Properties

Label 56.10.a
Level $56$
Weight $10$
Character orbit 56.a
Rep. character $\chi_{56}(1,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $4$
Sturm bound $80$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 56.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(80\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(56))\).

Total New Old
Modular forms 76 14 62
Cusp forms 68 14 54
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(6\)
Minus space\(-\)\(8\)

Trace form

\( 14 q + 146 q^{3} - 122 q^{5} + 146586 q^{9} - 138196 q^{11} + 223242 q^{13} - 268328 q^{15} + 67120 q^{17} - 393930 q^{19} + 388962 q^{21} + 1046216 q^{23} + 1979326 q^{25} + 5797628 q^{27} + 2181488 q^{29}+ \cdots - 127984260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(56))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
56.10.a.a 56.a 1.a $3$ $28.842$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 56.10.a.a \(0\) \(-92\) \(274\) \(-7203\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-31-\beta _{1})q^{3}+(92+\beta _{1}-\beta _{2})q^{5}+\cdots\)
56.10.a.b 56.a 1.a $3$ $28.842$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 56.10.a.b \(0\) \(84\) \(-2958\) \(7203\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(28-\beta _{1})q^{3}+(-986+5\beta _{1}-\beta _{2})q^{5}+\cdots\)
56.10.a.c 56.a 1.a $4$ $28.842$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 56.10.a.c \(0\) \(70\) \(1022\) \(9604\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(17-\beta _{1})q^{3}+(255-\beta _{1}-\beta _{2})q^{5}+\cdots\)
56.10.a.d 56.a 1.a $4$ $28.842$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 56.10.a.d \(0\) \(84\) \(1540\) \(-9604\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(21-\beta _{1})q^{3}+(385-2\beta _{1}+\beta _{2})q^{5}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(56))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(56)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 2}\)