Properties

Label 5580.2.a.i.1.1
Level $5580$
Weight $2$
Character 5580.1
Self dual yes
Analytic conductor $44.557$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5580,2,Mod(1,5580)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5580.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5580, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5580 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5580.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-3,0,0,0,0,0,-6,0,0,0,0,0,-2,0,12,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.5565243279\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.7636.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 16x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1860)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.47467\) of defining polynomial
Character \(\chi\) \(=\) 5580.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -4.47467 q^{7} -2.00000 q^{11} +4.47467 q^{13} -1.07331 q^{17} +4.00000 q^{19} +1.07331 q^{23} +1.00000 q^{25} +3.54798 q^{29} -1.00000 q^{31} +4.47467 q^{35} +2.47467 q^{37} -4.00000 q^{41} +2.00000 q^{43} +8.02265 q^{47} +13.0226 q^{49} -10.0226 q^{53} +2.00000 q^{55} -9.54798 q^{59} -0.146623 q^{61} -4.47467 q^{65} -4.32804 q^{67} -12.4973 q^{71} +15.4240 q^{73} +8.94933 q^{77} +9.87602 q^{79} +2.92669 q^{83} +1.07331 q^{85} -15.4014 q^{89} -20.0226 q^{91} -4.00000 q^{95} +1.85338 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} - 6 q^{11} - 2 q^{17} + 12 q^{19} + 2 q^{23} + 3 q^{25} - 4 q^{29} - 3 q^{31} - 6 q^{37} - 12 q^{41} + 6 q^{43} - 4 q^{47} + 11 q^{49} - 2 q^{53} + 6 q^{55} - 14 q^{59} + 2 q^{61} - 2 q^{67}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.47467 −1.69127 −0.845633 0.533765i \(-0.820777\pi\)
−0.845633 + 0.533765i \(0.820777\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 4.47467 1.24105 0.620525 0.784187i \(-0.286920\pi\)
0.620525 + 0.784187i \(0.286920\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.07331 −0.260316 −0.130158 0.991493i \(-0.541549\pi\)
−0.130158 + 0.991493i \(0.541549\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.07331 0.223801 0.111900 0.993719i \(-0.464306\pi\)
0.111900 + 0.993719i \(0.464306\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.54798 0.658843 0.329422 0.944183i \(-0.393146\pi\)
0.329422 + 0.944183i \(0.393146\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.47467 0.756357
\(36\) 0 0
\(37\) 2.47467 0.406833 0.203416 0.979092i \(-0.434795\pi\)
0.203416 + 0.979092i \(0.434795\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.02265 1.17022 0.585112 0.810953i \(-0.301051\pi\)
0.585112 + 0.810953i \(0.301051\pi\)
\(48\) 0 0
\(49\) 13.0226 1.86038
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.0226 −1.37672 −0.688358 0.725371i \(-0.741668\pi\)
−0.688358 + 0.725371i \(0.741668\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.54798 −1.24304 −0.621520 0.783398i \(-0.713485\pi\)
−0.621520 + 0.783398i \(0.713485\pi\)
\(60\) 0 0
\(61\) −0.146623 −0.0187731 −0.00938657 0.999956i \(-0.502988\pi\)
−0.00938657 + 0.999956i \(0.502988\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.47467 −0.555014
\(66\) 0 0
\(67\) −4.32804 −0.528755 −0.264377 0.964419i \(-0.585166\pi\)
−0.264377 + 0.964419i \(0.585166\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.4973 −1.48316 −0.741579 0.670865i \(-0.765923\pi\)
−0.741579 + 0.670865i \(0.765923\pi\)
\(72\) 0 0
\(73\) 15.4240 1.80524 0.902621 0.430435i \(-0.141640\pi\)
0.902621 + 0.430435i \(0.141640\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.94933 1.01987
\(78\) 0 0
\(79\) 9.87602 1.11114 0.555570 0.831470i \(-0.312500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.92669 0.321246 0.160623 0.987016i \(-0.448650\pi\)
0.160623 + 0.987016i \(0.448650\pi\)
