Properties

Label 5580.2.a.m.1.1
Level $5580$
Weight $2$
Character 5580.1
Self dual yes
Analytic conductor $44.557$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5580,2,Mod(1,5580)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5580.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5580, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5580 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5580.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-4,0,-4,0,0,0,-2,0,2,0,0,0,-2,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.5565243279\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.224148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 11x^{2} + 9x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1860)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.06316\) of defining polynomial
Character \(\chi\) \(=\) 5580.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -4.64963 q^{7} +6.12631 q^{11} +3.47668 q^{13} +6.44607 q^{17} -6.44607 q^{23} +1.00000 q^{25} -8.96939 q^{29} +1.00000 q^{31} +4.64963 q^{35} -2.64963 q^{37} -8.12631 q^{41} +6.12631 q^{43} -0.853176 q^{47} +14.6190 q^{49} +1.14682 q^{53} -6.12631 q^{55} +10.5623 q^{59} +1.36047 q^{61} -3.47668 q^{65} +6.11621 q^{67} -3.79645 q^{71} -5.60300 q^{73} -28.4850 q^{77} +11.2731 q^{79} +10.4461 q^{83} -6.44607 q^{85} -9.79645 q^{89} -16.1653 q^{91} -17.0185 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{7} - 2 q^{11} + 2 q^{13} - 2 q^{17} + 2 q^{23} + 4 q^{25} - 20 q^{29} + 4 q^{31} + 4 q^{35} + 4 q^{37} - 6 q^{41} - 2 q^{43} - 2 q^{47} + 28 q^{49} + 6 q^{53} + 2 q^{55} + 8 q^{61}+ \cdots + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.64963 −1.75739 −0.878697 0.477381i \(-0.841586\pi\)
−0.878697 + 0.477381i \(0.841586\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.12631 1.84715 0.923576 0.383415i \(-0.125252\pi\)
0.923576 + 0.383415i \(0.125252\pi\)
\(12\) 0 0
\(13\) 3.47668 0.964259 0.482129 0.876100i \(-0.339863\pi\)
0.482129 + 0.876100i \(0.339863\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.44607 1.56340 0.781701 0.623653i \(-0.214352\pi\)
0.781701 + 0.623653i \(0.214352\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.44607 −1.34410 −0.672050 0.740506i \(-0.734586\pi\)
−0.672050 + 0.740506i \(0.734586\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.96939 −1.66557 −0.832787 0.553594i \(-0.813256\pi\)
−0.832787 + 0.553594i \(0.813256\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.64963 0.785930
\(36\) 0 0
\(37\) −2.64963 −0.435596 −0.217798 0.975994i \(-0.569887\pi\)
−0.217798 + 0.975994i \(0.569887\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.12631 −1.26912 −0.634558 0.772875i \(-0.718818\pi\)
−0.634558 + 0.772875i \(0.718818\pi\)
\(42\) 0 0
\(43\) 6.12631 0.934254 0.467127 0.884190i \(-0.345289\pi\)
0.467127 + 0.884190i \(0.345289\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.853176 −0.124449 −0.0622243 0.998062i \(-0.519819\pi\)
−0.0622243 + 0.998062i \(0.519819\pi\)
\(48\) 0 0
\(49\) 14.6190 2.08843
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.14682 0.157528 0.0787642 0.996893i \(-0.474903\pi\)
0.0787642 + 0.996893i \(0.474903\pi\)
\(54\) 0 0
\(55\) −6.12631 −0.826071
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.5623 1.37509 0.687546 0.726141i \(-0.258688\pi\)
0.687546 + 0.726141i \(0.258688\pi\)
\(60\) 0 0
\(61\) 1.36047 0.174191 0.0870953 0.996200i \(-0.472242\pi\)
0.0870953 + 0.996200i \(0.472242\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.47668 −0.431230
\(66\) 0 0
\(67\) 6.11621 0.747214 0.373607 0.927587i \(-0.378121\pi\)
0.373607 + 0.927587i \(0.378121\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.79645 −0.450556 −0.225278 0.974295i \(-0.572329\pi\)
−0.225278 + 0.974295i \(0.572329\pi\)
\(72\) 0 0
\(73\) −5.60300 −0.655781 −0.327890 0.944716i \(-0.606338\pi\)
