Properties

Label 5550.2.a.ca.1.1
Level $5550$
Weight $2$
Character 5550.1
Self dual yes
Analytic conductor $44.317$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5550,2,Mod(1,5550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5550.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5550, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5550 = 2 \cdot 3 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5550.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,2,2,0,2,1,2,2,0,3,2,3,1,0,2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.3169731218\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 5550.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -2.37228 q^{7} +1.00000 q^{8} +1.00000 q^{9} +4.37228 q^{11} +1.00000 q^{12} +4.37228 q^{13} -2.37228 q^{14} +1.00000 q^{16} -4.37228 q^{17} +1.00000 q^{18} +4.37228 q^{19} -2.37228 q^{21} +4.37228 q^{22} +2.37228 q^{23} +1.00000 q^{24} +4.37228 q^{26} +1.00000 q^{27} -2.37228 q^{28} +6.00000 q^{29} -8.74456 q^{31} +1.00000 q^{32} +4.37228 q^{33} -4.37228 q^{34} +1.00000 q^{36} +1.00000 q^{37} +4.37228 q^{38} +4.37228 q^{39} -2.74456 q^{41} -2.37228 q^{42} +4.00000 q^{43} +4.37228 q^{44} +2.37228 q^{46} -6.74456 q^{47} +1.00000 q^{48} -1.37228 q^{49} -4.37228 q^{51} +4.37228 q^{52} +0.372281 q^{53} +1.00000 q^{54} -2.37228 q^{56} +4.37228 q^{57} +6.00000 q^{58} +3.25544 q^{59} +8.74456 q^{61} -8.74456 q^{62} -2.37228 q^{63} +1.00000 q^{64} +4.37228 q^{66} +8.74456 q^{67} -4.37228 q^{68} +2.37228 q^{69} +12.7446 q^{71} +1.00000 q^{72} -13.1168 q^{73} +1.00000 q^{74} +4.37228 q^{76} -10.3723 q^{77} +4.37228 q^{78} +4.00000 q^{79} +1.00000 q^{81} -2.74456 q^{82} -6.37228 q^{83} -2.37228 q^{84} +4.00000 q^{86} +6.00000 q^{87} +4.37228 q^{88} +7.62772 q^{89} -10.3723 q^{91} +2.37228 q^{92} -8.74456 q^{93} -6.74456 q^{94} +1.00000 q^{96} +9.48913 q^{97} -1.37228 q^{98} +4.37228 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{6} + q^{7} + 2 q^{8} + 2 q^{9} + 3 q^{11} + 2 q^{12} + 3 q^{13} + q^{14} + 2 q^{16} - 3 q^{17} + 2 q^{18} + 3 q^{19} + q^{21} + 3 q^{22} - q^{23} + 2 q^{24}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) −2.37228 −0.896638 −0.448319 0.893874i \(-0.647977\pi\)
−0.448319 + 0.893874i \(0.647977\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.37228 1.31829 0.659146 0.752015i \(-0.270918\pi\)
0.659146 + 0.752015i \(0.270918\pi\)
\(12\) 1.00000 0.288675
\(13\) 4.37228 1.21265 0.606326 0.795216i \(-0.292643\pi\)
0.606326 + 0.795216i \(0.292643\pi\)
\(14\) −2.37228 −0.634019
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.37228 −1.06043 −0.530217 0.847862i \(-0.677890\pi\)
−0.530217 + 0.847862i \(0.677890\pi\)
\(18\) 1.00000 0.235702
\(19\) 4.37228 1.00307 0.501535 0.865137i \(-0.332769\pi\)
0.501535 + 0.865137i \(0.332769\pi\)
\(20\) 0 0
\(21\) −2.37228 −0.517674
\(22\) 4.37228 0.932174
