Properties

Label 5550.2.a.w.1.1
Level $5550$
Weight $2$
Character 5550.1
Self dual yes
Analytic conductor $44.317$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5550 = 2 \cdot 3 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5550.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.3169731218\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1110)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 5550.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +4.00000 q^{11} -1.00000 q^{12} -2.00000 q^{13} -4.00000 q^{14} +1.00000 q^{16} +2.00000 q^{17} +1.00000 q^{18} +4.00000 q^{21} +4.00000 q^{22} -1.00000 q^{24} -2.00000 q^{26} -1.00000 q^{27} -4.00000 q^{28} -6.00000 q^{29} +1.00000 q^{32} -4.00000 q^{33} +2.00000 q^{34} +1.00000 q^{36} +1.00000 q^{37} +2.00000 q^{39} -6.00000 q^{41} +4.00000 q^{42} -4.00000 q^{43} +4.00000 q^{44} -12.0000 q^{47} -1.00000 q^{48} +9.00000 q^{49} -2.00000 q^{51} -2.00000 q^{52} +6.00000 q^{53} -1.00000 q^{54} -4.00000 q^{56} -6.00000 q^{58} +8.00000 q^{59} +10.0000 q^{61} -4.00000 q^{63} +1.00000 q^{64} -4.00000 q^{66} -4.00000 q^{67} +2.00000 q^{68} +1.00000 q^{72} +6.00000 q^{73} +1.00000 q^{74} -16.0000 q^{77} +2.00000 q^{78} +1.00000 q^{81} -6.00000 q^{82} +4.00000 q^{83} +4.00000 q^{84} -4.00000 q^{86} +6.00000 q^{87} +4.00000 q^{88} -14.0000 q^{89} +8.00000 q^{91} -12.0000 q^{94} -1.00000 q^{96} +10.0000 q^{97} +9.00000 q^{98} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 1.00000 0.235702
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) 4.00000 0.852803
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) −1.00000 −0.192450
\(28\) −4.00000 −0.755929
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.00000 −0.696311
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 4.00000 0.617213
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) −1.00000 −0.144338
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) −2.00000 −0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) −4.00000 −0.534522
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) −4.00000 −0.503953
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.00000 −0.492366
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.00000 0.117851
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 1.00000 0.116248
\(75\) 0 0
\(76\) 0 0
\(77\) −16.0000 −1.82337
\(78\) 2.00000 0.226455
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −6.00000 −0.662589
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) 6.00000 0.643268
\(88\) 4.00000 0.426401
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) −12.0000 −1.23771
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 9.00000 0.909137
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) −2.00000 −0.198030
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) −1.00000 −0.0949158
\(112\) −4.00000 −0.377964
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) −2.00000 −0.184900
\(118\) 8.00000 0.736460
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 10.0000 0.905357
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) 0 0
\(126\) −4.00000 −0.356348
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) −4.00000 −0.348155
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 6.00000 0.496564
\(147\) −9.00000 −0.742307
\(148\) 1.00000 0.0821995
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) −16.0000 −1.28932
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 4.00000 0.308607
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 6.00000 0.454859
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) −8.00000 −0.601317
\(178\) −14.0000 −1.04934
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 8.00000 0.592999
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) −12.0000 −0.875190
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 4.00000 0.284268
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 6.00000 0.422159
\(203\) 24.0000 1.68447
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −14.0000 −0.948200
\(219\) −6.00000 −0.405442
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) −1.00000 −0.0671156
\(223\) 20.0000 1.33930 0.669650 0.742677i \(-0.266444\pi\)
0.669650 + 0.742677i \(0.266444\pi\)
\(224\) −4.00000 −0.267261
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) 0 0
\(229\) −18.0000 −1.18947 −0.594737 0.803921i \(-0.702744\pi\)
−0.594737 + 0.803921i \(0.702744\pi\)
\(230\) 0 0
\(231\) 16.0000 1.05272
\(232\) −6.00000 −0.393919