−0.327890 + 0.944716i \(0.606338\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −28.4850 −3.24617
\(78\) 0 0
\(79\) 11.2731 1.26833 0.634163 0.773199i \(-0.281345\pi\)
0.634163 + 0.773199i \(0.281345\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.4461 1.14661 0.573303 0.819344i \(-0.305662\pi\)
0.573303 + 0.819344i \(0.305662\pi\)
\(84\) 0 0
\(85\) −6.44607 −0.699175
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.79645 −1.03842 −0.519211 0.854646i \(-0.673774\pi\)
−0.519211 + 0.854646i \(0.673774\pi\)
\(90\) 0 0
\(91\) −16.1653 −1.69458
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −17.0185 −1.72796 −0.863981 0.503524i \(-0.832037\pi\)
−0.863981 + 0.503524i \(0.832037\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.7658 −1.27025 −0.635124 0.772410i \(-0.719051\pi\)
−0.635124 + 0.772410i \(0.719051\pi\)
\(102\) 0 0
\(103\) 10.7759 1.06178 0.530892 0.847439i \(-0.321857\pi\)
0.530892 + 0.847439i \(0.321857\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.44607 −0.816513 −0.408256 0.912867i \(-0.633863\pi\)
−0.408256 + 0.912867i \(0.633863\pi\)
\(108\) 0 0
\(109\) 10.3198 0.988454 0.494227 0.869333i \(-0.335451\pi\)
0.494227 + 0.869333i \(0.335451\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.95337 0.842262 0.421131 0.907000i \(-0.361633\pi\)
0.421131 + 0.907000i \(0.361633\pi\)
\(114\) 0 0
\(115\) 6.44607 0.601100
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −29.9718 −2.74751
\(120\) 0 0
\(121\) 26.5317 2.41197
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −2.95337 −0.262069 −0.131035 0.991378i \(-0.541830\pi\)
−0.131035 + 0.991378i \(0.541830\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.2686 1.42140 0.710699 0.703496i \(-0.248379\pi\)
0.710699 + 0.703496i \(0.248379\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.08560 0.263621 0.131810 0.991275i \(-0.457921\pi\)
0.131810 + 0.991275i \(0.457921\pi\)
\(138\) 0 0
\(139\) 16.6597 1.41306 0.706530 0.707683i \(-0.250260\pi\)
0.706530 + 0.707683i \(0.250260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 21.2993 1.78113
\(144\) 0 0
\(145\) 8.96939 0.744867
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.6580 1.77429 0.887146 0.461489i \(-0.152685\pi\)
0.887146 + 0.461489i \(0.152685\pi\)
\(150\) 0 0
\(151\) 3.68024 0.299493 0.149747 0.988724i \(-0.452154\pi\)
0.149747 + 0.988724i \(0.452154\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) −6.47219 −0.516537 −0.258269 0.966073i \(-0.583152\pi\)
−0.258269 + 0.966073i \(0.583152\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 29.9718 2.36211
\(162\) 0 0
\(163\) 1.47668 0.115663 0.0578314 0.998326i \(-0.481581\pi\)
0.0578314 + 0.998326i \(0.481581\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.5519 −1.35820 −0.679102 0.734044i \(-0.737631\pi\)
−0.679102 + 0.734044i \(0.737631\pi\)
\(168\) 0 0
\(169\) −0.912662 −0.0702047
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.29925 −0.554952 −0.277476 0.960733i \(-0.589498\pi\)
−0.277476 + 0.960733i \(0.589498\pi\)
\(174\) 0 0
\(175\) −4.64963 −0.351479
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.63953 −0.346775 −0.173387 0.984854i \(-0.555471\pi\)
−0.173387 + 0.984854i \(0.555471\pi\)
\(180\) 0 0
\(181\) 20.5463 1.52719 0.763596 0.645694i \(-0.223432\pi\)
0.763596 + 0.645694i \(0.223432\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.64963 0.194804
\(186\) 0 0
\(187\) 39.4906 2.88784
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.28323 −0.0928514 −0.0464257 0.998922i \(-0.514783\pi\)
−0.0464257 + 0.998922i \(0.514783\pi\)
\(192\) 0 0
\(193\) −5.78043 −0.416084 −0.208042 0.978120i \(-0.566709\pi\)
−0.208042 + 0.978120i \(0.566709\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.6987 1.04724 0.523619 0.851952i \(-0.324581\pi\)
0.523619 + 0.851952i \(0.324581\pi\)
