Properties

Label 5550.2.a.ca.1.2
Level $5550$
Weight $2$
Character 5550.1
Self dual yes
Analytic conductor $44.317$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5550,2,Mod(1,5550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5550.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5550, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5550 = 2 \cdot 3 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5550.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,2,2,0,2,1,2,2,0,3,2,3,1,0,2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.3169731218\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 5550.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} +3.37228 q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.37228 q^{11} +1.00000 q^{12} -1.37228 q^{13} +3.37228 q^{14} +1.00000 q^{16} +1.37228 q^{17} +1.00000 q^{18} -1.37228 q^{19} +3.37228 q^{21} -1.37228 q^{22} -3.37228 q^{23} +1.00000 q^{24} -1.37228 q^{26} +1.00000 q^{27} +3.37228 q^{28} +6.00000 q^{29} +2.74456 q^{31} +1.00000 q^{32} -1.37228 q^{33} +1.37228 q^{34} +1.00000 q^{36} +1.00000 q^{37} -1.37228 q^{38} -1.37228 q^{39} +8.74456 q^{41} +3.37228 q^{42} +4.00000 q^{43} -1.37228 q^{44} -3.37228 q^{46} +4.74456 q^{47} +1.00000 q^{48} +4.37228 q^{49} +1.37228 q^{51} -1.37228 q^{52} -5.37228 q^{53} +1.00000 q^{54} +3.37228 q^{56} -1.37228 q^{57} +6.00000 q^{58} +14.7446 q^{59} -2.74456 q^{61} +2.74456 q^{62} +3.37228 q^{63} +1.00000 q^{64} -1.37228 q^{66} -2.74456 q^{67} +1.37228 q^{68} -3.37228 q^{69} +1.25544 q^{71} +1.00000 q^{72} +4.11684 q^{73} +1.00000 q^{74} -1.37228 q^{76} -4.62772 q^{77} -1.37228 q^{78} +4.00000 q^{79} +1.00000 q^{81} +8.74456 q^{82} -0.627719 q^{83} +3.37228 q^{84} +4.00000 q^{86} +6.00000 q^{87} -1.37228 q^{88} +13.3723 q^{89} -4.62772 q^{91} -3.37228 q^{92} +2.74456 q^{93} +4.74456 q^{94} +1.00000 q^{96} -13.4891 q^{97} +4.37228 q^{98} -1.37228 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{6} + q^{7} + 2 q^{8} + 2 q^{9} + 3 q^{11} + 2 q^{12} + 3 q^{13} + q^{14} + 2 q^{16} - 3 q^{17} + 2 q^{18} + 3 q^{19} + q^{21} + 3 q^{22} - q^{23} + 2 q^{24}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) 3.37228 1.27460 0.637301 0.770615i \(-0.280051\pi\)
0.637301 + 0.770615i \(0.280051\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.37228 −0.413758 −0.206879 0.978366i \(-0.566331\pi\)
−0.206879 + 0.978366i \(0.566331\pi\)
\(12\) 1.00000 0.288675
\(13\) −1.37228 −0.380602 −0.190301 0.981726i \(-0.560946\pi\)
−0.190301 + 0.981726i \(0.560946\pi\)
\(14\) 3.37228 0.901280
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.37228 0.332827 0.166414 0.986056i \(-0.446781\pi\)
0.166414 + 0.986056i \(0.446781\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.37228 −0.314823 −0.157411 0.987533i \(-0.550315\pi\)
−0.157411 + 0.987533i \(0.550315\pi\)
\(20\) 0 0
\(21\) 3.37228 0.735892
\(22\) −1.37228 −0.292571
\(23\) −3.37228 −0.703169 −0.351585 0.936156i \(-0.614357\pi\)
−0.351585 + 0.936156i \(0.614357\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −1.37228 −0.269127
\(27\) 1.00000 0.192450
\(28\) 3.37228 0.637301
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 2.74456 0.492938 0.246469 0.969151i \(-0.420730\pi\)
0.246469 + 0.969151i \(0.420730\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.37228 −0.238884
\(34\) 1.37228 0.235344
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 1.00000 0.164399
\(38\) −1.37228 −0.222613
\(39\) −1.37228 −0.219741
\(40\) 0 0
\(41\) 8.74456 1.36567 0.682836 0.730572i \(-0.260747\pi\)
0.682836 + 0.730572i \(0.260747\pi\)
\(42\) 3.37228 0.520354
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −1.37228 −0.206879
\(45\) 0 0
\(46\) −3.37228 −0.497216
\(47\) 4.74456 0.692066 0.346033 0.938222i \(-0.387529\pi\)
0.346033 + 0.938222i \(0.387529\pi\)
\(48\) 1.00000 0.144338
\(49\) 4.37228 0.624612
\(50\) 0 0
\(51\) 1.37228 0.192158
\(52\) −1.37228 −0.190301
\(53\) −5.37228 −0.737940 −0.368970 0.929441i \(-0.620289\pi\)
−0.368970 + 0.929441i \(0.620289\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 3.37228 0.450640
\(57\) −1.37228 −0.181763
\(58\) 6.00000 0.787839
\(59\) 14.7446 1.91958 0.959789 0.280721i \(-0.0905737\pi\)
0.959789 + 0.280721i \(0.0905737\pi\)
\(60\) 0 0
\(61\) −2.74456 −0.351405 −0.175703 0.984443i \(-0.556220\pi\)
−0.175703 + 0.984443i \(0.556220\pi\)
\(62\) 2.74456 0.348560
\(63\) 3.37228 0.424868
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −1.37228 −0.168916
\(67\) −2.74456 −0.335302 −0.167651 0.985846i \(-0.553618\pi\)
−0.167651 + 0.985846i \(0.553618\pi\)
\(68\) 1.37228 0.166414
\(69\) −3.37228 −0.405975
\(70\) 0 0