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) −8.00000 −0.518563
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 5.00000 0.321412
\(243\) −1.00000 −0.0641500
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 0 0
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) −4.00000 −0.251976
\(253\) 0 0
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 4.00000 0.249029
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) −8.00000 −0.494242
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) −4.00000 −0.246183
\(265\) 0 0
\(266\) 0 0
\(267\) 14.0000 0.856786
\(268\) −4.00000 −0.244339
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 2.00000 0.121268
\(273\) −8.00000 −0.484182
\(274\) −10.0000 −0.604122
\(275\) 0 0
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) −14.0000 −0.835170 −0.417585 0.908638i \(-0.637123\pi\)
−0.417585 + 0.908638i \(0.637123\pi\)
\(282\) 12.0000 0.714590
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −8.00000 −0.473050
\(287\) 24.0000 1.41668
\(288\) 1.00000 0.0589256
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 6.00000 0.351123
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) −9.00000 −0.524891
\(295\) 0 0
\(296\) 1.00000 0.0581238
\(297\) −4.00000 −0.232104
\(298\) −10.0000 −0.579284
\(299\) 0 0
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) −16.0000 −0.911685
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 2.00000 0.113228
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) −6.00000 −0.336463
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 14.0000 0.774202
\(328\) −6.00000 −0.331295
\(329\) 48.0000 2.64633
\(330\) 0 0
\(331\) −32.0000 −1.75888 −0.879440 0.476011i \(-0.842082\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(332\) 4.00000 0.219529
\(333\) 1.00000 0.0547997
\(334\) −8.00000 −0.437741
\(335\) 0 0
\(336\) 4.00000 0.218218
\(337\) 30.0000 1.63420 0.817102 0.576493i \(-0.195579\pi\)
0.817102 + 0.576493i \(0.195579\pi\)
\(338\) −9.00000 −0.489535
\(339\) 14.0000 0.760376
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) −2.00000 −0.107521
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 6.00000 0.321634
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 4.00000 0.213201
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) −8.00000 −0.425195
\(355\) 0 0
\(356\) −14.0000 −0.741999
\(357\) 8.00000 0.423405
\(358\) −16.0000 −0.845626
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 14.0000 0.735824
\(363\) −5.00000 −0.262432
\(364\) 8.00000 0.419314
\(365\) 0 0
\(366\) −10.0000 −0.522708
\(367\) 20.0000 1.04399 0.521996 0.852948i \(-0.325188\pi\)
0.521996 + 0.852948i \(0.325188\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) −2.00000 −0.103556 −0.0517780 0.998659i \(-0.516489\pi\)
−0.0517780 + 0.998659i \(0.516489\pi\)
\(374\) 8.00000 0.413670
\(375\) 0 0
\(376\) −12.0000 −0.618853
\(377\) 12.0000 0.618031
\(378\) 4.00000 0.205738
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) −16.0000 −0.818631
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) −4.00000 −0.203331
\(388\) 10.0000 0.507673
\(389\) 34.0000 1.72387 0.861934 0.507020i \(-0.169253\pi\)
0.861934 + 0.507020i \(0.169253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.00000 0.454569
\(393\) 8.00000 0.403547
\(394\) −2.00000 −0.100759
\(395\) 0 0
\(396\) 4.00000 0.201008
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) −24.0000 −1.20301
\(399\) 0 0
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 4.00000 0.199502
\(403\) 0 0
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 24.0000 1.19110
\(407\) 4.00000 0.198273
\(408\) −2.00000 −0.0990148
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) 10.0000 0.493264
\(412\) −8.00000 −0.394132
\(413\) −32.0000 −1.57462
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 4.00000 0.195881
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) −20.0000 −0.973585
\(423\) −12.0000 −0.583460
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) −40.0000 −1.93574
\(428\) −12.0000 −0.580042
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −14.0000 −0.670478
\(437\) 0 0
\(438\) −6.00000 −0.286691
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) −4.00000 −0.190261
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) −1.00000 −0.0474579
\(445\) 0 0
\(446\) 20.0000 0.947027
\(447\) 10.0000 0.472984
\(448\) −4.00000 −0.188982
\(449\) 42.0000 1.98210 0.991051 0.133482i \(-0.0426157\pi\)