\(198\) 0 0
\(199\) 23.9329 1.69656 0.848278 0.529552i \(-0.177640\pi\)
0.848278 + 0.529552i \(0.177640\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 41.7043 2.92707
\(204\) 0 0
\(205\) 8.12631 0.567566
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 28.5373 1.96459 0.982294 0.187348i \(-0.0599891\pi\)
0.982294 + 0.187348i \(0.0599891\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.12631 −0.417811
\(216\) 0 0
\(217\) −4.64963 −0.315637
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.4110 1.50752
\(222\) 0 0
\(223\) −7.17294 −0.480336 −0.240168 0.970731i \(-0.577202\pi\)
−0.240168 + 0.970731i \(0.577202\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.1524 −0.673840 −0.336920 0.941533i \(-0.609385\pi\)
−0.336920 + 0.941533i \(0.609385\pi\)
\(228\) 0 0
\(229\) 11.2470 0.743224 0.371612 0.928388i \(-0.378805\pi\)
0.371612 + 0.928388i \(0.378805\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.3849 −0.680334 −0.340167 0.940365i \(-0.610484\pi\)
−0.340167 + 0.940365i \(0.610484\pi\)
\(234\) 0 0
\(235\) 0.853176 0.0556551
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.06509 −0.521687 −0.260844 0.965381i \(-0.584001\pi\)
−0.260844 + 0.965381i \(0.584001\pi\)
\(240\) 0 0
\(241\) 17.2060 1.10834 0.554168 0.832405i \(-0.313037\pi\)
0.554168 + 0.832405i \(0.313037\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −14.6190 −0.933975
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 23.6131 1.49045 0.745223 0.666816i \(-0.232343\pi\)
0.745223 + 0.666816i \(0.232343\pi\)
\(252\) 0 0
\(253\) −39.4906 −2.48276
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.7453 −1.10692 −0.553461 0.832875i \(-0.686693\pi\)
−0.553461 + 0.832875i \(0.686693\pi\)
\(258\) 0 0
\(259\) 12.3198 0.765513
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.2470 0.816846 0.408423 0.912793i \(-0.366079\pi\)
0.408423 + 0.912793i \(0.366079\pi\)
\(264\) 0 0
\(265\) −1.14682 −0.0704488
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.8817 1.57804 0.789019 0.614369i \(-0.210590\pi\)
0.789019 + 0.614369i \(0.210590\pi\)
\(270\) 0 0
\(271\) −6.31384 −0.383539 −0.191769 0.981440i \(-0.561423\pi\)
−0.191769 + 0.981440i \(0.561423\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.12631 0.369430
\(276\) 0 0
\(277\) 8.99551 0.540488 0.270244 0.962792i \(-0.412896\pi\)
0.270244 + 0.962792i \(0.412896\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.5519 1.40499 0.702493 0.711690i \(-0.252070\pi\)
0.702493 + 0.711690i \(0.252070\pi\)
\(282\) 0 0
\(283\) 24.4951 1.45609 0.728043 0.685532i \(-0.240430\pi\)
0.728043 + 0.685532i \(0.240430\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 37.7843 2.23034
\(288\) 0 0
\(289\) 24.5519 1.44423
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.600556 0.0350849 0.0175424 0.999846i \(-0.494416\pi\)
0.0175424 + 0.999846i \(0.494416\pi\)
\(294\) 0 0
\(295\) −10.5623 −0.614960
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −22.4110 −1.29606
\(300\) 0 0
\(301\) −28.4850 −1.64185
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.36047 −0.0779004
\(306\) 0 0
\(307\) −29.1347 −1.66280 −0.831402 0.555672i \(-0.812461\pi\)
−0.831402 + 0.555672i \(0.812461\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.9043 0.618326 0.309163 0.951009i \(-0.399951\pi\)
0.309163 + 0.951009i \(0.399951\pi\)
\(312\) 0 0
\(313\) 6.43005 0.363448 0.181724 0.983350i \(-0.441832\pi\)
0.181724 + 0.983350i \(0.441832\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −23.4517 −1.31718 −0.658589 0.752503i \(-0.728846\pi\)
−0.658589 + 0.752503i \(0.728846\pi\)
\(318\) 0 0
\(319\) −54.9493 −3.07657
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 3.47668 0.192852
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.96695 0.218705
\(330\) 0 0
\(331\) 26.5112 1.45719 0.728593 0.684947i \(-0.240175\pi\)