\(84\) 0 0
\(85\) 1.07331 0.116417
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −15.4014 −1.63254 −0.816270 0.577670i \(-0.803962\pi\)
−0.816270 + 0.577670i \(0.803962\pi\)
\(90\) 0 0
\(91\) −20.0226 −2.09894
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) 1.85338 0.188182 0.0940910 0.995564i \(-0.470006\pi\)
0.0940910 + 0.995564i \(0.470006\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.85338 0.184418 0.0922090 0.995740i \(-0.470607\pi\)
0.0922090 + 0.995740i \(0.470607\pi\)
\(102\) 0 0
\(103\) −15.4240 −1.51977 −0.759886 0.650056i \(-0.774745\pi\)
−0.759886 + 0.650056i \(0.774745\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.21993 0.117935 0.0589677 0.998260i \(-0.481219\pi\)
0.0589677 + 0.998260i \(0.481219\pi\)
\(108\) 0 0
\(109\) 5.07331 0.485935 0.242968 0.970034i \(-0.421879\pi\)
0.242968 + 0.970034i \(0.421879\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.05067 −0.0988383 −0.0494192 0.998778i \(-0.515737\pi\)
−0.0494192 + 0.998778i \(0.515737\pi\)
\(114\) 0 0
\(115\) −1.07331 −0.100087
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.80271 0.440264
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −3.05067 −0.270703 −0.135351 0.990798i \(-0.543216\pi\)
−0.135351 + 0.990798i \(0.543216\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.40136 −0.646659 −0.323330 0.946286i \(-0.604802\pi\)
−0.323330 + 0.946286i \(0.604802\pi\)
\(132\) 0 0
\(133\) −17.8987 −1.55201
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.9720 1.27914 0.639571 0.768732i \(-0.279112\pi\)
0.639571 + 0.768732i \(0.279112\pi\)
\(138\) 0 0
\(139\) −14.8027 −1.25555 −0.627775 0.778395i \(-0.716034\pi\)
−0.627775 + 0.778395i \(0.716034\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.94933 −0.748381
\(144\) 0 0
\(145\) −3.54798 −0.294644
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.89867 0.810931 0.405465 0.914110i \(-0.367110\pi\)
0.405465 + 0.914110i \(0.367110\pi\)
\(150\) 0 0
\(151\) −4.92669 −0.400928 −0.200464 0.979701i \(-0.564245\pi\)
−0.200464 + 0.979701i \(0.564245\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.80271 −0.378507
\(162\) 0 0
\(163\) −14.4747 −1.13374 −0.566872 0.823806i \(-0.691846\pi\)
−0.566872 + 0.823806i \(0.691846\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.2426 −1.33427 −0.667135 0.744936i \(-0.732480\pi\)
−0.667135 + 0.744936i \(0.732480\pi\)
\(168\) 0 0
\(169\) 7.02265 0.540204
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.94933 0.528348 0.264174 0.964475i \(-0.414901\pi\)
0.264174 + 0.964475i \(0.414901\pi\)
\(174\) 0 0
\(175\) −4.47467 −0.338253
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.85338 −0.437502 −0.218751 0.975781i \(-0.570198\pi\)
−0.218751 + 0.975781i \(0.570198\pi\)
\(180\) 0 0
\(181\) −17.7520 −1.31950 −0.659750 0.751486i \(-0.729338\pi\)
−0.659750 + 0.751486i \(0.729338\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.47467 −0.181941
\(186\) 0 0
\(187\) 2.14662 0.156977
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.35069 −0.604235 −0.302117 0.953271i \(-0.597693\pi\)
−0.302117 + 0.953271i \(0.597693\pi\)
\(192\) 0 0
\(193\) −8.00000 −0.575853 −0.287926 0.957653i \(-0.592966\pi\)
−0.287926 + 0.957653i \(0.592966\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.97198 −0.496733 −0.248366 0.968666i \(-0.579894\pi\)
−0.248366 + 0.968666i \(0.579894\pi\)
\(198\) 0 0
\(199\) −5.21993 −0.370031 −0.185016 0.982736i \(-0.559234\pi\)
−0.185016 + 0.982736i \(0.559234\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −15.8760 −1.11428
\(204\) 0 0
\(205\) 4.00000 0.279372
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.00000 −0.553372
\(210\) 0 0
\(211\) −15.0960 −1.03925 −0.519624 0.854395i \(-0.673928\pi\)
−0.519624 + 0.854395i \(0.673928\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) 4.47467 0.303760
