 0.834996i \(-0.314530\pi\)
0.550256 + 0.834996i \(0.314530\pi\)
\(882\) 0 0
\(883\) −7.12786e12 −0.394581 −0.197290 0.980345i \(-0.563214\pi\)
−0.197290 + 0.980345i \(0.563214\pi\)
\(884\) 0 0
\(885\) −1.18071e13 −0.646989
\(886\) 0 0
\(887\) −2.04067e13 −1.10692 −0.553461 0.832875i \(-0.686693\pi\)
−0.553461 + 0.832875i \(0.686693\pi\)
\(888\) 0 0
\(889\) −4.23563e12 −0.227437
\(890\) 0 0
\(891\) 7.01161e12 0.372707
\(892\) 0 0
\(893\) −6.31484e11 −0.0332300
\(894\) 0 0
\(895\) −1.58059e13 −0.823410
\(896\) 0 0
\(897\) −4.73417e13 −2.44162
\(898\) 0 0
\(899\) 2.36555e13 1.20785
\(900\) 0 0
\(901\) −2.37826e13 −1.20226
\(902\) 0 0
\(903\) 6.12774e12 0.306694
\(904\) 0 0
\(905\) 2.20069e13 1.09054
\(906\) 0 0
\(907\) −5.97935e12 −0.293374 −0.146687 0.989183i \(-0.546861\pi\)
−0.146687 + 0.989183i \(0.546861\pi\)
\(908\) 0 0
\(909\) 5.36178e12 0.260478
\(910\) 0 0
\(911\) −1.21617e13 −0.585006 −0.292503 0.956265i \(-0.594488\pi\)
−0.292503 + 0.956265i \(0.594488\pi\)
\(912\) 0 0
\(913\) −4.03244e12 −0.192065
\(914\) 0 0
\(915\) 1.61137e13 0.759977
\(916\) 0 0
\(917\) 1.50396e13 0.702386
\(918\) 0 0
\(919\) 1.76206e13 0.814895 0.407448 0.913229i \(-0.366419\pi\)
0.407448 + 0.913229i \(0.366419\pi\)
\(920\) 0 0
\(921\) 3.87414e12 0.177422
\(922\) 0 0
\(923\) 2.98669e13 1.35451
\(924\) 0 0
\(925\) −1.95515e12 −0.0878096
\(926\) 0 0
\(927\) 1.25155e12 0.0556658
\(928\) 0 0
\(929\) 1.42719e13 0.628651 0.314326 0.949315i \(-0.398222\pi\)
0.314326 + 0.949315i \(0.398222\pi\)
\(930\) 0 0
\(931\) 6.38727e12 0.278639
\(932\) 0 0
\(933\) 2.86644e13 1.23844
\(934\) 0 0
\(935\) 1.04524e13 0.447265
\(936\) 0 0
\(937\) −1.24922e13 −0.529432 −0.264716 0.964326i \(-0.585278\pi\)
−0.264716 + 0.964326i \(0.585278\pi\)
\(938\) 0 0
\(939\) −2.79975e13 −1.17523
\(940\) 0 0
\(941\) 2.56181e13 1.06511 0.532553 0.846396i \(-0.321233\pi\)
0.532553 + 0.846396i \(0.321233\pi\)
\(942\) 0 0
\(943\) −4.43243e13 −1.82532
\(944\) 0 0
\(945\) 9.40322e12 0.383560
\(946\) 0 0
\(947\) −2.53905e13 −1.02588 −0.512939 0.858425i \(-0.671443\pi\)
−0.512939 + 0.858425i \(0.671443\pi\)
\(948\) 0 0
\(949\) 3.12758e13 1.25173
\(950\) 0 0
\(951\) 9.60287e11 0.0380705
\(952\) 0 0
\(953\) 3.84720e11 0.0151087 0.00755435 0.999971i \(-0.497595\pi\)
0.00755435 + 0.999971i \(0.497595\pi\)
\(954\) 0 0
\(955\) −1.46850e13 −0.571292
\(956\) 0 0
\(957\) −9.11440e12 −0.351257
\(958\) 0 0
\(959\) 1.87654e12 0.0716431
\(960\) 0 0
\(961\) 2.87632e13 1.08788
\(962\) 0 0
\(963\) 1.85722e12 0.0695897
\(964\) 0 0
\(965\) −3.81962e13 −1.41791
\(966\) 0 0
\(967\) 4.35217e13 1.60062 0.800308 0.599589i \(-0.204669\pi\)
0.800308 + 0.599589i \(0.204669\pi\)
\(968\) 0 0
\(969\) 5.00585e13 1.82398
\(970\) 0 0
\(971\) 2.35851e13 0.851435 0.425717 0.904856i \(-0.360022\pi\)
0.425717 + 0.904856i \(0.360022\pi\)
\(972\) 0 0
\(973\) −3.72475e12 −0.133226
\(974\) 0 0
\(975\) −4.16925e12 −0.147753
\(976\) 0 0
\(977\) 7.85117e12 0.275682 0.137841 0.990454i \(-0.455984\pi\)
0.137841 + 0.990454i \(0.455984\pi\)
\(978\) 0 0
\(979\) 1.98426e13 0.690360
\(980\) 0 0
\(981\) 5.68769e12 0.196077
\(982\) 0 0
\(983\) 3.32046e12 0.113425 0.0567123 0.998391i \(-0.481938\pi\)
0.0567123 + 0.998391i \(0.481938\pi\)
\(984\) 0 0
\(985\) 3.20293e13 1.08414
\(986\) 0 0
\(987\) −1.75772e11 −0.00589552
\(988\) 0 0
\(989\) −3.95496e13 −1.31449
\(990\) 0 0
\(991\) 4.06670e13 1.33940 0.669701 0.742631i \(-0.266422\pi\)
0.669701 + 0.742631i \(0.266422\pi\)
\(992\) 0 0
\(993\) 4.04773e13 1.32111
\(994\) 0 0
\(995\) 4.81280e12 0.155666
\(996\) 0 0
\(997\) 3.65436e13 1.17134 0.585670 0.810550i \(-0.300832\pi\)
0.585670 + 0.810550i \(0.300832\pi\)
\(998\) 0 0
\(999\) −3.27601e13 −1.04064
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 56.10.a.c.1.3 4
4.3 odd 2 112.10.a.k.1.2 4
7.6 odd 2 392.10.a.f.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.10.a.c.1.3 4 1.1 even 1 trivial
112.10.a.k.1.2 4 4.3 odd 2
392.10.a.f.1.2 4 7.6 odd 2