0.728593 + 0.684947i \(0.240175\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.11621 −0.334164
\(336\) 0 0
\(337\) −8.99551 −0.490016 −0.245008 0.969521i \(-0.578791\pi\)
−0.245008 + 0.969521i \(0.578791\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.12631 0.331758
\(342\) 0 0
\(343\) −35.4256 −1.91280
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.5783 −0.567873 −0.283937 0.958843i \(-0.591641\pi\)
−0.283937 + 0.958843i \(0.591641\pi\)
\(348\) 0 0
\(349\) 2.95929 0.158407 0.0792036 0.996858i \(-0.474762\pi\)
0.0792036 + 0.996858i \(0.474762\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.1935 0.542543 0.271271 0.962503i \(-0.412556\pi\)
0.271271 + 0.962503i \(0.412556\pi\)
\(354\) 0 0
\(355\) 3.79645 0.201495
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.8615 1.25936 0.629682 0.776853i \(-0.283185\pi\)
0.629682 + 0.776853i \(0.283185\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.60300 0.293274
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.33230 −0.276839
\(372\) 0 0
\(373\) −5.59290 −0.289589 −0.144795 0.989462i \(-0.546252\pi\)
−0.144795 + 0.989462i \(0.546252\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −31.1837 −1.60604
\(378\) 0 0
\(379\) −26.8511 −1.37925 −0.689625 0.724167i \(-0.742224\pi\)
−0.689625 + 0.724167i \(0.742224\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 33.0446 1.68850 0.844249 0.535950i \(-0.180047\pi\)
0.844249 + 0.535950i \(0.180047\pi\)
\(384\) 0 0
\(385\) 28.4850 1.45173
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 19.0957 0.968190 0.484095 0.875015i \(-0.339149\pi\)
0.484095 + 0.875015i \(0.339149\pi\)
\(390\) 0 0
\(391\) −41.5519 −2.10137
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11.2731 −0.567213
\(396\) 0 0
\(397\) 27.3974 1.37504 0.687518 0.726168i \(-0.258700\pi\)
0.687518 + 0.726168i \(0.258700\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.79645 0.489211 0.244606 0.969623i \(-0.421341\pi\)
0.244606 + 0.969623i \(0.421341\pi\)
\(402\) 0 0
\(403\) 3.47668 0.173186
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −16.2324 −0.804611
\(408\) 0 0
\(409\) −21.4906 −1.06264 −0.531322 0.847170i \(-0.678305\pi\)
−0.531322 + 0.847170i \(0.678305\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −49.1107 −2.41658
\(414\) 0 0
\(415\) −10.4461 −0.512778
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.3483 −0.847521 −0.423760 0.905774i \(-0.639290\pi\)
−0.423760 + 0.905774i \(0.639290\pi\)
\(420\) 0 0
\(421\) 11.6190 0.566276 0.283138 0.959079i \(-0.408625\pi\)
0.283138 + 0.959079i \(0.408625\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.44607 0.312681
\(426\) 0 0
\(427\) −6.32569 −0.306121
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.7819 0.519344 0.259672 0.965697i \(-0.416386\pi\)
0.259672 + 0.965697i \(0.416386\pi\)
\(432\) 0 0
\(433\) 28.4339 1.36645 0.683224 0.730209i \(-0.260577\pi\)
0.683224 + 0.730209i \(0.260577\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −25.7843 −1.23062 −0.615309 0.788286i \(-0.710969\pi\)
−0.615309 + 0.788286i \(0.710969\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.43148 0.353080 0.176540 0.984293i \(-0.443509\pi\)
0.176540 + 0.984293i \(0.443509\pi\)
\(444\) 0 0
\(445\) 9.79645 0.464396
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −16.8021 −0.792938 −0.396469 0.918048i \(-0.629765\pi\)
−0.396469 + 0.918048i \(0.629765\pi\)
\(450\) 0 0
\(451\) −49.7843 −2.34425
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 16.1653 0.757840
\(456\) 0 0
\(457\) −33.2161 −1.55378 −0.776892 0.629634i \(-0.783205\pi\)
−0.776892 + 0.629634i \(0.783205\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −26.9082 −1.25324 −0.626619 0.779326i \(-0.715562\pi\)
−0.626619 + 0.779326i \(0.715562\pi\)
\(462\) 0 0
\(463\) 32.2975 1.50099 0.750496 0.660875i \(-0.229814\pi\)