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.80271 −0.323065
\(222\) 0 0
\(223\) −18.9493 −1.26894 −0.634471 0.772947i \(-0.718782\pi\)
−0.634471 + 0.772947i \(0.718782\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.07331 0.469472 0.234736 0.972059i \(-0.424577\pi\)
0.234736 + 0.972059i \(0.424577\pi\)
\(228\) 0 0
\(229\) −5.09596 −0.336750 −0.168375 0.985723i \(-0.553852\pi\)
−0.168375 + 0.985723i \(0.553852\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.8760 −0.909048 −0.454524 0.890734i \(-0.650191\pi\)
−0.454524 + 0.890734i \(0.650191\pi\)
\(234\) 0 0
\(235\) −8.02265 −0.523340
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.09596 0.0708916 0.0354458 0.999372i \(-0.488715\pi\)
0.0354458 + 0.999372i \(0.488715\pi\)
\(240\) 0 0
\(241\) 11.2426 0.724198 0.362099 0.932140i \(-0.382060\pi\)
0.362099 + 0.932140i \(0.382060\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −13.0226 −0.831986
\(246\) 0 0
\(247\) 17.8987 1.13886
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −16.0453 −1.01277 −0.506385 0.862308i \(-0.669018\pi\)
−0.506385 + 0.862308i \(0.669018\pi\)
\(252\) 0 0
\(253\) −2.14662 −0.134957
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.02265 −0.250926 −0.125463 0.992098i \(-0.540042\pi\)
−0.125463 + 0.992098i \(0.540042\pi\)
\(258\) 0 0
\(259\) −11.0733 −0.688062
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 27.0960 1.67081 0.835404 0.549636i \(-0.185234\pi\)
0.835404 + 0.549636i \(0.185234\pi\)
\(264\) 0 0
\(265\) 10.0226 0.615686
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.745267 −0.0454397 −0.0227199 0.999742i \(-0.507233\pi\)
−0.0227199 + 0.999742i \(0.507233\pi\)
\(270\) 0 0
\(271\) 20.9946 1.27533 0.637666 0.770313i \(-0.279900\pi\)
0.637666 + 0.770313i \(0.279900\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −6.47467 −0.389025 −0.194513 0.980900i \(-0.562312\pi\)
−0.194513 + 0.980900i \(0.562312\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.05067 −0.0626775 −0.0313387 0.999509i \(-0.509977\pi\)
−0.0313387 + 0.999509i \(0.509977\pi\)
\(282\) 0 0
\(283\) 7.57062 0.450027 0.225013 0.974356i \(-0.427757\pi\)
0.225013 + 0.974356i \(0.427757\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.8987 1.05652
\(288\) 0 0
\(289\) −15.8480 −0.932235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.87602 0.343281 0.171640 0.985160i \(-0.445093\pi\)
0.171640 + 0.985160i \(0.445093\pi\)
\(294\) 0 0
\(295\) 9.54798 0.555905
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.80271 0.277748
\(300\) 0 0
\(301\) −8.94933 −0.515831
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.146623 0.00839560
\(306\) 0 0
\(307\) −17.7172 −1.01118 −0.505588 0.862775i \(-0.668725\pi\)
−0.505588 + 0.862775i \(0.668725\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 14.3507 0.813753 0.406876 0.913483i \(-0.366618\pi\)
0.406876 + 0.913483i \(0.366618\pi\)
\(312\) 0 0
\(313\) 19.3227 1.09218 0.546091 0.837726i \(-0.316115\pi\)
0.546091 + 0.837726i \(0.316115\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 32.0226 1.79857 0.899285 0.437362i \(-0.144087\pi\)
0.899285 + 0.437362i \(0.144087\pi\)
\(318\) 0 0
\(319\) −7.09596 −0.397297
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.29325 −0.238883
\(324\) 0 0
\(325\) 4.47467 0.248210
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −35.8987 −1.97916
\(330\) 0 0
\(331\) −29.8760 −1.64213 −0.821067 0.570831i \(-0.806621\pi\)
−0.821067 + 0.570831i \(0.806621\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.32804 0.236466
\(336\) 0 0
\(337\) 6.47467 0.352698 0.176349 0.984328i \(-0.443571\pi\)
0.176349 + 0.984328i \(0.443571\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) −26.9493 −1.45513