0.991051 + 0.133482i \(0.0426157\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) −14.0000 −0.658505
\(453\) 0 0
\(454\) 4.00000 0.187729
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) −18.0000 −0.841085
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) 26.0000 1.21094 0.605470 0.795868i \(-0.292985\pi\)
0.605470 + 0.795868i \(0.292985\pi\)
\(462\) 16.0000 0.744387
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −10.0000 −0.463241
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) 8.00000 0.368230
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 0 0
\(476\) −8.00000 −0.366679
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 18.0000 0.819878
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 10.0000 0.452679
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 6.00000 0.270501
\(493\) −12.0000 −0.540453
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −4.00000 −0.179244
\(499\) 40.0000 1.79065 0.895323 0.445418i \(-0.146945\pi\)
0.895323 + 0.445418i \(0.146945\pi\)
\(500\) 0 0
\(501\) 8.00000 0.357414
\(502\) 24.0000 1.07117
\(503\) −40.0000 −1.78351 −0.891756 0.452517i \(-0.850526\pi\)
−0.891756 + 0.452517i \(0.850526\pi\)
\(504\) −4.00000 −0.178174
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) −12.0000 −0.532414
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) −24.0000 −1.06170
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 4.00000 0.176090
\(517\) −48.0000 −2.11104
\(518\) −4.00000 −0.175750
\(519\) 2.00000 0.0877903
\(520\) 0 0
\(521\) 42.0000 1.84005 0.920027 0.391856i \(-0.128167\pi\)
0.920027 + 0.391856i \(0.128167\pi\)
\(522\) −6.00000 −0.262613
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) −8.00000 −0.349482
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) 0 0
\(528\) −4.00000 −0.174078
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 14.0000 0.605839
\(535\) 0 0
\(536\) −4.00000 −0.172774
\(537\) 16.0000 0.690451
\(538\) −18.0000 −0.776035
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) 26.0000 1.11783 0.558914 0.829226i \(-0.311218\pi\)
0.558914 + 0.829226i \(0.311218\pi\)
\(542\) 8.00000 0.343629
\(543\) −14.0000 −0.600798
\(544\) 2.00000 0.0857493
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −10.0000 −0.427179
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −10.0000 −0.424859
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) −8.00000 −0.337760
\(562\) −14.0000 −0.590554
\(563\) 44.0000 1.85438 0.927189 0.374593i \(-0.122217\pi\)
0.927189 + 0.374593i \(0.122217\pi\)
\(564\) 12.0000 0.505291
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) −4.00000 −0.167984
\(568\) 0 0
\(569\) 2.00000 0.0838444 0.0419222 0.999121i \(-0.486652\pi\)
0.0419222 + 0.999121i \(0.486652\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) −8.00000 −0.334497
\(573\) 16.0000 0.668410
\(574\) 24.0000 1.00174
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 34.0000 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(578\) −13.0000 −0.540729
\(579\) −2.00000 −0.0831172
\(580\) 0 0
\(581\) −16.0000 −0.663792
\(582\) −10.0000 −0.414513
\(583\) 24.0000 0.993978
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) 14.0000 0.578335
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) −9.00000 −0.371154
\(589\) 0 0
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 1.00000 0.0410997
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) −10.0000 −0.409616
\(597\) 24.0000 0.982255
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 16.0000 0.652111
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) 0 0
\(606\) −6.00000 −0.243733
\(607\) −24.0000 −0.974130 −0.487065 0.873366i \(-0.661933\pi\)
−0.487065 + 0.873366i \(0.661933\pi\)
\(608\) 0 0
\(609\) −24.0000 −0.972529
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 2.00000 0.0808452
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) −12.0000 −0.484281
\(615\) 0 0
\(616\) −16.0000 −0.644658
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 8.00000 0.321807
\(619\) −44.0000 −1.76851 −0.884255 0.467005i \(-0.845333\pi\)
−0.884255 + 0.467005i \(0.845333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −16.0000 −0.641542
\(623\) 56.0000 2.24359
\(624\) 2.00000 0.0800641
\(625\) 0 0
\(626\) −6.00000 −0.239808
\(627\) 0 0
\(628\) −10.0000 −0.399043
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 20.0000 0.794929
\(634\) −2.00000 −0.0794301
\(635\) 0 0
\(636\) −6.00000 −0.237915
\(637\) −18.0000 −0.713186
\(638\) −24.0000 −0.950169
\(639\) 0 0