0.750496 + 0.660875i \(0.229814\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.9834 1.71139 0.855693 0.517484i \(-0.173131\pi\)
0.855693 + 0.517484i \(0.173131\pi\)
\(468\) 0 0
\(469\) −28.4381 −1.31315
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 37.5317 1.72571
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.7819 −0.492636 −0.246318 0.969189i \(-0.579221\pi\)
−0.246318 + 0.969189i \(0.579221\pi\)
\(480\) 0 0
\(481\) −9.21191 −0.420027
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.0185 0.772768
\(486\) 0 0
\(487\) −4.40710 −0.199705 −0.0998524 0.995002i \(-0.531837\pi\)
−0.0998524 + 0.995002i \(0.531837\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.0056 −0.677193 −0.338597 0.940932i \(-0.609952\pi\)
−0.338597 + 0.940932i \(0.609952\pi\)
\(492\) 0 0
\(493\) −57.8173 −2.60396
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.6521 0.791803
\(498\) 0 0
\(499\) 25.9067 1.15974 0.579872 0.814707i \(-0.303102\pi\)
0.579872 + 0.814707i \(0.303102\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.6375 −0.652653 −0.326326 0.945257i \(-0.605811\pi\)
−0.326326 + 0.945257i \(0.605811\pi\)
\(504\) 0 0
\(505\) 12.7658 0.568072
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.7554 0.521050 0.260525 0.965467i \(-0.416104\pi\)
0.260525 + 0.965467i \(0.416104\pi\)
\(510\) 0 0
\(511\) 26.0518 1.15246
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.7759 −0.474844
\(516\) 0 0
\(517\) −5.22682 −0.229875
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.21957 −0.0972411 −0.0486206 0.998817i \(-0.515483\pi\)
−0.0486206 + 0.998817i \(0.515483\pi\)
\(522\) 0 0
\(523\) 17.6862 0.773362 0.386681 0.922214i \(-0.373622\pi\)
0.386681 + 0.922214i \(0.373622\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.44607 0.280795
\(528\) 0 0
\(529\) 18.5519 0.806603
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −28.2526 −1.22376
\(534\) 0 0
\(535\) 8.44607 0.365156
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 89.5606 3.85765
\(540\) 0 0
\(541\) 39.0574 1.67921 0.839605 0.543197i \(-0.182786\pi\)
0.839605 + 0.543197i \(0.182786\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −10.3198 −0.442050
\(546\) 0 0
\(547\) −21.1218 −0.903104 −0.451552 0.892245i \(-0.649129\pi\)
−0.451552 + 0.892245i \(0.649129\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −52.4158 −2.22895
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.08560 0.130741 0.0653706 0.997861i \(-0.479177\pi\)
0.0653706 + 0.997861i \(0.479177\pi\)
\(558\) 0 0
\(559\) 21.2993 0.900862
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.193454 0.00815310 0.00407655 0.999992i \(-0.498702\pi\)
0.00407655 + 0.999992i \(0.498702\pi\)
\(564\) 0 0
\(565\) −8.95337 −0.376671
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.736964 −0.0308951 −0.0154476 0.999881i \(-0.504917\pi\)
−0.0154476 + 0.999881i \(0.504917\pi\)
\(570\) 0 0
\(571\) 23.0056 0.962755 0.481377 0.876514i \(-0.340137\pi\)
0.481377 + 0.876514i \(0.340137\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.44607 −0.268820
\(576\) 0 0
\(577\) −27.4666 −1.14345 −0.571725 0.820446i \(-0.693725\pi\)
−0.571725 + 0.820446i \(0.693725\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −48.5703 −2.01504
\(582\) 0 0
\(583\) 7.02580 0.290979
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21.9388 −0.905510 −0.452755 0.891635i \(-0.649559\pi\)
−0.452755 + 0.891635i \(0.649559\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −32.4440 −1.33232 −0.666158 0.745811i \(-0.732062\pi\)
−0.666158 + 0.745811i \(0.732062\pi\)
\(594\) 0 0
\(595\) 29.9718 1.22873
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18.4270 −0.752906 −0.376453 0.926436i \(-0.622856\pi\)
−0.376453 + 0.926436i \(0.622856\pi\)
\(600\) 0 0
\(601\) −35.1768 −1.43489 −0.717446 0.696614i \(-0.754689\pi\)