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.24258 −0.496168 −0.248084 0.968739i \(-0.579801\pi\)
−0.248084 + 0.968739i \(0.579801\pi\)
\(348\) 0 0
\(349\) 6.92669 0.370777 0.185389 0.982665i \(-0.440646\pi\)
0.185389 + 0.982665i \(0.440646\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.780066 −0.0415187 −0.0207594 0.999785i \(-0.506608\pi\)
−0.0207594 + 0.999785i \(0.506608\pi\)
\(354\) 0 0
\(355\) 12.4973 0.663288
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −32.3960 −1.70979 −0.854897 0.518797i \(-0.826380\pi\)
−0.854897 + 0.518797i \(0.826380\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −15.4240 −0.807329
\(366\) 0 0
\(367\) 1.89867 0.0991097 0.0495548 0.998771i \(-0.484220\pi\)
0.0495548 + 0.998771i \(0.484220\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 44.8480 2.32839
\(372\) 0 0
\(373\) −29.0960 −1.50653 −0.753266 0.657716i \(-0.771523\pi\)
−0.753266 + 0.657716i \(0.771523\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.8760 0.817657
\(378\) 0 0
\(379\) −29.8987 −1.53579 −0.767896 0.640575i \(-0.778696\pi\)
−0.767896 + 0.640575i \(0.778696\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.8254 1.67730 0.838649 0.544673i \(-0.183346\pi\)
0.838649 + 0.544673i \(0.183346\pi\)
\(384\) 0 0
\(385\) −8.94933 −0.456100
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −33.5480 −1.70095 −0.850475 0.526015i \(-0.823685\pi\)
−0.850475 + 0.526015i \(0.823685\pi\)
\(390\) 0 0
\(391\) −1.15200 −0.0582590
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −9.87602 −0.496917
\(396\) 0 0
\(397\) 10.0453 0.504159 0.252079 0.967707i \(-0.418886\pi\)
0.252079 + 0.967707i \(0.418886\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 29.5933 1.47782 0.738909 0.673806i \(-0.235341\pi\)
0.738909 + 0.673806i \(0.235341\pi\)
\(402\) 0 0
\(403\) −4.47467 −0.222899
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.94933 −0.245329
\(408\) 0 0
\(409\) 5.75205 0.284420 0.142210 0.989836i \(-0.454579\pi\)
0.142210 + 0.989836i \(0.454579\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 42.7240 2.10231
\(414\) 0 0
\(415\) −2.92669 −0.143665
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.5426 1.19898 0.599492 0.800380i \(-0.295369\pi\)
0.599492 + 0.800380i \(0.295369\pi\)
\(420\) 0 0
\(421\) −22.0679 −1.07553 −0.537763 0.843096i \(-0.680730\pi\)
−0.537763 + 0.843096i \(0.680730\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.07331 −0.0520633
\(426\) 0 0
\(427\) 0.656088 0.0317503
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 26.3507 1.26927 0.634634 0.772813i \(-0.281151\pi\)
0.634634 + 0.772813i \(0.281151\pi\)
\(432\) 0 0
\(433\) 29.6159 1.42325 0.711625 0.702559i \(-0.247960\pi\)
0.711625 + 0.702559i \(0.247960\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.29325 0.205374
\(438\) 0 0
\(439\) 27.7973 1.32669 0.663347 0.748312i \(-0.269135\pi\)
0.663347 + 0.748312i \(0.269135\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.2199 0.818144 0.409072 0.912502i \(-0.365853\pi\)
0.409072 + 0.912502i \(0.365853\pi\)
\(444\) 0 0
\(445\) 15.4014 0.730094
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.30540 −0.203184 −0.101592 0.994826i \(-0.532394\pi\)
−0.101592 + 0.994826i \(0.532394\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 20.0226 0.938676
\(456\) 0 0
\(457\) 11.3787 0.532274 0.266137 0.963935i \(-0.414253\pi\)
0.266137 + 0.963935i \(0.414253\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.54798 −0.165246 −0.0826229 0.996581i \(-0.526330\pi\)
−0.0826229 + 0.996581i \(0.526330\pi\)
\(462\) 0 0
\(463\) −41.7520 −1.94038 −0.970191 0.242341i \(-0.922085\pi\)
−0.970191 + 0.242341i \(0.922085\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −29.6281 −1.37102 −0.685512 0.728062i \(-0.740421\pi\)
−0.685512 + 0.728062i \(0.740421\pi\)
\(468\) 0 0