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 12.0000 0.473602
\(643\) −44.0000 −1.73519 −0.867595 0.497271i \(-0.834335\pi\)
−0.867595 + 0.497271i \(0.834335\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 1.00000 0.0392837
\(649\) 32.0000 1.25611
\(650\) 0 0
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 14.0000 0.547443
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 6.00000 0.234082
\(658\) 48.0000 1.87123
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) −32.0000 −1.24372
\(663\) 4.00000 0.155347
\(664\) 4.00000 0.155230
\(665\) 0 0
\(666\) 1.00000 0.0387492
\(667\) 0 0
\(668\) −8.00000 −0.309529
\(669\) −20.0000 −0.773245
\(670\) 0 0
\(671\) 40.0000 1.54418
\(672\) 4.00000 0.154303
\(673\) 38.0000 1.46479 0.732396 0.680879i \(-0.238402\pi\)
0.732396 + 0.680879i \(0.238402\pi\)
\(674\) 30.0000 1.15556
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) 14.0000 0.537667
\(679\) −40.0000 −1.53506
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −8.00000 −0.305441
\(687\) 18.0000 0.686743
\(688\) −4.00000 −0.152499
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) −2.00000 −0.0760286
\(693\) −16.0000 −0.607790
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) 6.00000 0.227429
\(697\) −12.0000 −0.454532
\(698\) 30.0000 1.13552
\(699\) 10.0000 0.378235
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 2.00000 0.0754851
\(703\) 0 0
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) 26.0000 0.978523
\(707\) −24.0000 −0.902613
\(708\) −8.00000 −0.300658
\(709\) −14.0000 −0.525781 −0.262891 0.964826i \(-0.584676\pi\)
−0.262891 + 0.964826i \(0.584676\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −14.0000 −0.524672
\(713\) 0 0
\(714\) 8.00000 0.299392
\(715\) 0 0
\(716\) −16.0000 −0.597948
\(717\) 0 0
\(718\) −24.0000 −0.895672
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) −19.0000 −0.707107
\(723\) −18.0000 −0.669427
\(724\) 14.0000 0.520306
\(725\) 0 0
\(726\) −5.00000 −0.185567
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 8.00000 0.296500
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) −10.0000 −0.369611
\(733\) −34.0000 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(734\) 20.0000 0.738213
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) −6.00000 −0.220863
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −24.0000 −0.881068
\(743\) −28.0000 −1.02722 −0.513610 0.858024i \(-0.671692\pi\)
−0.513610 + 0.858024i \(0.671692\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2.00000 −0.0732252
\(747\) 4.00000 0.146352
\(748\) 8.00000 0.292509
\(749\) 48.0000 1.75388
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) −12.0000 −0.437595
\(753\) −24.0000 −0.874609
\(754\) 12.0000 0.437014
\(755\) 0 0
\(756\) 4.00000 0.145479
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) −20.0000 −0.726433
\(759\) 0 0
\(760\) 0 0
\(761\) −54.0000 −1.95750 −0.978749 0.205061i \(-0.934261\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(762\) 12.0000 0.434714
\(763\) 56.0000 2.02734
\(764\) −16.0000 −0.578860
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) −16.0000 −0.577727
\(768\) −1.00000 −0.0360844
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 2.00000 0.0719816
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) −4.00000 −0.143777
\(775\) 0 0
\(776\) 10.0000 0.358979
\(777\) 4.00000 0.143499
\(778\) 34.0000 1.21896
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 9.00000 0.321429
\(785\) 0 0
\(786\) 8.00000 0.285351
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) −2.00000 −0.0712470
\(789\) −12.0000 −0.427211
\(790\) 0 0
\(791\) 56.0000 1.99113
\(792\) 4.00000 0.142134
\(793\) −20.0000 −0.710221
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) −24.0000 −0.850657
\(797\) −34.0000 −1.20434 −0.602171 0.798367i \(-0.705697\pi\)
−0.602171 + 0.798367i \(0.705697\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) −6.00000 −0.211867
\(803\) 24.0000 0.846942
\(804\) 4.00000 0.141069
\(805\) 0 0
\(806\) 0 0
\(807\) 18.0000 0.633630
\(808\) 6.00000 0.211079
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 24.0000 0.842235
\(813\) −8.00000 −0.280572
\(814\) 4.00000 0.140200
\(815\) 0 0
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) −30.0000 −1.04893
\(819\) 8.00000 0.279543
\(820\) 0 0
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 10.0000 0.348790
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) −32.0000 −1.11342
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) −2.00000 −0.0693375