−0.717446 + 0.696614i \(0.754689\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −26.5317 −1.07867
\(606\) 0 0
\(607\) 6.52332 0.264773 0.132387 0.991198i \(-0.457736\pi\)
0.132387 + 0.991198i \(0.457736\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.96623 −0.120001
\(612\) 0 0
\(613\) 34.5602 1.39587 0.697937 0.716159i \(-0.254101\pi\)
0.697937 + 0.716159i \(0.254101\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −36.1594 −1.45572 −0.727861 0.685725i \(-0.759485\pi\)
−0.727861 + 0.685725i \(0.759485\pi\)
\(618\) 0 0
\(619\) 41.4966 1.66789 0.833944 0.551849i \(-0.186078\pi\)
0.833944 + 0.551849i \(0.186078\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 45.5498 1.82491
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −17.0797 −0.681011
\(630\) 0 0
\(631\) −4.69176 −0.186776 −0.0933880 0.995630i \(-0.529770\pi\)
−0.0933880 + 0.995630i \(0.529770\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.95337 0.117201
\(636\) 0 0
\(637\) 50.8257 2.01379
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −44.8671 −1.77215 −0.886073 0.463546i \(-0.846577\pi\)
−0.886073 + 0.463546i \(0.846577\pi\)
\(642\) 0 0
\(643\) −0.871953 −0.0343865 −0.0171932 0.999852i \(-0.505473\pi\)
−0.0171932 + 0.999852i \(0.505473\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.29365 −0.247429 −0.123714 0.992318i \(-0.539481\pi\)
−0.123714 + 0.992318i \(0.539481\pi\)
\(648\) 0 0
\(649\) 64.7078 2.54001
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.0271 0.783722 0.391861 0.920024i \(-0.371831\pi\)
0.391861 + 0.920024i \(0.371831\pi\)
\(654\) 0 0
\(655\) −16.2686 −0.635668
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −32.9614 −1.28399 −0.641997 0.766707i \(-0.721894\pi\)
−0.641997 + 0.766707i \(0.721894\pi\)
\(660\) 0 0
\(661\) −36.3918 −1.41548 −0.707738 0.706475i \(-0.750284\pi\)
−0.707738 + 0.706475i \(0.750284\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 57.8173 2.23870
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.33467 0.321757
\(672\) 0 0
\(673\) 26.0870 1.00558 0.502791 0.864408i \(-0.332307\pi\)
0.502791 + 0.864408i \(0.332307\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −24.2547 −0.932183 −0.466091 0.884737i \(-0.654338\pi\)
−0.466091 + 0.884737i \(0.654338\pi\)
\(678\) 0 0
\(679\) 79.1295 3.03671
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.75431 −0.296711 −0.148355 0.988934i \(-0.547398\pi\)
−0.148355 + 0.988934i \(0.547398\pi\)
\(684\) 0 0
\(685\) −3.08560 −0.117895
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.98714 0.151898
\(690\) 0 0
\(691\) −22.4440 −0.853811 −0.426905 0.904296i \(-0.640396\pi\)
−0.426905 + 0.904296i \(0.640396\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.6597 −0.631939
\(696\) 0 0
\(697\) −52.3828 −1.98414
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.0797 0.569552 0.284776 0.958594i \(-0.408081\pi\)
0.284776 + 0.958594i \(0.408081\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 59.3564 2.23233
\(708\) 0 0
\(709\) 14.6277 0.549354 0.274677 0.961537i \(-0.411429\pi\)
0.274677 + 0.961537i \(0.411429\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.44607 −0.241407
\(714\) 0 0
\(715\) −21.2993 −0.796547
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.8473 −0.628297 −0.314148 0.949374i \(-0.601719\pi\)
−0.314148 + 0.949374i \(0.601719\pi\)
\(720\) 0 0
\(721\) −50.1041 −1.86597
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −8.96939 −0.333115
\(726\) 0 0
\(727\) −18.3486 −0.680513 −0.340257 0.940333i \(-0.610514\pi\)
−0.340257 + 0.940333i \(0.610514\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 39.4906 1.46061
\(732\) 0 0
\(733\) 8.15936 0.301373 0.150686 0.988582i \(-0.451852\pi\)
0.150686 + 0.988582i \(0.451852\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 37.4698 1.38022