\(71\) 1.25544 0.148993 0.0744965 0.997221i \(-0.476265\pi\)
0.0744965 + 0.997221i \(0.476265\pi\)
\(72\) 1.00000 0.117851
\(73\) 4.11684 0.481840 0.240920 0.970545i \(-0.422551\pi\)
0.240920 + 0.970545i \(0.422551\pi\)
\(74\) 1.00000 0.116248
\(75\) 0 0
\(76\) −1.37228 −0.157411
\(77\) −4.62772 −0.527377
\(78\) −1.37228 −0.155380
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 8.74456 0.965675
\(83\) −0.627719 −0.0689011 −0.0344505 0.999406i \(-0.510968\pi\)
−0.0344505 + 0.999406i \(0.510968\pi\)
\(84\) 3.37228 0.367946
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 6.00000 0.643268
\(88\) −1.37228 −0.146286
\(89\) 13.3723 1.41746 0.708729 0.705480i \(-0.249269\pi\)
0.708729 + 0.705480i \(0.249269\pi\)
\(90\) 0 0
\(91\) −4.62772 −0.485117
\(92\) −3.37228 −0.351585
\(93\) 2.74456 0.284598
\(94\) 4.74456 0.489364
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) −13.4891 −1.36961 −0.684807 0.728725i \(-0.740113\pi\)
−0.684807 + 0.728725i \(0.740113\pi\)
\(98\) 4.37228 0.441667
\(99\) −1.37228 −0.137919
\(100\) 0 0
\(101\) 10.7446 1.06912 0.534562 0.845129i \(-0.320477\pi\)
0.534562 + 0.845129i \(0.320477\pi\)
\(102\) 1.37228 0.135876
\(103\) 0.744563 0.0733639 0.0366820 0.999327i \(-0.488321\pi\)
0.0366820 + 0.999327i \(0.488321\pi\)
\(104\) −1.37228 −0.134563
\(105\) 0 0
\(106\) −5.37228 −0.521802
\(107\) −3.37228 −0.326011 −0.163005 0.986625i \(-0.552119\pi\)
−0.163005 + 0.986625i \(0.552119\pi\)
\(108\) 1.00000 0.0962250
\(109\) 4.62772 0.443255 0.221628 0.975131i \(-0.428863\pi\)
0.221628 + 0.975131i \(0.428863\pi\)
\(110\) 0 0
\(111\) 1.00000 0.0949158
\(112\) 3.37228 0.318651
\(113\) −19.4891 −1.83338 −0.916691 0.399596i \(-0.869150\pi\)
−0.916691 + 0.399596i \(0.869150\pi\)
\(114\) −1.37228 −0.128526
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) −1.37228 −0.126867
\(118\) 14.7446 1.35735
\(119\) 4.62772 0.424222
\(120\) 0 0
\(121\) −9.11684 −0.828804
\(122\) −2.74456 −0.248481
\(123\) 8.74456 0.788471
\(124\) 2.74456 0.246469
\(125\) 0 0
\(126\) 3.37228 0.300427
\(127\) −3.37228 −0.299242 −0.149621 0.988743i \(-0.547805\pi\)
−0.149621 + 0.988743i \(0.547805\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −1.37228 −0.119442
\(133\) −4.62772 −0.401274
\(134\) −2.74456 −0.237094
\(135\) 0 0
\(136\) 1.37228 0.117672
\(137\) −10.7446 −0.917970 −0.458985 0.888444i \(-0.651787\pi\)
−0.458985 + 0.888444i \(0.651787\pi\)
\(138\) −3.37228 −0.287068
\(139\) 2.74456 0.232791 0.116395 0.993203i \(-0.462866\pi\)
0.116395 + 0.993203i \(0.462866\pi\)
\(140\) 0 0
\(141\) 4.74456 0.399564
\(142\) 1.25544 0.105354
\(143\) 1.88316 0.157477
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 4.11684 0.340712
\(147\) 4.37228 0.360620
\(148\) 1.00000 0.0821995
\(149\) 9.25544 0.758235 0.379117 0.925349i \(-0.376228\pi\)
0.379117 + 0.925349i \(0.376228\pi\)
\(150\) 0 0
\(151\) −3.37228 −0.274432 −0.137216 0.990541i \(-0.543816\pi\)
−0.137216 + 0.990541i \(0.543816\pi\)
\(152\) −1.37228 −0.111307
\(153\) 1.37228 0.110942
\(154\) −4.62772 −0.372912
\(155\) 0 0
\(156\) −1.37228 −0.109870
\(157\) −3.25544 −0.259812 −0.129906 0.991526i \(-0.541468\pi\)
−0.129906 + 0.991526i \(0.541468\pi\)
\(158\) 4.00000 0.318223
\(159\) −5.37228 −0.426050
\(160\) 0 0
\(161\) −11.3723 −0.896261
\(162\) 1.00000 0.0785674
\(163\) −4.86141 −0.380775 −0.190387 0.981709i \(-0.560974\pi\)
−0.190387 + 0.981709i \(0.560974\pi\)
\(164\) 8.74456 0.682836
\(165\) 0 0
\(166\) −0.627719 −0.0487204
\(167\) 1.88316 0.145723 0.0728615 0.997342i \(-0.476787\pi\)
0.0728615 + 0.997342i \(0.476787\pi\)
\(168\) 3.37228 0.260177
\(169\) −11.1168 −0.855142
\(170\) 0 0
\(171\) −1.37228 −0.104941
\(172\) 4.00000 0.304997
\(173\) 6.86141 0.521663 0.260832 0.965384i \(-0.416003\pi\)
0.260832 + 0.965384i \(0.416003\pi\)
\(174\) 6.00000 0.454859
\(175\) 0 0
\(176\) −1.37228 −0.103440
\(177\) 14.7446 1.10827
\(178\) 13.3723 1.00229
\(179\) 5.48913 0.410276 0.205138 0.978733i \(-0.434236\pi\)
0.205138 + 0.978733i \(0.434236\pi\)
\(180\) 0 0
\(181\) −20.9783 −1.55930 −0.779651 0.626215i \(-0.784603\pi\)
−0.779651 + 0.626215i \(0.784603\pi\)
\(182\) −4.62772 −0.343029
\(183\) −2.74456 −0.202884
\(184\) −3.37228 −0.248608
\(185\) 0 0
\(186\) 2.74456 0.201241
\(187\) −1.88316 −0.137710
\(188\) 4.74456 0.346033
\(189\) 3.37228 0.245297
\(190\) 0 0
\(191\) −19.3723 −1.40173 −0.700865 0.713294i \(-0.747202\pi\)
−0.700865 + 0.713294i \(0.747202\pi\)
\(192\) 1.00000 0.0721688
\(193\) 1.25544 0.0903684 0.0451842 0.998979i \(-0.485613\pi\)
0.0451842 + 0.998979i \(0.485613\pi\)
\(194\) −13.4891 −0.968463
\(195\) 0 0
\(196\) 4.37228 0.312306
\(197\) 18.8614 1.34382 0.671910 0.740633i \(-0.265474\pi\)