\(469\) 19.3666 0.894265
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 33.4466 1.52822 0.764108 0.645088i \(-0.223179\pi\)
0.764108 + 0.645088i \(0.223179\pi\)
\(480\) 0 0
\(481\) 11.0733 0.504900
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.85338 −0.0841575
\(486\) 0 0
\(487\) 23.3892 1.05987 0.529933 0.848040i \(-0.322217\pi\)
0.529933 + 0.848040i \(0.322217\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −32.7014 −1.47579 −0.737896 0.674914i \(-0.764181\pi\)
−0.737896 + 0.674914i \(0.764181\pi\)
\(492\) 0 0
\(493\) −3.80809 −0.171508
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 55.9213 2.50841
\(498\) 0 0
\(499\) 18.1919 0.814382 0.407191 0.913343i \(-0.366508\pi\)
0.407191 + 0.913343i \(0.366508\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −36.0679 −1.60819 −0.804095 0.594501i \(-0.797350\pi\)
−0.804095 + 0.594501i \(0.797350\pi\)
\(504\) 0 0
\(505\) −1.85338 −0.0824742
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −42.5426 −1.88567 −0.942834 0.333263i \(-0.891850\pi\)
−0.942834 + 0.333263i \(0.891850\pi\)
\(510\) 0 0
\(511\) −69.0173 −3.05314
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.4240 0.679663
\(516\) 0 0
\(517\) −16.0453 −0.705671
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8.29325 −0.363334 −0.181667 0.983360i \(-0.558149\pi\)
−0.181667 + 0.983360i \(0.558149\pi\)
\(522\) 0 0
\(523\) −5.19729 −0.227262 −0.113631 0.993523i \(-0.536248\pi\)
−0.113631 + 0.993523i \(0.536248\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.07331 0.0467542
\(528\) 0 0
\(529\) −21.8480 −0.949913
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −17.8987 −0.775277
\(534\) 0 0
\(535\) −1.21993 −0.0527424
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −26.0453 −1.12185
\(540\) 0 0
\(541\) 43.6281 1.87572 0.937859 0.347018i \(-0.112806\pi\)
0.937859 + 0.347018i \(0.112806\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.07331 −0.217317
\(546\) 0 0
\(547\) 5.52533 0.236246 0.118123 0.992999i \(-0.462312\pi\)
0.118123 + 0.992999i \(0.462312\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14.1919 0.604596
\(552\) 0 0
\(553\) −44.1919 −1.87923
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.0733 0.723419 0.361710 0.932291i \(-0.382193\pi\)
0.361710 + 0.932291i \(0.382193\pi\)
\(558\) 0 0
\(559\) 8.94933 0.378517
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.0733 0.466684 0.233342 0.972395i \(-0.425034\pi\)
0.233342 + 0.972395i \(0.425034\pi\)
\(564\) 0 0
\(565\) 1.05067 0.0442018
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −35.5933 −1.49215 −0.746074 0.665863i \(-0.768063\pi\)
−0.746074 + 0.665863i \(0.768063\pi\)
\(570\) 0 0
\(571\) 34.8933 1.46024 0.730119 0.683320i \(-0.239464\pi\)
0.730119 + 0.683320i \(0.239464\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.07331 0.0447602
\(576\) 0 0
\(577\) −46.8933 −1.95219 −0.976097 0.217337i \(-0.930263\pi\)
−0.976097 + 0.217337i \(0.930263\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.0960 −0.543312
\(582\) 0 0
\(583\) 20.0453 0.830191
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.09596 −0.292881 −0.146441 0.989219i \(-0.546782\pi\)
−0.146441 + 0.989219i \(0.546782\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18.9946 −0.780016 −0.390008 0.920812i \(-0.627528\pi\)
−0.390008 + 0.920812i \(0.627528\pi\)
\(594\) 0 0
\(595\) −4.80271 −0.196892
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.4014 −0.874436 −0.437218 0.899356i \(-0.644036\pi\)
−0.437218 + 0.899356i \(0.644036\pi\)
\(600\) 0 0
\(601\) 17.0507 0.695511 0.347756 0.937585i \(-0.386944\pi\)
0.347756 + 0.937585i \(0.386944\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) −47.2213 −1.91665 −0.958327 0.285672i \(-0.907783\pi\)