\(738\) 0 0
\(739\) 22.0261 0.810244 0.405122 0.914263i \(-0.367229\pi\)
0.405122 + 0.914263i \(0.367229\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.46272 0.127035 0.0635175 0.997981i \(-0.479768\pi\)
0.0635175 + 0.997981i \(0.479768\pi\)
\(744\) 0 0
\(745\) −21.6580 −0.793487
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 39.2711 1.43493
\(750\) 0 0
\(751\) −38.5783 −1.40774 −0.703871 0.710328i \(-0.748547\pi\)
−0.703871 + 0.710328i \(0.748547\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.68024 −0.133938
\(756\) 0 0
\(757\) 29.0606 1.05623 0.528113 0.849174i \(-0.322900\pi\)
0.528113 + 0.849174i \(0.322900\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.0362 0.363812 0.181906 0.983316i \(-0.441773\pi\)
0.181906 + 0.983316i \(0.441773\pi\)
\(762\) 0 0
\(763\) −47.9830 −1.73710
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 36.7217 1.32595
\(768\) 0 0
\(769\) 18.1973 0.656212 0.328106 0.944641i \(-0.393590\pi\)
0.328106 + 0.944641i \(0.393590\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.16702 0.0419747 0.0209874 0.999780i \(-0.493319\pi\)
0.0209874 + 0.999780i \(0.493319\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −23.2582 −0.832245
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.47219 0.231002
\(786\) 0 0
\(787\) 51.1284 1.82253 0.911266 0.411818i \(-0.135106\pi\)
0.911266 + 0.411818i \(0.135106\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −41.6298 −1.48019
\(792\) 0 0
\(793\) 4.72993 0.167965
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 41.6841 1.47653 0.738263 0.674513i \(-0.235646\pi\)
0.738263 + 0.674513i \(0.235646\pi\)
\(798\) 0 0
\(799\) −5.49964 −0.194563
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −34.3257 −1.21133
\(804\) 0 0
\(805\) −29.9718 −1.05637
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −46.7867 −1.64493 −0.822467 0.568813i \(-0.807403\pi\)
−0.822467 + 0.568813i \(0.807403\pi\)
\(810\) 0 0
\(811\) 18.8309 0.661243 0.330622 0.943763i \(-0.392742\pi\)
0.330622 + 0.943763i \(0.392742\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.47668 −0.0517260
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −26.2237 −0.915215 −0.457608 0.889154i \(-0.651294\pi\)
−0.457608 + 0.889154i \(0.651294\pi\)
\(822\) 0 0
\(823\) −34.3267 −1.19655 −0.598277 0.801290i \(-0.704148\pi\)
−0.598277 + 0.801290i \(0.704148\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.6208 −0.647507 −0.323753 0.946141i \(-0.604945\pi\)
−0.323753 + 0.946141i \(0.604945\pi\)
\(828\) 0 0
\(829\) −8.64852 −0.300375 −0.150188 0.988658i \(-0.547988\pi\)
−0.150188 + 0.988658i \(0.547988\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 94.2352 3.26506
\(834\) 0 0
\(835\) 17.5519 0.607408
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16.7739 −0.579099 −0.289549 0.957163i \(-0.593505\pi\)
−0.289549 + 0.957163i \(0.593505\pi\)
\(840\) 0 0
\(841\) 51.4499 1.77414
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.912662 0.0313965
\(846\) 0 0
\(847\) −123.362 −4.23878
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 17.0797 0.585484
\(852\) 0 0
\(853\) −33.4256 −1.14447 −0.572235 0.820090i \(-0.693923\pi\)
−0.572235 + 0.820090i \(0.693923\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 38.1504 1.30319 0.651596 0.758566i \(-0.274100\pi\)
0.651596 + 0.758566i \(0.274100\pi\)
\(858\) 0 0
\(859\) 4.81420 0.164259 0.0821293 0.996622i \(-0.473828\pi\)
0.0821293 + 0.996622i \(0.473828\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.1594 0.345829 0.172914 0.984937i \(-0.444682\pi\)
0.172914 + 0.984937i \(0.444682\pi\)
\(864\) 0 0
\(865\) 7.29925 0.248182
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 69.0627 2.34279
\(870\) 0 0
\(871\) 21.2641 0.720508
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.64963 0.157186
\(876\) 0 0