0.671910 + 0.740633i \(0.265474\pi\)
\(198\) −1.37228 −0.0975238
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −2.74456 −0.193587
\(202\) 10.7446 0.755985
\(203\) 20.2337 1.42013
\(204\) 1.37228 0.0960789
\(205\) 0 0
\(206\) 0.744563 0.0518761
\(207\) −3.37228 −0.234390
\(208\) −1.37228 −0.0951506
\(209\) 1.88316 0.130261
\(210\) 0 0
\(211\) −9.25544 −0.637171 −0.318585 0.947894i \(-0.603208\pi\)
−0.318585 + 0.947894i \(0.603208\pi\)
\(212\) −5.37228 −0.368970
\(213\) 1.25544 0.0860212
\(214\) −3.37228 −0.230524
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 9.25544 0.628300
\(218\) 4.62772 0.313429
\(219\) 4.11684 0.278191
\(220\) 0 0
\(221\) −1.88316 −0.126675
\(222\) 1.00000 0.0671156
\(223\) −18.9783 −1.27088 −0.635439 0.772151i \(-0.719181\pi\)
−0.635439 + 0.772151i \(0.719181\pi\)
\(224\) 3.37228 0.225320
\(225\) 0 0
\(226\) −19.4891 −1.29640
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) −1.37228 −0.0908816
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) −4.62772 −0.304482
\(232\) 6.00000 0.393919
\(233\) 22.7446 1.49005 0.745023 0.667039i \(-0.232439\pi\)
0.745023 + 0.667039i \(0.232439\pi\)
\(234\) −1.37228 −0.0897088
\(235\) 0 0
\(236\) 14.7446 0.959789
\(237\) 4.00000 0.259828
\(238\) 4.62772 0.299970
\(239\) −5.48913 −0.355062 −0.177531 0.984115i \(-0.556811\pi\)
−0.177531 + 0.984115i \(0.556811\pi\)
\(240\) 0 0
\(241\) −0.510875 −0.0329083 −0.0164542 0.999865i \(-0.505238\pi\)
−0.0164542 + 0.999865i \(0.505238\pi\)
\(242\) −9.11684 −0.586053
\(243\) 1.00000 0.0641500
\(244\) −2.74456 −0.175703
\(245\) 0 0
\(246\) 8.74456 0.557533
\(247\) 1.88316 0.119822
\(248\) 2.74456 0.174280
\(249\) −0.627719 −0.0397801
\(250\) 0 0
\(251\) −26.7446 −1.68810 −0.844051 0.536263i \(-0.819836\pi\)
−0.844051 + 0.536263i \(0.819836\pi\)
\(252\) 3.37228 0.212434
\(253\) 4.62772 0.290942
\(254\) −3.37228 −0.211596
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 5.37228 0.335114 0.167557 0.985862i \(-0.446412\pi\)
0.167557 + 0.985862i \(0.446412\pi\)
\(258\) 4.00000 0.249029
\(259\) 3.37228 0.209543
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) −10.2337 −0.631036 −0.315518 0.948920i \(-0.602178\pi\)
−0.315518 + 0.948920i \(0.602178\pi\)
\(264\) −1.37228 −0.0844581
\(265\) 0 0
\(266\) −4.62772 −0.283744
\(267\) 13.3723 0.818370
\(268\) −2.74456 −0.167651
\(269\) 0.627719 0.0382727 0.0191363 0.999817i \(-0.493908\pi\)
0.0191363 + 0.999817i \(0.493908\pi\)
\(270\) 0 0
\(271\) 13.4891 0.819406 0.409703 0.912219i \(-0.365632\pi\)
0.409703 + 0.912219i \(0.365632\pi\)
\(272\) 1.37228 0.0832068
\(273\) −4.62772 −0.280082
\(274\) −10.7446 −0.649103
\(275\) 0 0
\(276\) −3.37228 −0.202987
\(277\) −25.6060 −1.53851 −0.769257 0.638940i \(-0.779373\pi\)
−0.769257 + 0.638940i \(0.779373\pi\)
\(278\) 2.74456 0.164608
\(279\) 2.74456 0.164313
\(280\) 0 0
\(281\) 1.37228 0.0818634 0.0409317 0.999162i \(-0.486967\pi\)
0.0409317 + 0.999162i \(0.486967\pi\)
\(282\) 4.74456 0.282535
\(283\) 11.6060 0.689903 0.344952 0.938620i \(-0.387895\pi\)
0.344952 + 0.938620i \(0.387895\pi\)
\(284\) 1.25544 0.0744965
\(285\) 0 0
\(286\) 1.88316 0.111353
\(287\) 29.4891 1.74069
\(288\) 1.00000 0.0589256
\(289\) −15.1168 −0.889226
\(290\) 0 0
\(291\) −13.4891 −0.790747
\(292\) 4.11684 0.240920
\(293\) 4.11684 0.240509 0.120254 0.992743i \(-0.461629\pi\)
0.120254 + 0.992743i \(0.461629\pi\)
\(294\) 4.37228 0.254997
\(295\) 0 0
\(296\) 1.00000 0.0581238
\(297\) −1.37228 −0.0796278
\(298\) 9.25544 0.536153
\(299\) 4.62772 0.267628
\(300\) 0 0
\(301\) 13.4891 0.777500
\(302\) −3.37228 −0.194053
\(303\) 10.7446 0.617259
\(304\) −1.37228 −0.0787057
\(305\) 0 0
\(306\) 1.37228 0.0784481
\(307\) 10.7446 0.613225 0.306612 0.951834i \(-0.400805\pi\)
0.306612 + 0.951834i \(0.400805\pi\)
\(308\) −4.62772 −0.263689
\(309\) 0.744563 0.0423567
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) −1.37228 −0.0776901
\(313\) −8.00000 −0.452187 −0.226093 0.974106i \(-0.572595\pi\)
−0.226093 + 0.974106i \(0.572595\pi\)
\(314\) −3.25544 −0.183715
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 16.9783 0.953594 0.476797 0.879014i \(-0.341798\pi\)
0.476797 + 0.879014i \(0.341798\pi\)
\(318\) −5.37228 −0.301263
\(319\) −8.23369 −0.460998
\(320\) 0 0
\(321\) −3.37228 −0.188222
\(322\) −11.3723 −0.633752
\(323\) −1.88316 −0.104782
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −4.86141 −0.269248
\(327\) 4.62772 0.255913
\(328\) 8.74456 0.482838
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) −8.74456 −0.480645 −0.240322 0.970693i \(-0.577253\pi\)
−0.240322 + 0.970693i \(0.577253\pi\)
\(332\) −0.627719 −0.0344505