−0.958327 + 0.285672i \(0.907783\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 35.8987 1.45230
\(612\) 0 0
\(613\) 13.1308 0.530346 0.265173 0.964201i \(-0.414571\pi\)
0.265173 + 0.964201i \(0.414571\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.6054 1.27239 0.636193 0.771530i \(-0.280508\pi\)
0.636193 + 0.771530i \(0.280508\pi\)
\(618\) 0 0
\(619\) 6.16927 0.247964 0.123982 0.992284i \(-0.460434\pi\)
0.123982 + 0.992284i \(0.460434\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 68.9159 2.76106
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.65609 −0.105905
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.05067 0.121062
\(636\) 0 0
\(637\) 58.2720 2.30882
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −35.5933 −1.40585 −0.702925 0.711264i \(-0.748123\pi\)
−0.702925 + 0.711264i \(0.748123\pi\)
\(642\) 0 0
\(643\) 0.904043 0.0356520 0.0178260 0.999841i \(-0.494326\pi\)
0.0178260 + 0.999841i \(0.494326\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.24795 0.167004 0.0835022 0.996508i \(-0.473389\pi\)
0.0835022 + 0.996508i \(0.473389\pi\)
\(648\) 0 0
\(649\) 19.0960 0.749582
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.0679 −0.472255 −0.236127 0.971722i \(-0.575878\pi\)
−0.236127 + 0.971722i \(0.575878\pi\)
\(654\) 0 0
\(655\) 7.40136 0.289195
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −21.6946 −0.845102 −0.422551 0.906339i \(-0.638865\pi\)
−0.422551 + 0.906339i \(0.638865\pi\)
\(660\) 0 0
\(661\) 5.05067 0.196448 0.0982241 0.995164i \(-0.468684\pi\)
0.0982241 + 0.995164i \(0.468684\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 17.8987 0.694081
\(666\) 0 0
\(667\) 3.80809 0.147450
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.293246 0.0113206
\(672\) 0 0
\(673\) −33.7625 −1.30145 −0.650725 0.759313i \(-0.725535\pi\)
−0.650725 + 0.759313i \(0.725535\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.8760 1.37883 0.689414 0.724368i \(-0.257868\pi\)
0.689414 + 0.724368i \(0.257868\pi\)
\(678\) 0 0
\(679\) −8.29325 −0.318266
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −16.6787 −0.638194 −0.319097 0.947722i \(-0.603380\pi\)
−0.319097 + 0.947722i \(0.603380\pi\)
\(684\) 0 0
\(685\) −14.9720 −0.572050
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −44.8480 −1.70857
\(690\) 0 0
\(691\) −26.8027 −1.01962 −0.509812 0.860286i \(-0.670285\pi\)
−0.509812 + 0.860286i \(0.670285\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.8027 0.561499
\(696\) 0 0
\(697\) 4.29325 0.162618
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12.9493 −0.489090 −0.244545 0.969638i \(-0.578639\pi\)
−0.244545 + 0.969638i \(0.578639\pi\)
\(702\) 0 0
\(703\) 9.89867 0.373335
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.29325 −0.311900
\(708\) 0 0
\(709\) −19.6054 −0.736297 −0.368149 0.929767i \(-0.620008\pi\)
−0.368149 + 0.929767i \(0.620008\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.07331 −0.0401958
\(714\) 0 0
\(715\) 8.94933 0.334686
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.0906 0.823840 0.411920 0.911220i \(-0.364858\pi\)
0.411920 + 0.911220i \(0.364858\pi\)
\(720\) 0 0
\(721\) 69.0173 2.57034
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.54798 0.131769
\(726\) 0 0
\(727\) −12.3280 −0.457222 −0.228611 0.973518i \(-0.573418\pi\)
−0.228611 + 0.973518i \(0.573418\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.14662 −0.0793957
\(732\) 0 0
\(733\) −25.7973 −0.952846 −0.476423 0.879216i \(-0.658067\pi\)
−0.476423 + 0.879216i \(0.658067\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.65609 0.318851
\(738\) 0 0
\(739\) −11.1186 −0.409004 −0.204502 0.978866i \(-0.565558\pi\)
−0.204502 + 0.978866i \(0.565558\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.8027 0.836550 0.418275 0.908320i \(-0.362635\pi\)
0.418275 + 0.908320i \(0.362635\pi\)