\(23\) 2.37228 0.494655 0.247327 0.968932i \(-0.420448\pi\)
0.247327 + 0.968932i \(0.420448\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 4.37228 0.857475
\(27\) 1.00000 0.192450
\(28\) −2.37228 −0.448319
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −8.74456 −1.57057 −0.785285 0.619135i \(-0.787484\pi\)
−0.785285 + 0.619135i \(0.787484\pi\)
\(32\) 1.00000 0.176777
\(33\) 4.37228 0.761116
\(34\) −4.37228 −0.749840
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 1.00000 0.164399
\(38\) 4.37228 0.709278
\(39\) 4.37228 0.700125
\(40\) 0 0
\(41\) −2.74456 −0.428629 −0.214314 0.976765i \(-0.568752\pi\)
−0.214314 + 0.976765i \(0.568752\pi\)
\(42\) −2.37228 −0.366051
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 4.37228 0.659146
\(45\) 0 0
\(46\) 2.37228 0.349774
\(47\) −6.74456 −0.983796 −0.491898 0.870653i \(-0.663697\pi\)
−0.491898 + 0.870653i \(0.663697\pi\)
\(48\) 1.00000 0.144338
\(49\) −1.37228 −0.196040
\(50\) 0 0
\(51\) −4.37228 −0.612242
\(52\) 4.37228 0.606326
\(53\) 0.372281 0.0511368 0.0255684 0.999673i \(-0.491860\pi\)
0.0255684 + 0.999673i \(0.491860\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −2.37228 −0.317009
\(57\) 4.37228 0.579123
\(58\) 6.00000 0.787839
\(59\) 3.25544 0.423822 0.211911 0.977289i \(-0.432031\pi\)
0.211911 + 0.977289i \(0.432031\pi\)
\(60\) 0 0
\(61\) 8.74456 1.11963 0.559813 0.828619i \(-0.310873\pi\)
0.559813 + 0.828619i \(0.310873\pi\)
\(62\) −8.74456 −1.11056
\(63\) −2.37228 −0.298879
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 4.37228 0.538191
\(67\) 8.74456 1.06832 0.534159 0.845384i \(-0.320628\pi\)
0.534159 + 0.845384i \(0.320628\pi\)
\(68\) −4.37228 −0.530217
\(69\) 2.37228 0.285589
\(70\) 0 0
\(71\) 12.7446 1.51250 0.756251 0.654282i \(-0.227029\pi\)
0.756251 + 0.654282i \(0.227029\pi\)
\(72\) 1.00000 0.117851
\(73\) −13.1168 −1.53521 −0.767605 0.640923i \(-0.778552\pi\)
−0.767605 + 0.640923i \(0.778552\pi\)
\(74\) 1.00000 0.116248
\(75\) 0 0
\(76\) 4.37228 0.501535
\(77\) −10.3723 −1.18203
\(78\) 4.37228 0.495063
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −2.74456 −0.303086
\(83\) −6.37228 −0.699449 −0.349724 0.936853i \(-0.613725\pi\)
−0.349724 + 0.936853i \(0.613725\pi\)
\(84\) −2.37228 −0.258837
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 6.00000 0.643268
\(88\) 4.37228 0.466087
\(89\) 7.62772 0.808537 0.404268 0.914640i \(-0.367526\pi\)
0.404268 + 0.914640i \(0.367526\pi\)
\(90\) 0 0
\(91\) −10.3723 −1.08731
\(92\) 2.37228 0.247327
\(93\) −8.74456 −0.906769
\(94\) −6.74456 −0.695649
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 9.48913 0.963475 0.481737 0.876316i \(-0.340006\pi\)
0.481737 + 0.876316i \(0.340006\pi\)
\(98\) −1.37228 −0.138621
\(99\) 4.37228 0.439431
\(100\) 0 0
\(101\) −0.744563 −0.0740868 −0.0370434 0.999314i \(-0.511794\pi\)
−0.0370434 + 0.999314i \(0.511794\pi\)