\(333\) 1.00000 0.0547997
\(334\) 1.88316 0.103042
\(335\) 0 0
\(336\) 3.37228 0.183973
\(337\) 4.11684 0.224259 0.112129 0.993694i \(-0.464233\pi\)
0.112129 + 0.993694i \(0.464233\pi\)
\(338\) −11.1168 −0.604677
\(339\) −19.4891 −1.05850
\(340\) 0 0
\(341\) −3.76631 −0.203957
\(342\) −1.37228 −0.0742045
\(343\) −8.86141 −0.478471
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 6.86141 0.368872
\(347\) −1.48913 −0.0799404 −0.0399702 0.999201i \(-0.512726\pi\)
−0.0399702 + 0.999201i \(0.512726\pi\)
\(348\) 6.00000 0.321634
\(349\) 16.7446 0.896316 0.448158 0.893954i \(-0.352080\pi\)
0.448158 + 0.893954i \(0.352080\pi\)
\(350\) 0 0
\(351\) −1.37228 −0.0732470
\(352\) −1.37228 −0.0731428
\(353\) −3.48913 −0.185707 −0.0928537 0.995680i \(-0.529599\pi\)
−0.0928537 + 0.995680i \(0.529599\pi\)
\(354\) 14.7446 0.783665
\(355\) 0 0
\(356\) 13.3723 0.708729
\(357\) 4.62772 0.244925
\(358\) 5.48913 0.290109
\(359\) 32.4674 1.71356 0.856781 0.515680i \(-0.172461\pi\)
0.856781 + 0.515680i \(0.172461\pi\)
\(360\) 0 0
\(361\) −17.1168 −0.900887
\(362\) −20.9783 −1.10259
\(363\) −9.11684 −0.478510
\(364\) −4.62772 −0.242558
\(365\) 0 0
\(366\) −2.74456 −0.143461
\(367\) −20.6277 −1.07676 −0.538379 0.842703i \(-0.680963\pi\)
−0.538379 + 0.842703i \(0.680963\pi\)
\(368\) −3.37228 −0.175792
\(369\) 8.74456 0.455224
\(370\) 0 0
\(371\) −18.1168 −0.940580
\(372\) 2.74456 0.142299
\(373\) −3.48913 −0.180660 −0.0903300 0.995912i \(-0.528792\pi\)
−0.0903300 + 0.995912i \(0.528792\pi\)
\(374\) −1.88316 −0.0973757
\(375\) 0 0
\(376\) 4.74456 0.244682
\(377\) −8.23369 −0.424057
\(378\) 3.37228 0.173451
\(379\) 24.2337 1.24480 0.622400 0.782699i \(-0.286158\pi\)
0.622400 + 0.782699i \(0.286158\pi\)
\(380\) 0 0
\(381\) −3.37228 −0.172767
\(382\) −19.3723 −0.991172
\(383\) −27.6060 −1.41060 −0.705300 0.708909i \(-0.749188\pi\)
−0.705300 + 0.708909i \(0.749188\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 1.25544 0.0639001
\(387\) 4.00000 0.203331
\(388\) −13.4891 −0.684807
\(389\) 23.4891 1.19095 0.595473 0.803375i \(-0.296965\pi\)
0.595473 + 0.803375i \(0.296965\pi\)
\(390\) 0 0
\(391\) −4.62772 −0.234034
\(392\) 4.37228 0.220834
\(393\) 0 0
\(394\) 18.8614 0.950224
\(395\) 0 0
\(396\) −1.37228 −0.0689597
\(397\) −20.7446 −1.04114 −0.520570 0.853819i \(-0.674280\pi\)
−0.520570 + 0.853819i \(0.674280\pi\)
\(398\) 8.00000 0.401004
\(399\) −4.62772 −0.231676
\(400\) 0 0
\(401\) −36.1168 −1.80359 −0.901795 0.432165i \(-0.857750\pi\)
−0.901795 + 0.432165i \(0.857750\pi\)
\(402\) −2.74456 −0.136886
\(403\) −3.76631 −0.187613
\(404\) 10.7446 0.534562
\(405\) 0 0
\(406\) 20.2337 1.00418
\(407\) −1.37228 −0.0680215
\(408\) 1.37228 0.0679380
\(409\) −8.74456 −0.432391 −0.216195 0.976350i \(-0.569365\pi\)
−0.216195 + 0.976350i \(0.569365\pi\)
\(410\) 0 0
\(411\) −10.7446 −0.529990
\(412\) 0.744563 0.0366820
\(413\) 49.7228 2.44670
\(414\) −3.37228 −0.165739
\(415\) 0 0
\(416\) −1.37228 −0.0672816
\(417\) 2.74456 0.134402
\(418\) 1.88316 0.0921082
\(419\) 7.88316 0.385117 0.192559 0.981285i \(-0.438321\pi\)
0.192559 + 0.981285i \(0.438321\pi\)
\(420\) 0 0
\(421\) 24.2337 1.18108 0.590539 0.807009i \(-0.298915\pi\)
0.590539 + 0.807009i \(0.298915\pi\)
\(422\) −9.25544 −0.450548
\(423\) 4.74456 0.230689
\(424\) −5.37228 −0.260901
\(425\) 0 0
\(426\) 1.25544 0.0608261
\(427\) −9.25544 −0.447902
\(428\) −3.37228 −0.163005
\(429\) 1.88316 0.0909196
\(430\) 0 0
\(431\) −31.6060 −1.52241 −0.761203 0.648514i \(-0.775391\pi\)
−0.761203 + 0.648514i \(0.775391\pi\)
\(432\) 1.00000 0.0481125
\(433\) 10.8614 0.521966 0.260983 0.965343i \(-0.415953\pi\)
0.260983 + 0.965343i \(0.415953\pi\)
\(434\) 9.25544 0.444275
\(435\) 0 0
\(436\) 4.62772 0.221628
\(437\) 4.62772 0.221374
\(438\) 4.11684 0.196710
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 0 0
\(441\) 4.37228 0.208204
\(442\) −1.88316 −0.0895726
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 1.00000 0.0474579
\(445\) 0 0
\(446\) −18.9783 −0.898646
\(447\) 9.25544 0.437767
\(448\) 3.37228 0.159325
\(449\) 36.9783 1.74511 0.872556 0.488515i \(-0.162461\pi\)
0.872556 + 0.488515i \(0.162461\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) −19.4891 −0.916691
\(453\) −3.37228 −0.158444
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) −1.37228 −0.0642630
\(457\) 40.4674 1.89298 0.946492 0.322727i \(-0.104600\pi\)
0.946492 + 0.322727i \(0.104600\pi\)
\(458\) −6.00000 −0.280362
\(459\) 1.37228 0.0640526
\(460\) 0 0
\(461\) 7.48913 0.348803 0.174402 0.984675i \(-0.444201\pi\)
0.174402 + 0.984675i \(0.444201\pi\)
\(462\) −4.62772 −0.215301
\(463\) 19.7228 0.916597 0.458298 0.888798i \(-0.348459\pi\)