\(744\) 0 0
\(745\) −9.89867 −0.362659
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.45880 −0.199460
\(750\) 0 0
\(751\) −0.949334 −0.0346417 −0.0173208 0.999850i \(-0.505514\pi\)
−0.0173208 + 0.999850i \(0.505514\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.92669 0.179301
\(756\) 0 0
\(757\) 36.8132 1.33800 0.668999 0.743263i \(-0.266723\pi\)
0.668999 + 0.743263i \(0.266723\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −35.5480 −1.28861 −0.644307 0.764767i \(-0.722854\pi\)
−0.644307 + 0.764767i \(0.722854\pi\)
\(762\) 0 0
\(763\) −22.7014 −0.821845
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −42.7240 −1.54268
\(768\) 0 0
\(769\) −25.4118 −0.916375 −0.458187 0.888856i \(-0.651501\pi\)
−0.458187 + 0.888856i \(0.651501\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 30.7240 1.10507 0.552533 0.833491i \(-0.313661\pi\)
0.552533 + 0.833491i \(0.313661\pi\)
\(774\) 0 0
\(775\) −1.00000 −0.0359211
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) 24.9946 0.894378
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.00000 0.142766
\(786\) 0 0
\(787\) −24.8933 −0.887350 −0.443675 0.896188i \(-0.646326\pi\)
−0.443675 + 0.896188i \(0.646326\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.70138 0.167162
\(792\) 0 0
\(793\) −0.656088 −0.0232984
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.0733 0.604768 0.302384 0.953186i \(-0.402218\pi\)
0.302384 + 0.953186i \(0.402218\pi\)
\(798\) 0 0
\(799\) −8.61080 −0.304628
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.8480 −1.08860
\(804\) 0 0
\(805\) 4.80271 0.169273
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.45202 −0.0862085 −0.0431042 0.999071i \(-0.513725\pi\)
−0.0431042 + 0.999071i \(0.513725\pi\)
\(810\) 0 0
\(811\) −15.1412 −0.531681 −0.265841 0.964017i \(-0.585649\pi\)
−0.265841 + 0.964017i \(0.585649\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 14.4747 0.507025
\(816\) 0 0
\(817\) 8.00000 0.279885
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.45202 0.0855761 0.0427881 0.999084i \(-0.486376\pi\)
0.0427881 + 0.999084i \(0.486376\pi\)
\(822\) 0 0
\(823\) 30.0453 1.04731 0.523657 0.851929i \(-0.324568\pi\)
0.523657 + 0.851929i \(0.324568\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.9159 1.97916 0.989581 0.143980i \(-0.0459902\pi\)
0.989581 + 0.143980i \(0.0459902\pi\)
\(828\) 0 0
\(829\) −32.8933 −1.14243 −0.571216 0.820800i \(-0.693528\pi\)
−0.571216 + 0.820800i \(0.693528\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.9774 −0.484287
\(834\) 0 0
\(835\) 17.2426 0.596704
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −38.7906 −1.33920 −0.669599 0.742722i \(-0.733534\pi\)
−0.669599 + 0.742722i \(0.733534\pi\)
\(840\) 0 0
\(841\) −16.4118 −0.565926
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −7.02265 −0.241586
\(846\) 0 0
\(847\) 31.3227 1.07626
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.65609 0.0910495
\(852\) 0 0
\(853\) 48.9493 1.67599 0.837997 0.545675i \(-0.183727\pi\)
0.837997 + 0.545675i \(0.183727\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −56.6453 −1.93497 −0.967484 0.252932i \(-0.918605\pi\)
−0.967484 + 0.252932i \(0.918605\pi\)
\(858\) 0 0
\(859\) 37.8987 1.29309 0.646543 0.762878i \(-0.276214\pi\)
0.646543 + 0.762878i \(0.276214\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.1013 0.343853 0.171927 0.985110i \(-0.445001\pi\)
0.171927 + 0.985110i \(0.445001\pi\)
\(864\) 0 0
\(865\) −6.94933 −0.236284
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −19.7520 −0.670042
\(870\) 0 0
\(871\) −19.3666 −0.656211
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.47467 0.151271
\(876\) 0 0
\(877\) −12.7014 −0.428895 −0.214448 0.976736i \(-0.568795\pi\)