\(102\) −4.37228 −0.432920
\(103\) −10.7446 −1.05869 −0.529347 0.848406i \(-0.677563\pi\)
−0.529347 + 0.848406i \(0.677563\pi\)
\(104\) 4.37228 0.428737
\(105\) 0 0
\(106\) 0.372281 0.0361592
\(107\) 2.37228 0.229337 0.114669 0.993404i \(-0.463419\pi\)
0.114669 + 0.993404i \(0.463419\pi\)
\(108\) 1.00000 0.0962250
\(109\) 10.3723 0.993484 0.496742 0.867898i \(-0.334529\pi\)
0.496742 + 0.867898i \(0.334529\pi\)
\(110\) 0 0
\(111\) 1.00000 0.0949158
\(112\) −2.37228 −0.224160
\(113\) 3.48913 0.328229 0.164115 0.986441i \(-0.447523\pi\)
0.164115 + 0.986441i \(0.447523\pi\)
\(114\) 4.37228 0.409502
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 4.37228 0.404218
\(118\) 3.25544 0.299687
\(119\) 10.3723 0.950825
\(120\) 0 0
\(121\) 8.11684 0.737895
\(122\) 8.74456 0.791696
\(123\) −2.74456 −0.247469
\(124\) −8.74456 −0.785285
\(125\) 0 0
\(126\) −2.37228 −0.211340
\(127\) 2.37228 0.210506 0.105253 0.994445i \(-0.466435\pi\)
0.105253 + 0.994445i \(0.466435\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 4.37228 0.380558
\(133\) −10.3723 −0.899391
\(134\) 8.74456 0.755415
\(135\) 0 0
\(136\) −4.37228 −0.374920
\(137\) 0.744563 0.0636123 0.0318061 0.999494i \(-0.489874\pi\)
0.0318061 + 0.999494i \(0.489874\pi\)
\(138\) 2.37228 0.201942
\(139\) −8.74456 −0.741704 −0.370852 0.928692i \(-0.620934\pi\)
−0.370852 + 0.928692i \(0.620934\pi\)
\(140\) 0 0
\(141\) −6.74456 −0.567995
\(142\) 12.7446 1.06950
\(143\) 19.1168 1.59863
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −13.1168 −1.08556
\(147\) −1.37228 −0.113184
\(148\) 1.00000 0.0821995
\(149\) 20.7446 1.69946 0.849730 0.527217i \(-0.176765\pi\)
0.849730 + 0.527217i \(0.176765\pi\)
\(150\) 0 0
\(151\) 2.37228 0.193054 0.0965268 0.995330i \(-0.469227\pi\)
0.0965268 + 0.995330i \(0.469227\pi\)
\(152\) 4.37228 0.354639
\(153\) −4.37228 −0.353478
\(154\) −10.3723 −0.835822
\(155\) 0 0
\(156\) 4.37228 0.350063
\(157\) −14.7446 −1.17674 −0.588372 0.808590i \(-0.700231\pi\)
−0.588372 + 0.808590i \(0.700231\pi\)
\(158\) 4.00000 0.318223
\(159\) 0.372281 0.0295238
\(160\) 0 0
\(161\) −5.62772 −0.443526
\(162\) 1.00000 0.0785674
\(163\) 23.8614 1.86897 0.934485 0.356003i \(-0.115861\pi\)
0.934485 + 0.356003i \(0.115861\pi\)
\(164\) −2.74456 −0.214314
\(165\) 0 0
\(166\) −6.37228 −0.494585
\(167\) 19.1168 1.47931 0.739653 0.672989i \(-0.234990\pi\)
0.739653 + 0.672989i \(0.234990\pi\)
\(168\) −2.37228 −0.183025
\(169\) 6.11684 0.470526
\(170\) 0 0
\(171\) 4.37228 0.334357
\(172\) 4.00000 0.304997
\(173\) −21.8614 −1.66209 −0.831046 0.556204i \(-0.812257\pi\)
−0.831046 + 0.556204i \(0.812257\pi\)
\(174\) 6.00000 0.454859
\(175\) 0 0
\(176\) 4.37228 0.329573
\(177\) 3.25544 0.244694
\(178\) 7.62772 0.571722
\(179\) −17.4891 −1.30720 −0.653599 0.756841i \(-0.726742\pi\)
−0.653599 + 0.756841i \(0.726742\pi\)
\(180\) 0 0
\(181\) 24.9783 1.85662 0.928309 0.371809i \(-0.121262\pi\)