0.458298 + 0.888798i \(0.348459\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 22.7446 1.05362
\(467\) −1.48913 −0.0689085 −0.0344543 0.999406i \(-0.510969\pi\)
−0.0344543 + 0.999406i \(0.510969\pi\)
\(468\) −1.37228 −0.0634337
\(469\) −9.25544 −0.427376
\(470\) 0 0
\(471\) −3.25544 −0.150003
\(472\) 14.7446 0.678674
\(473\) −5.48913 −0.252390
\(474\) 4.00000 0.183726
\(475\) 0 0
\(476\) 4.62772 0.212111
\(477\) −5.37228 −0.245980
\(478\) −5.48913 −0.251067
\(479\) −18.1168 −0.827780 −0.413890 0.910327i \(-0.635830\pi\)
−0.413890 + 0.910327i \(0.635830\pi\)
\(480\) 0 0
\(481\) −1.37228 −0.0625706
\(482\) −0.510875 −0.0232697
\(483\) −11.3723 −0.517457
\(484\) −9.11684 −0.414402
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 30.4674 1.38061 0.690304 0.723519i \(-0.257477\pi\)
0.690304 + 0.723519i \(0.257477\pi\)
\(488\) −2.74456 −0.124241
\(489\) −4.86141 −0.219840
\(490\) 0 0
\(491\) 2.62772 0.118587 0.0592936 0.998241i \(-0.481115\pi\)
0.0592936 + 0.998241i \(0.481115\pi\)
\(492\) 8.74456 0.394235
\(493\) 8.23369 0.370827
\(494\) 1.88316 0.0847272
\(495\) 0 0
\(496\) 2.74456 0.123235
\(497\) 4.23369 0.189907
\(498\) −0.627719 −0.0281287
\(499\) 20.3505 0.911015 0.455507 0.890232i \(-0.349458\pi\)
0.455507 + 0.890232i \(0.349458\pi\)
\(500\) 0 0
\(501\) 1.88316 0.0841332
\(502\) −26.7446 −1.19367
\(503\) −5.48913 −0.244748 −0.122374 0.992484i \(-0.539051\pi\)
−0.122374 + 0.992484i \(0.539051\pi\)
\(504\) 3.37228 0.150213
\(505\) 0 0
\(506\) 4.62772 0.205727
\(507\) −11.1168 −0.493716
\(508\) −3.37228 −0.149621
\(509\) 18.3505 0.813373 0.406687 0.913568i \(-0.366684\pi\)
0.406687 + 0.913568i \(0.366684\pi\)
\(510\) 0 0
\(511\) 13.8832 0.614155
\(512\) 1.00000 0.0441942
\(513\) −1.37228 −0.0605877
\(514\) 5.37228 0.236961
\(515\) 0 0
\(516\) 4.00000 0.176090
\(517\) −6.51087 −0.286348
\(518\) 3.37228 0.148170
\(519\) 6.86141 0.301182
\(520\) 0 0
\(521\) −5.76631 −0.252627 −0.126313 0.991990i \(-0.540314\pi\)
−0.126313 + 0.991990i \(0.540314\pi\)
\(522\) 6.00000 0.262613
\(523\) 6.97825 0.305138 0.152569 0.988293i \(-0.451245\pi\)
0.152569 + 0.988293i \(0.451245\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −10.2337 −0.446210
\(527\) 3.76631 0.164063
\(528\) −1.37228 −0.0597209
\(529\) −11.6277 −0.505553
\(530\) 0 0
\(531\) 14.7446 0.639860
\(532\) −4.62772 −0.200637
\(533\) −12.0000 −0.519778
\(534\) 13.3723 0.578675
\(535\) 0 0
\(536\) −2.74456 −0.118547
\(537\) 5.48913 0.236873
\(538\) 0.627719 0.0270629
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) 4.86141 0.209008 0.104504 0.994524i \(-0.466674\pi\)
0.104504 + 0.994524i \(0.466674\pi\)
\(542\) 13.4891 0.579408
\(543\) −20.9783 −0.900263
\(544\) 1.37228 0.0588361
\(545\) 0 0
\(546\) −4.62772 −0.198048
\(547\) 2.11684 0.0905097 0.0452549 0.998975i \(-0.485590\pi\)
0.0452549 + 0.998975i \(0.485590\pi\)
\(548\) −10.7446 −0.458985
\(549\) −2.74456 −0.117135
\(550\) 0 0
\(551\) −8.23369 −0.350767
\(552\) −3.37228 −0.143534
\(553\) 13.4891 0.573616
\(554\) −25.6060 −1.08789
\(555\) 0 0
\(556\) 2.74456 0.116395
\(557\) −40.7446 −1.72640 −0.863201 0.504860i \(-0.831544\pi\)
−0.863201 + 0.504860i \(0.831544\pi\)
\(558\) 2.74456 0.116187
\(559\) −5.48913 −0.232165
\(560\) 0 0
\(561\) −1.88316 −0.0795069
\(562\) 1.37228 0.0578862
\(563\) −13.2554 −0.558650 −0.279325 0.960197i \(-0.590111\pi\)
−0.279325 + 0.960197i \(0.590111\pi\)
\(564\) 4.74456 0.199782
\(565\) 0 0
\(566\) 11.6060 0.487835
\(567\) 3.37228 0.141623
\(568\) 1.25544 0.0526770
\(569\) −32.3505 −1.35620 −0.678102 0.734967i \(-0.737197\pi\)
−0.678102 + 0.734967i \(0.737197\pi\)
\(570\) 0 0
\(571\) −1.25544 −0.0525384 −0.0262692 0.999655i \(-0.508363\pi\)
−0.0262692 + 0.999655i \(0.508363\pi\)
\(572\) 1.88316 0.0787387
\(573\) −19.3723 −0.809289
\(574\) 29.4891 1.23085
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −26.7446 −1.11339 −0.556695 0.830717i \(-0.687931\pi\)
−0.556695 + 0.830717i \(0.687931\pi\)
\(578\) −15.1168 −0.628778
\(579\) 1.25544 0.0521742
\(580\) 0 0
\(581\) −2.11684 −0.0878215
\(582\) −13.4891 −0.559142
\(583\) 7.37228 0.305329
\(584\) 4.11684 0.170356
\(585\) 0 0
\(586\) 4.11684 0.170065
\(587\) −1.48913 −0.0614628 −0.0307314 0.999528i \(-0.509784\pi\)
−0.0307314 + 0.999528i \(0.509784\pi\)
\(588\) 4.37228 0.180310
\(589\) −3.76631 −0.155188
\(590\) 0 0
\(591\) 18.8614 0.775855
\(592\) 1.00000 0.0410997
\(593\) 22.9783 0.943604 0.471802 0.881705i \(-0.343604\pi\)
0.471802 + 0.881705i \(0.343604\pi\)
\(594\) −1.37228 −0.0563054
\(595\) 0 0
\(596\) 9.25544 0.379117
\(597\) 8.00000 0.327418
\(598\) 4.62772 0.189241
\(599\) −22.9783 −0.938866 −0.469433 0.882968i \(-0.655542\pi\)