−0.214448 + 0.976736i \(0.568795\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 38.5426 1.29853 0.649267 0.760561i \(-0.275076\pi\)
0.649267 + 0.760561i \(0.275076\pi\)
\(882\) 0 0
\(883\) −15.1973 −0.511429 −0.255715 0.966752i \(-0.582311\pi\)
−0.255715 + 0.966752i \(0.582311\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.7294 −0.393835 −0.196917 0.980420i \(-0.563093\pi\)
−0.196917 + 0.980420i \(0.563093\pi\)
\(888\) 0 0
\(889\) 13.6507 0.457830
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 32.0906 1.07387
\(894\) 0 0
\(895\) 5.85338 0.195657
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.54798 −0.118332
\(900\) 0 0
\(901\) 10.7574 0.358382
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 17.7520 0.590098
\(906\) 0 0
\(907\) 42.3280 1.40548 0.702740 0.711447i \(-0.251960\pi\)
0.702740 + 0.711447i \(0.251960\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.8987 0.526746 0.263373 0.964694i \(-0.415165\pi\)
0.263373 + 0.964694i \(0.415165\pi\)
\(912\) 0 0
\(913\) −5.85338 −0.193719
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 33.1186 1.09367
\(918\) 0 0
\(919\) −51.5494 −1.70046 −0.850229 0.526414i \(-0.823536\pi\)
−0.850229 + 0.526414i \(0.823536\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −55.9213 −1.84067
\(924\) 0 0
\(925\) 2.47467 0.0813666
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 27.2547 0.894199 0.447099 0.894484i \(-0.352457\pi\)
0.447099 + 0.894484i \(0.352457\pi\)
\(930\) 0 0
\(931\) 52.0906 1.70720
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.14662 −0.0702021
\(936\) 0 0
\(937\) −51.5494 −1.68404 −0.842022 0.539442i \(-0.818635\pi\)
−0.842022 + 0.539442i \(0.818635\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 38.2946 1.24837 0.624185 0.781277i \(-0.285431\pi\)
0.624185 + 0.781277i \(0.285431\pi\)
\(942\) 0 0
\(943\) −4.29325 −0.139807
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −25.0280 −0.813301 −0.406651 0.913584i \(-0.633303\pi\)
−0.406651 + 0.913584i \(0.633303\pi\)
\(948\) 0 0
\(949\) 69.0173 2.24040
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.825357 0.0267359 0.0133680 0.999911i \(-0.495745\pi\)
0.0133680 + 0.999911i \(0.495745\pi\)
\(954\) 0 0
\(955\) 8.35069 0.270222
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −66.9946 −2.16337
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.00000 0.257529
\(966\) 0 0
\(967\) −10.9493 −0.352107 −0.176053 0.984381i \(-0.556333\pi\)
−0.176053 + 0.984381i \(0.556333\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −35.3000 −1.13283 −0.566416 0.824120i \(-0.691670\pi\)
−0.566416 + 0.824120i \(0.691670\pi\)
\(972\) 0 0
\(973\) 66.2372 2.12347
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −39.6054 −1.26709 −0.633545 0.773706i \(-0.718401\pi\)
−0.633545 + 0.773706i \(0.718401\pi\)
\(978\) 0 0
\(979\) 30.8027 0.984459
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −43.5494 −1.38901 −0.694505 0.719488i \(-0.744376\pi\)
−0.694505 + 0.719488i \(0.744376\pi\)
\(984\) 0 0
\(985\) 6.97198 0.222146
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.14662 0.0682586
\(990\) 0 0
\(991\) 38.8933 1.23549 0.617743 0.786380i \(-0.288047\pi\)
0.617743 + 0.786380i \(0.288047\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.21993 0.165483
\(996\) 0 0
\(997\) 39.2879 1.24426 0.622130 0.782914i \(-0.286268\pi\)
0.622130 + 0.782914i \(0.286268\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5580.2.a.i.1.1 3
3.2 odd 2 1860.2.a.h.1.1 3
12.11 even 2 7440.2.a.bq.1.3 3
15.2 even 4 9300.2.g.r.3349.1 6
15.8 even 4 9300.2.g.r.3349.6 6
15.14 odd 2 9300.2.a.t.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.a.h.1.1 3 3.2 odd 2
5580.2.a.i.1.1 3 1.1 even 1 trivial
7440.2.a.bq.1.3 3 12.11 even 2
9300.2.a.t.1.3 3 15.14 odd 2
9300.2.g.r.3349.1 6 15.2 even 4
9300.2.g.r.3349.6 6 15.8 even 4