\(833\) 18.0000 0.623663
\(834\) 4.00000 0.138509
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 20.0000 0.690889
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −6.00000 −0.206774
\(843\) 14.0000 0.482186
\(844\) −20.0000 −0.688428
\(845\) 0 0
\(846\) −12.0000 −0.412568
\(847\) −20.0000 −0.687208
\(848\) 6.00000 0.206041
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) −40.0000 −1.36877
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 8.00000 0.273115
\(859\) −8.00000 −0.272956 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) 0 0
\(863\) 12.0000 0.408485 0.204242 0.978920i \(-0.434527\pi\)
0.204242 + 0.978920i \(0.434527\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 30.0000 1.01944
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) −14.0000 −0.474100
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) 0 0
\(876\) −6.00000 −0.202721
\(877\) −26.0000 −0.877958 −0.438979 0.898497i \(-0.644660\pi\)
−0.438979 + 0.898497i \(0.644660\pi\)
\(878\) −24.0000 −0.809961
\(879\) −14.0000 −0.472208
\(880\) 0 0
\(881\) −46.0000 −1.54978 −0.774890 0.632096i \(-0.782195\pi\)
−0.774890 + 0.632096i \(0.782195\pi\)
\(882\) 9.00000 0.303046
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 44.0000 1.47738 0.738688 0.674048i \(-0.235446\pi\)
0.738688 + 0.674048i \(0.235446\pi\)
\(888\) −1.00000 −0.0335578
\(889\) 48.0000 1.60987
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 20.0000 0.669650
\(893\) 0 0
\(894\) 10.0000 0.334450
\(895\) 0 0
\(896\) −4.00000 −0.133631
\(897\) 0 0
\(898\) 42.0000 1.40156
\(899\) 0 0
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) −24.0000 −0.799113
\(903\) −16.0000 −0.532447
\(904\) −14.0000 −0.465633
\(905\) 0 0
\(906\) 0 0
\(907\) −4.00000 −0.132818 −0.0664089 0.997792i \(-0.521154\pi\)
−0.0664089 + 0.997792i \(0.521154\pi\)
\(908\) 4.00000 0.132745
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 2.00000 0.0661541
\(915\) 0 0
\(916\) −18.0000 −0.594737
\(917\) 32.0000 1.05673
\(918\) −2.00000 −0.0660098
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 12.0000 0.395413
\(922\) 26.0000 0.856264
\(923\) 0 0
\(924\) 16.0000 0.526361
\(925\) 0 0
\(926\) −8.00000 −0.262896
\(927\) −8.00000 −0.262754
\(928\) −6.00000 −0.196960
\(929\) 50.0000 1.64045 0.820223 0.572043i \(-0.193849\pi\)
0.820223 + 0.572043i \(0.193849\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −10.0000 −0.327561
\(933\) 16.0000 0.523816
\(934\) −36.0000 −1.17796
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 16.0000 0.522419
\(939\) 6.00000 0.195803
\(940\) 0 0
\(941\) −10.0000 −0.325991 −0.162995 0.986627i \(-0.552116\pi\)
−0.162995 + 0.986627i \(0.552116\pi\)
\(942\) 10.0000 0.325818
\(943\) 0 0
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) −4.00000 −0.129983 −0.0649913 0.997886i \(-0.520702\pi\)
−0.0649913 + 0.997886i \(0.520702\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) 2.00000 0.0648544
\(952\) −8.00000 −0.259281
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) 0 0
\(957\) 24.0000 0.775810
\(958\) 0 0
\(959\) 40.0000 1.29167
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) −2.00000 −0.0644826
\(963\) −12.0000 −0.386695
\(964\) 18.0000 0.579741
\(965\) 0 0
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 5.00000 0.160706
\(969\) 0 0
\(970\) 0 0
\(971\) 20.0000 0.641831 0.320915 0.947108i \(-0.396010\pi\)
0.320915 + 0.947108i \(0.396010\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 16.0000 0.512936
\(974\) −8.00000 −0.256337
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 4.00000 0.127906
\(979\) −56.0000 −1.78977
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) 36.0000 1.14881
\(983\) 4.00000 0.127580 0.0637901 0.997963i \(-0.479681\pi\)
0.0637901 + 0.997963i \(0.479681\pi\)
\(984\) 6.00000 0.191273
\(985\) 0 0
\(986\) −12.0000 −0.382158
\(987\) −48.0000 −1.52786
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 32.0000 1.01549
\(994\) 0 0
\(995\) 0 0
\(996\) −4.00000 −0.126745
\(997\) 54.0000 1.71020 0.855099 0.518465i \(-0.173497\pi\)
0.855099 + 0.518465i \(0.173497\pi\)
\(998\) 40.0000 1.26618
\(999\) −1.00000 −0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5550.2.a.w.1.1 1
5.4 even 2 1110.2.a.g.1.1 1
15.14 odd 2 3330.2.a.ba.1.1 1
20.19 odd 2 8880.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1110.2.a.g.1.1 1 5.4 even 2
3330.2.a.ba.1.1 1 15.14 odd 2
5550.2.a.w.1.1 1 1.1 even 1 trivial
8880.2.a.a.1.1 1 20.19 odd 2