−0.469433 + 0.882968i \(0.655542\pi\)
\(600\) 0 0
\(601\) 30.8614 1.25886 0.629432 0.777056i \(-0.283288\pi\)
0.629432 + 0.777056i \(0.283288\pi\)
\(602\) 13.4891 0.549776
\(603\) −2.74456 −0.111767
\(604\) −3.37228 −0.137216
\(605\) 0 0
\(606\) 10.7446 0.436468
\(607\) −38.4674 −1.56134 −0.780671 0.624942i \(-0.785123\pi\)
−0.780671 + 0.624942i \(0.785123\pi\)
\(608\) −1.37228 −0.0556534
\(609\) 20.2337 0.819910
\(610\) 0 0
\(611\) −6.51087 −0.263402
\(612\) 1.37228 0.0554712
\(613\) −30.4674 −1.23057 −0.615283 0.788306i \(-0.710958\pi\)
−0.615283 + 0.788306i \(0.710958\pi\)
\(614\) 10.7446 0.433615
\(615\) 0 0
\(616\) −4.62772 −0.186456
\(617\) −32.2337 −1.29768 −0.648840 0.760925i \(-0.724745\pi\)
−0.648840 + 0.760925i \(0.724745\pi\)
\(618\) 0.744563 0.0299507
\(619\) −26.9783 −1.08435 −0.542174 0.840266i \(-0.682399\pi\)
−0.542174 + 0.840266i \(0.682399\pi\)
\(620\) 0 0
\(621\) −3.37228 −0.135325
\(622\) −8.00000 −0.320771
\(623\) 45.0951 1.80670
\(624\) −1.37228 −0.0549352
\(625\) 0 0
\(626\) −8.00000 −0.319744
\(627\) 1.88316 0.0752060
\(628\) −3.25544 −0.129906
\(629\) 1.37228 0.0547164
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 4.00000 0.159111
\(633\) −9.25544 −0.367871
\(634\) 16.9783 0.674292
\(635\) 0 0
\(636\) −5.37228 −0.213025
\(637\) −6.00000 −0.237729
\(638\) −8.23369 −0.325975
\(639\) 1.25544 0.0496643
\(640\) 0 0
\(641\) 43.7228 1.72695 0.863474 0.504394i \(-0.168284\pi\)
0.863474 + 0.504394i \(0.168284\pi\)
\(642\) −3.37228 −0.133093
\(643\) −23.6060 −0.930929 −0.465464 0.885067i \(-0.654113\pi\)
−0.465464 + 0.885067i \(0.654113\pi\)
\(644\) −11.3723 −0.448131
\(645\) 0 0
\(646\) −1.88316 −0.0740918
\(647\) 39.6060 1.55707 0.778536 0.627600i \(-0.215963\pi\)
0.778536 + 0.627600i \(0.215963\pi\)
\(648\) 1.00000 0.0392837
\(649\) −20.2337 −0.794242
\(650\) 0 0
\(651\) 9.25544 0.362749
\(652\) −4.86141 −0.190387
\(653\) −19.7228 −0.771813 −0.385907 0.922538i \(-0.626111\pi\)
−0.385907 + 0.922538i \(0.626111\pi\)
\(654\) 4.62772 0.180958
\(655\) 0 0
\(656\) 8.74456 0.341418
\(657\) 4.11684 0.160613
\(658\) 16.0000 0.623745
\(659\) −2.23369 −0.0870121 −0.0435061 0.999053i \(-0.513853\pi\)
−0.0435061 + 0.999053i \(0.513853\pi\)
\(660\) 0 0
\(661\) −26.1168 −1.01583 −0.507914 0.861408i \(-0.669583\pi\)
−0.507914 + 0.861408i \(0.669583\pi\)
\(662\) −8.74456 −0.339867
\(663\) −1.88316 −0.0731357
\(664\) −0.627719 −0.0243602
\(665\) 0 0
\(666\) 1.00000 0.0387492
\(667\) −20.2337 −0.783452
\(668\) 1.88316 0.0728615
\(669\) −18.9783 −0.733742
\(670\) 0 0
\(671\) 3.76631 0.145397
\(672\) 3.37228 0.130089
\(673\) −2.86141 −0.110299 −0.0551496 0.998478i \(-0.517564\pi\)
−0.0551496 + 0.998478i \(0.517564\pi\)
\(674\) 4.11684 0.158575
\(675\) 0 0
\(676\) −11.1168 −0.427571
\(677\) 2.86141 0.109973 0.0549864 0.998487i \(-0.482488\pi\)
0.0549864 + 0.998487i \(0.482488\pi\)
\(678\) −19.4891 −0.748475
\(679\) −45.4891 −1.74571
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) −3.76631 −0.144220
\(683\) −30.9783 −1.18535 −0.592675 0.805442i \(-0.701928\pi\)
−0.592675 + 0.805442i \(0.701928\pi\)
\(684\) −1.37228 −0.0524705
\(685\) 0 0
\(686\) −8.86141 −0.338330
\(687\) −6.00000 −0.228914
\(688\) 4.00000 0.152499
\(689\) 7.37228 0.280862
\(690\) 0 0
\(691\) 22.7446 0.865244 0.432622 0.901575i \(-0.357588\pi\)
0.432622 + 0.901575i \(0.357588\pi\)
\(692\) 6.86141 0.260832
\(693\) −4.62772 −0.175792
\(694\) −1.48913 −0.0565264
\(695\) 0 0
\(696\) 6.00000 0.227429
\(697\) 12.0000 0.454532
\(698\) 16.7446 0.633791
\(699\) 22.7446 0.860278
\(700\) 0 0
\(701\) −47.7228 −1.80247 −0.901233 0.433335i \(-0.857337\pi\)
−0.901233 + 0.433335i \(0.857337\pi\)
\(702\) −1.37228 −0.0517934
\(703\) −1.37228 −0.0517566
\(704\) −1.37228 −0.0517198
\(705\) 0 0
\(706\) −3.48913 −0.131315
\(707\) 36.2337 1.36271
\(708\) 14.7446 0.554135
\(709\) −20.6277 −0.774690 −0.387345 0.921935i \(-0.626608\pi\)
−0.387345 + 0.921935i \(0.626608\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 13.3723 0.501147
\(713\) −9.25544 −0.346619
\(714\) 4.62772 0.173188
\(715\) 0 0
\(716\) 5.48913 0.205138
\(717\) −5.48913 −0.204995
\(718\) 32.4674 1.21167
\(719\) −13.7228 −0.511775 −0.255887 0.966707i \(-0.582368\pi\)
−0.255887 + 0.966707i \(0.582368\pi\)
\(720\) 0 0
\(721\) 2.51087 0.0935099
\(722\) −17.1168 −0.637023
\(723\) −0.510875 −0.0189996
\(724\) −20.9783 −0.779651
\(725\) 0 0
\(726\) −9.11684 −0.338358
\(727\) −8.97825 −0.332985 −0.166492 0.986043i \(-0.553244\pi\)
−0.166492 + 0.986043i \(0.553244\pi\)
\(728\) −4.62772 −0.171515
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 5.48913 0.203023
\(732\) −2.74456 −0.101442