\(877\) 36.9162 1.24657 0.623286 0.781994i \(-0.285797\pi\)
0.623286 + 0.781994i \(0.285797\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 38.1994 1.28697 0.643486 0.765458i \(-0.277488\pi\)
0.643486 + 0.765458i \(0.277488\pi\)
\(882\) 0 0
\(883\) −37.1576 −1.25045 −0.625227 0.780443i \(-0.714994\pi\)
−0.625227 + 0.780443i \(0.714994\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 15.3472 0.515309 0.257654 0.966237i \(-0.417050\pi\)
0.257654 + 0.966237i \(0.417050\pi\)
\(888\) 0 0
\(889\) 13.7321 0.460559
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 4.63953 0.155082
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.96939 −0.299146
\(900\) 0 0
\(901\) 7.39251 0.246280
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −20.5463 −0.682981
\(906\) 0 0
\(907\) 24.2627 0.805630 0.402815 0.915281i \(-0.368032\pi\)
0.402815 + 0.915281i \(0.368032\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19.7804 0.655355 0.327677 0.944790i \(-0.393734\pi\)
0.327677 + 0.944790i \(0.393734\pi\)
\(912\) 0 0
\(913\) 63.9959 2.11795
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −75.6431 −2.49795
\(918\) 0 0
\(919\) −1.70635 −0.0562874 −0.0281437 0.999604i \(-0.508960\pi\)
−0.0281437 + 0.999604i \(0.508960\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −13.1991 −0.434452
\(924\) 0 0
\(925\) −2.64963 −0.0871191
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.06825 0.0678572 0.0339286 0.999424i \(-0.489198\pi\)
0.0339286 + 0.999424i \(0.489198\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −39.4906 −1.29148
\(936\) 0 0
\(937\) −10.9815 −0.358751 −0.179376 0.983781i \(-0.557408\pi\)
−0.179376 + 0.983781i \(0.557408\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.517393 −0.0168665 −0.00843327 0.999964i \(-0.502684\pi\)
−0.00843327 + 0.999964i \(0.502684\pi\)
\(942\) 0 0
\(943\) 52.3828 1.70582
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.28671 −0.139299 −0.0696497 0.997572i \(-0.522188\pi\)
−0.0696497 + 0.997572i \(0.522188\pi\)
\(948\) 0 0
\(949\) −19.4798 −0.632343
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −36.7801 −1.19142 −0.595712 0.803198i \(-0.703130\pi\)
−0.595712 + 0.803198i \(0.703130\pi\)
\(954\) 0 0
\(955\) 1.28323 0.0415244
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14.3469 −0.463285
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.78043 0.186079
\(966\) 0 0
\(967\) 49.8375 1.60267 0.801334 0.598218i \(-0.204124\pi\)
0.801334 + 0.598218i \(0.204124\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.82849 −0.122862 −0.0614310 0.998111i \(-0.519566\pi\)
−0.0614310 + 0.998111i \(0.519566\pi\)
\(972\) 0 0
\(973\) −77.4615 −2.48330
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.8776 0.827896 0.413948 0.910300i \(-0.364149\pi\)
0.413948 + 0.910300i \(0.364149\pi\)
\(978\) 0 0
\(979\) −60.0161 −1.91812
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23.2380 0.741178 0.370589 0.928797i \(-0.379156\pi\)
0.370589 + 0.928797i \(0.379156\pi\)
\(984\) 0 0
\(985\) −14.6987 −0.468339
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −39.4906 −1.25573
\(990\) 0 0
\(991\) −9.68616 −0.307691 −0.153845 0.988095i \(-0.549166\pi\)
−0.153845 + 0.988095i \(0.549166\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −23.9329 −0.758723
\(996\) 0 0
\(997\) −32.9011 −1.04199 −0.520995 0.853560i \(-0.674439\pi\)
−0.520995 + 0.853560i \(0.674439\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5580.2.a.m.1.1 4
3.2 odd 2 1860.2.a.i.1.1 4
12.11 even 2 7440.2.a.cb.1.4 4
15.2 even 4 9300.2.g.s.3349.5 8
15.8 even 4 9300.2.g.s.3349.4 8
15.14 odd 2 9300.2.a.x.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.a.i.1.1 4 3.2 odd 2
5580.2.a.m.1.1 4 1.1 even 1 trivial
7440.2.a.cb.1.4 4 12.11 even 2
9300.2.a.x.1.4 4 15.14 odd 2
9300.2.g.s.3349.4 8 15.8 even 4
9300.2.g.s.3349.5 8 15.2 even 4