0.928309 + 0.371809i \(0.121262\pi\)
\(182\) −10.3723 −0.768845
\(183\) 8.74456 0.646417
\(184\) 2.37228 0.174887
\(185\) 0 0
\(186\) −8.74456 −0.641182
\(187\) −19.1168 −1.39796
\(188\) −6.74456 −0.491898
\(189\) −2.37228 −0.172558
\(190\) 0 0
\(191\) −13.6277 −0.986067 −0.493034 0.870010i \(-0.664112\pi\)
−0.493034 + 0.870010i \(0.664112\pi\)
\(192\) 1.00000 0.0721688
\(193\) 12.7446 0.917374 0.458687 0.888598i \(-0.348320\pi\)
0.458687 + 0.888598i \(0.348320\pi\)
\(194\) 9.48913 0.681279
\(195\) 0 0
\(196\) −1.37228 −0.0980201
\(197\) −9.86141 −0.702596 −0.351298 0.936264i \(-0.614260\pi\)
−0.351298 + 0.936264i \(0.614260\pi\)
\(198\) 4.37228 0.310725
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 8.74456 0.616794
\(202\) −0.744563 −0.0523872
\(203\) −14.2337 −0.999009
\(204\) −4.37228 −0.306121
\(205\) 0 0
\(206\) −10.7446 −0.748609
\(207\) 2.37228 0.164885
\(208\) 4.37228 0.303163
\(209\) 19.1168 1.32234
\(210\) 0 0
\(211\) −20.7446 −1.42811 −0.714057 0.700087i \(-0.753144\pi\)
−0.714057 + 0.700087i \(0.753144\pi\)
\(212\) 0.372281 0.0255684
\(213\) 12.7446 0.873243
\(214\) 2.37228 0.162166
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 20.7446 1.40823
\(218\) 10.3723 0.702500
\(219\) −13.1168 −0.886354
\(220\) 0 0
\(221\) −19.1168 −1.28594
\(222\) 1.00000 0.0671156
\(223\) 26.9783 1.80660 0.903299 0.429012i \(-0.141138\pi\)
0.903299 + 0.429012i \(0.141138\pi\)
\(224\) −2.37228 −0.158505
\(225\) 0 0
\(226\) 3.48913 0.232093
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 4.37228 0.289561
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) −10.3723 −0.682446
\(232\) 6.00000 0.393919
\(233\) 11.2554 0.737368 0.368684 0.929555i \(-0.379808\pi\)
0.368684 + 0.929555i \(0.379808\pi\)
\(234\) 4.37228 0.285825
\(235\) 0 0
\(236\) 3.25544 0.211911
\(237\) 4.00000 0.259828
\(238\) 10.3723 0.672335
\(239\) 17.4891 1.13128 0.565639 0.824653i \(-0.308630\pi\)
0.565639 + 0.824653i \(0.308630\pi\)
\(240\) 0 0
\(241\) −23.4891 −1.51307 −0.756534 0.653955i \(-0.773109\pi\)
−0.756534 + 0.653955i \(0.773109\pi\)
\(242\) 8.11684 0.521770
\(243\) 1.00000 0.0641500
\(244\) 8.74456 0.559813
\(245\) 0 0
\(246\) −2.74456 −0.174987
\(247\) 19.1168 1.21638
\(248\) −8.74456 −0.555280
\(249\) −6.37228 −0.403827
\(250\) 0 0
\(251\) −15.2554 −0.962915 −0.481457 0.876470i \(-0.659892\pi\)
−0.481457 + 0.876470i \(0.659892\pi\)
\(252\) −2.37228 −0.149440
\(253\) 10.3723 0.652100
\(254\) 2.37228 0.148850
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −0.372281 −0.0232223 −0.0116111 0.999933i \(-0.503696\pi\)
−0.0116111 + 0.999933i \(0.503696\pi\)
\(258\) 4.00000 0.249029
\(259\) −2.37228 −0.147406
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 24.2337 1.49431 0.747157 0.664648i \(-0.231418\pi\)
0.747157 + 0.664648i \(0.231418\pi\)
\(264\) 4.37228 0.269095
\(265\) 0 0