\(733\) −3.48913 −0.128874 −0.0644369 0.997922i \(-0.520525\pi\)
−0.0644369 + 0.997922i \(0.520525\pi\)
\(734\) −20.6277 −0.761383
\(735\) 0 0
\(736\) −3.37228 −0.124304
\(737\) 3.76631 0.138734
\(738\) 8.74456 0.321892
\(739\) 25.7228 0.946229 0.473114 0.881001i \(-0.343130\pi\)
0.473114 + 0.881001i \(0.343130\pi\)
\(740\) 0 0
\(741\) 1.88316 0.0691795
\(742\) −18.1168 −0.665090
\(743\) −22.4674 −0.824248 −0.412124 0.911128i \(-0.635213\pi\)
−0.412124 + 0.911128i \(0.635213\pi\)
\(744\) 2.74456 0.100621
\(745\) 0 0
\(746\) −3.48913 −0.127746
\(747\) −0.627719 −0.0229670
\(748\) −1.88316 −0.0688550
\(749\) −11.3723 −0.415534
\(750\) 0 0
\(751\) −10.5109 −0.383547 −0.191774 0.981439i \(-0.561424\pi\)
−0.191774 + 0.981439i \(0.561424\pi\)
\(752\) 4.74456 0.173016
\(753\) −26.7446 −0.974626
\(754\) −8.23369 −0.299853
\(755\) 0 0
\(756\) 3.37228 0.122649
\(757\) −44.1168 −1.60345 −0.801727 0.597690i \(-0.796085\pi\)
−0.801727 + 0.597690i \(0.796085\pi\)
\(758\) 24.2337 0.880207
\(759\) 4.62772 0.167976
\(760\) 0 0
\(761\) −12.5109 −0.453519 −0.226759 0.973951i \(-0.572813\pi\)
−0.226759 + 0.973951i \(0.572813\pi\)
\(762\) −3.37228 −0.122165
\(763\) 15.6060 0.564974
\(764\) −19.3723 −0.700865
\(765\) 0 0
\(766\) −27.6060 −0.997444
\(767\) −20.2337 −0.730596
\(768\) 1.00000 0.0360844
\(769\) −51.4891 −1.85675 −0.928373 0.371651i \(-0.878792\pi\)
−0.928373 + 0.371651i \(0.878792\pi\)
\(770\) 0 0
\(771\) 5.37228 0.193478
\(772\) 1.25544 0.0451842
\(773\) −20.1168 −0.723553 −0.361776 0.932265i \(-0.617830\pi\)
−0.361776 + 0.932265i \(0.617830\pi\)
\(774\) 4.00000 0.143777
\(775\) 0 0
\(776\) −13.4891 −0.484231
\(777\) 3.37228 0.120980
\(778\) 23.4891 0.842126
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) −1.72281 −0.0616471
\(782\) −4.62772 −0.165487
\(783\) 6.00000 0.214423
\(784\) 4.37228 0.156153
\(785\) 0 0
\(786\) 0 0
\(787\) −10.7446 −0.383002 −0.191501 0.981492i \(-0.561336\pi\)
−0.191501 + 0.981492i \(0.561336\pi\)
\(788\) 18.8614 0.671910
\(789\) −10.2337 −0.364329
\(790\) 0 0
\(791\) −65.7228 −2.33683
\(792\) −1.37228 −0.0487619
\(793\) 3.76631 0.133746
\(794\) −20.7446 −0.736197
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) −4.51087 −0.159783 −0.0798917 0.996804i \(-0.525457\pi\)
−0.0798917 + 0.996804i \(0.525457\pi\)
\(798\) −4.62772 −0.163819
\(799\) 6.51087 0.230338
\(800\) 0 0
\(801\) 13.3723 0.472486
\(802\) −36.1168 −1.27533
\(803\) −5.64947 −0.199365
\(804\) −2.74456 −0.0967933
\(805\) 0 0
\(806\) −3.76631 −0.132663
\(807\) 0.627719 0.0220967
\(808\) 10.7446 0.377992
\(809\) −24.1168 −0.847903 −0.423952 0.905685i \(-0.639357\pi\)
−0.423952 + 0.905685i \(0.639357\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 20.2337 0.710063
\(813\) 13.4891 0.473084
\(814\) −1.37228 −0.0480984
\(815\) 0 0
\(816\) 1.37228 0.0480395
\(817\) −5.48913 −0.192040
\(818\) −8.74456 −0.305746
\(819\) −4.62772 −0.161706
\(820\) 0 0
\(821\) 26.3505 0.919640 0.459820 0.888012i \(-0.347914\pi\)
0.459820 + 0.888012i \(0.347914\pi\)
\(822\) −10.7446 −0.374760
\(823\) −25.8832 −0.902230 −0.451115 0.892466i \(-0.648974\pi\)
−0.451115 + 0.892466i \(0.648974\pi\)
\(824\) 0.744563 0.0259381
\(825\) 0 0
\(826\) 49.7228 1.73008
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) −3.37228 −0.117195
\(829\) −35.8397 −1.24476 −0.622381 0.782714i \(-0.713835\pi\)
−0.622381 + 0.782714i \(0.713835\pi\)
\(830\) 0 0
\(831\) −25.6060 −0.888261
\(832\) −1.37228 −0.0475753
\(833\) 6.00000 0.207888
\(834\) 2.74456 0.0950364
\(835\) 0 0
\(836\) 1.88316 0.0651303
\(837\) 2.74456 0.0948660
\(838\) 7.88316 0.272319
\(839\) −9.25544 −0.319533 −0.159767 0.987155i \(-0.551074\pi\)
−0.159767 + 0.987155i \(0.551074\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 24.2337 0.835148
\(843\) 1.37228 0.0472639
\(844\) −9.25544 −0.318585
\(845\) 0 0
\(846\) 4.74456 0.163121
\(847\) −30.7446 −1.05640
\(848\) −5.37228 −0.184485
\(849\) 11.6060 0.398316
\(850\) 0 0
\(851\) −3.37228 −0.115600
\(852\) 1.25544 0.0430106
\(853\) −40.3505 −1.38158 −0.690788 0.723057i \(-0.742736\pi\)
−0.690788 + 0.723057i \(0.742736\pi\)
\(854\) −9.25544 −0.316715
\(855\) 0 0
\(856\) −3.37228 −0.115262
\(857\) −17.8397 −0.609391 −0.304696 0.952450i \(-0.598555\pi\)
−0.304696 + 0.952450i \(0.598555\pi\)
\(858\) 1.88316 0.0642899
\(859\) 17.8397 0.608681 0.304341 0.952563i \(-0.401564\pi\)
0.304341 + 0.952563i \(0.401564\pi\)
\(860\) 0 0
\(861\) 29.4891 1.00499
\(862\) −31.6060 −1.07650
\(863\) −3.25544 −0.110816 −0.0554082 0.998464i \(-0.517646\pi\)
−0.0554082 + 0.998464i \(0.517646\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 10.8614 0.369086
\(867\) −15.1168 −0.513395
\(868\) 9.25544 0.314150
