Properties

Label 56.10.a.b
Level $56$
Weight $10$
Character orbit 56.a
Self dual yes
Analytic conductor $28.842$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [56,10,Mod(1,56)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(56, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("56.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 56.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.8420068252\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 1266x - 4032 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 28) q^{3} + ( - \beta_{2} + 5 \beta_1 - 986) q^{5} + 2401 q^{7} + (27 \beta_{2} - 36 \beta_1 + 11493) q^{9} + (39 \beta_{2} + 116 \beta_1 - 2780) q^{11} + ( - 137 \beta_{2} + 403 \beta_1 + 16734) q^{13}+ \cdots + ( - 351189 \beta_{2} + \cdots + 492874452) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 84 q^{3} - 2958 q^{5} + 7203 q^{7} + 34479 q^{9} - 8340 q^{11} + 50202 q^{13} - 499344 q^{15} - 145674 q^{17} - 1214460 q^{19} + 201684 q^{21} - 334080 q^{23} + 735237 q^{25} + 1531656 q^{27} - 7164198 q^{29}+ \cdots + 1478623356 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 1266x - 4032 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 6\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4\nu^{2} - 16\nu - 3372 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 9\beta_{2} + 8\beta _1 + 10132 ) / 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
37.5620
−3.21938
−33.3426
0 −195.372 0 −426.015 0 2401.00 0 18487.2 0
1.2 0 49.3163 0 0.429496 0 2401.00 0 −17250.9 0
1.3 0 230.056 0 −2532.41 0 2401.00 0 33242.7 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 56.10.a.b 3
4.b odd 2 1 112.10.a.g 3
7.b odd 2 1 392.10.a.c 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.10.a.b 3 1.a even 1 1 trivial
112.10.a.g 3 4.b odd 2 1
392.10.a.c 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 84T_{3}^{2} - 43236T_{3} + 2216592 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(56))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 84 T^{2} + \cdots + 2216592 \) Copy content Toggle raw display
$5$ \( T^{3} + 2958 T^{2} + \cdots - 463360 \) Copy content Toggle raw display
$7$ \( (T - 2401)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 11400890351616 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 664390599124608 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 80\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 11\!\cdots\!52 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 10\!\cdots\!28 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 14\!\cdots\!04 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 15\!\cdots\!08 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 32\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 39\!\cdots\!88 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 11\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 14\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 13\!\cdots\!48 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 14\!\cdots\!40 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 97\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 93\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 39\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 39\!\cdots\!68 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 53\!\cdots\!12 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 95\!\cdots\!56 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 49\!\cdots\!28 \) Copy content Toggle raw display
show more
show less