\(869\) −5.48913 −0.186206
\(870\) 0 0
\(871\) 3.76631 0.127617
\(872\) 4.62772 0.156714
\(873\) −13.4891 −0.456538
\(874\) 4.62772 0.156535
\(875\) 0 0
\(876\) 4.11684 0.139095
\(877\) 54.2337 1.83134 0.915671 0.401929i \(-0.131660\pi\)
0.915671 + 0.401929i \(0.131660\pi\)
\(878\) −32.0000 −1.07995
\(879\) 4.11684 0.138858
\(880\) 0 0
\(881\) −14.2337 −0.479545 −0.239773 0.970829i \(-0.577073\pi\)
−0.239773 + 0.970829i \(0.577073\pi\)
\(882\) 4.37228 0.147222
\(883\) 50.1168 1.68657 0.843283 0.537470i \(-0.180620\pi\)
0.843283 + 0.537470i \(0.180620\pi\)
\(884\) −1.88316 −0.0633374
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 42.0000 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(888\) 1.00000 0.0335578
\(889\) −11.3723 −0.381414
\(890\) 0 0
\(891\) −1.37228 −0.0459732
\(892\) −18.9783 −0.635439
\(893\) −6.51087 −0.217878
\(894\) 9.25544 0.309548
\(895\) 0 0
\(896\) 3.37228 0.112660
\(897\) 4.62772 0.154515
\(898\) 36.9783 1.23398
\(899\) 16.4674 0.549218
\(900\) 0 0
\(901\) −7.37228 −0.245606
\(902\) −12.0000 −0.399556
\(903\) 13.4891 0.448890
\(904\) −19.4891 −0.648199
\(905\) 0 0
\(906\) −3.37228 −0.112037
\(907\) 3.60597 0.119734 0.0598671 0.998206i \(-0.480932\pi\)
0.0598671 + 0.998206i \(0.480932\pi\)
\(908\) −4.00000 −0.132745
\(909\) 10.7446 0.356375
\(910\) 0 0
\(911\) 34.9783 1.15888 0.579441 0.815014i \(-0.303271\pi\)
0.579441 + 0.815014i \(0.303271\pi\)
\(912\) −1.37228 −0.0454408
\(913\) 0.861407 0.0285084
\(914\) 40.4674 1.33854
\(915\) 0 0
\(916\) −6.00000 −0.198246
\(917\) 0 0
\(918\) 1.37228 0.0452920
\(919\) −34.5109 −1.13841 −0.569204 0.822196i \(-0.692749\pi\)
−0.569204 + 0.822196i \(0.692749\pi\)
\(920\) 0 0
\(921\) 10.7446 0.354045
\(922\) 7.48913 0.246641
\(923\) −1.72281 −0.0567071
\(924\) −4.62772 −0.152241
\(925\) 0 0
\(926\) 19.7228 0.648132
\(927\) 0.744563 0.0244546
\(928\) 6.00000 0.196960
\(929\) −12.5109 −0.410468 −0.205234 0.978713i \(-0.565796\pi\)
−0.205234 + 0.978713i \(0.565796\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 22.7446 0.745023
\(933\) −8.00000 −0.261908
\(934\) −1.48913 −0.0487257
\(935\) 0 0
\(936\) −1.37228 −0.0448544
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) −9.25544 −0.302201
\(939\) −8.00000 −0.261070
\(940\) 0 0
\(941\) 15.7663 0.513967 0.256984 0.966416i \(-0.417271\pi\)
0.256984 + 0.966416i \(0.417271\pi\)
\(942\) −3.25544 −0.106068
\(943\) −29.4891 −0.960298
\(944\) 14.7446 0.479895
\(945\) 0 0
\(946\) −5.48913 −0.178467
\(947\) 28.4674 0.925065 0.462533 0.886602i \(-0.346941\pi\)
0.462533 + 0.886602i \(0.346941\pi\)
\(948\) 4.00000 0.129914
\(949\) −5.64947 −0.183389
\(950\) 0 0
\(951\) 16.9783 0.550557
\(952\) 4.62772 0.149985
\(953\) 50.7446 1.64378 0.821889 0.569648i \(-0.192920\pi\)
0.821889 + 0.569648i \(0.192920\pi\)
\(954\) −5.37228 −0.173934
\(955\) 0 0
\(956\) −5.48913 −0.177531
\(957\) −8.23369 −0.266157
\(958\) −18.1168 −0.585329
\(959\) −36.2337 −1.17005
\(960\) 0 0
\(961\) −23.4674 −0.757012
\(962\) −1.37228 −0.0442441
\(963\) −3.37228 −0.108670
\(964\) −0.510875 −0.0164542
\(965\) 0 0
\(966\) −11.3723 −0.365897
\(967\) 16.9783 0.545984 0.272992 0.962016i \(-0.411987\pi\)
0.272992 + 0.962016i \(0.411987\pi\)
\(968\) −9.11684 −0.293026
\(969\) −1.88316 −0.0604957
\(970\) 0 0
\(971\) 50.2337 1.61208 0.806038 0.591864i \(-0.201608\pi\)
0.806038 + 0.591864i \(0.201608\pi\)
\(972\) 1.00000 0.0320750
\(973\) 9.25544 0.296716
\(974\) 30.4674 0.976238
\(975\) 0 0
\(976\) −2.74456 −0.0878513
\(977\) −25.1386 −0.804255 −0.402127 0.915584i \(-0.631729\pi\)
−0.402127 + 0.915584i \(0.631729\pi\)
\(978\) −4.86141 −0.155451
\(979\) −18.3505 −0.586486
\(980\) 0 0
\(981\) 4.62772 0.147752
\(982\) 2.62772 0.0838539
\(983\) 12.5109 0.399035 0.199517 0.979894i \(-0.436063\pi\)
0.199517 + 0.979894i \(0.436063\pi\)
\(984\) 8.74456 0.278766
\(985\) 0 0
\(986\) 8.23369 0.262214
\(987\) 16.0000 0.509286
\(988\) 1.88316 0.0599112
\(989\) −13.4891 −0.428929
\(990\) 0 0
\(991\) 22.9783 0.729928 0.364964 0.931022i \(-0.381081\pi\)
0.364964 + 0.931022i \(0.381081\pi\)
\(992\) 2.74456 0.0871400
\(993\) −8.74456 −0.277500
\(994\) 4.23369 0.134284
\(995\) 0 0
\(996\) −0.627719 −0.0198900
\(997\) −16.1168 −0.510426 −0.255213 0.966885i \(-0.582146\pi\)
−0.255213 + 0.966885i \(0.582146\pi\)
\(998\) 20.3505 0.644185
\(999\) 1.00000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5550.2.a.ca.1.2 2
5.4 even 2 1110.2.a.p.1.1 2
15.14 odd 2 3330.2.a.be.1.1 2
20.19 odd 2 8880.2.a.br.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1110.2.a.p.1.1 2 5.4 even 2
3330.2.a.be.1.1 2 15.14 odd 2
5550.2.a.ca.1.2 2 1.1 even 1 trivial
8880.2.a.br.1.2 2 20.19 odd 2