\(266\) −10.3723 −0.635965
\(267\) 7.62772 0.466809
\(268\) 8.74456 0.534159
\(269\) 6.37228 0.388525 0.194262 0.980950i \(-0.437769\pi\)
0.194262 + 0.980950i \(0.437769\pi\)
\(270\) 0 0
\(271\) −9.48913 −0.576423 −0.288212 0.957567i \(-0.593061\pi\)
−0.288212 + 0.957567i \(0.593061\pi\)
\(272\) −4.37228 −0.265108
\(273\) −10.3723 −0.627759
\(274\) 0.744563 0.0449807
\(275\) 0 0
\(276\) 2.37228 0.142795
\(277\) 14.6060 0.877588 0.438794 0.898588i \(-0.355406\pi\)
0.438794 + 0.898588i \(0.355406\pi\)
\(278\) −8.74456 −0.524464
\(279\) −8.74456 −0.523523
\(280\) 0 0
\(281\) −4.37228 −0.260828 −0.130414 0.991460i \(-0.541631\pi\)
−0.130414 + 0.991460i \(0.541631\pi\)
\(282\) −6.74456 −0.401633
\(283\) −28.6060 −1.70045 −0.850224 0.526421i \(-0.823534\pi\)
−0.850224 + 0.526421i \(0.823534\pi\)
\(284\) 12.7446 0.756251
\(285\) 0 0
\(286\) 19.1168 1.13040
\(287\) 6.51087 0.384325
\(288\) 1.00000 0.0589256
\(289\) 2.11684 0.124520
\(290\) 0 0
\(291\) 9.48913 0.556262
\(292\) −13.1168 −0.767605
\(293\) −13.1168 −0.766294 −0.383147 0.923687i \(-0.625160\pi\)
−0.383147 + 0.923687i \(0.625160\pi\)
\(294\) −1.37228 −0.0800331
\(295\) 0 0
\(296\) 1.00000 0.0581238
\(297\) 4.37228 0.253705
\(298\) 20.7446 1.20170
\(299\) 10.3723 0.599845
\(300\) 0 0
\(301\) −9.48913 −0.546944
\(302\) 2.37228 0.136509
\(303\) −0.744563 −0.0427740
\(304\) 4.37228 0.250768
\(305\) 0 0
\(306\) −4.37228 −0.249947
\(307\) −0.744563 −0.0424944 −0.0212472 0.999774i \(-0.506764\pi\)
−0.0212472 + 0.999774i \(0.506764\pi\)
\(308\) −10.3723 −0.591016
\(309\) −10.7446 −0.611237
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 4.37228 0.247532
\(313\) −8.00000 −0.452187 −0.226093 0.974106i \(-0.572595\pi\)
−0.226093 + 0.974106i \(0.572595\pi\)
\(314\) −14.7446 −0.832084
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) −28.9783 −1.62758 −0.813790 0.581159i \(-0.802600\pi\)
−0.813790 + 0.581159i \(0.802600\pi\)
\(318\) 0.372281 0.0208765
\(319\) 26.2337 1.46880
\(320\) 0 0
\(321\) 2.37228 0.132408
\(322\) −5.62772 −0.313621
\(323\) −19.1168 −1.06369
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 23.8614 1.32156
\(327\) 10.3723 0.573588
\(328\) −2.74456 −0.151543
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 2.74456 0.150855 0.0754274 0.997151i \(-0.475968\pi\)
0.0754274 + 0.997151i \(0.475968\pi\)
\(332\) −6.37228 −0.349724
\(333\) 1.00000 0.0547997
\(334\) 19.1168 1.04603
\(335\) 0 0
\(336\) −2.37228 −0.129419
\(337\) −13.1168 −0.714520 −0.357260 0.934005i \(-0.616289\pi\)
−0.357260 + 0.934005i \(0.616289\pi\)
\(338\) 6.11684 0.332712
\(339\) 3.48913 0.189503
\(340\) 0 0
\(341\) −38.2337 −2.07047
\(342\) 4.37228 0.236426
\(343\) 19.8614 1.07242
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) −21.8614 −1.17528
\(347\) 21.4891 1.15360 0.576798 0.816887i \(-0.304302\pi\)
0.576798 + 0.816887i \(0.304302\pi\)
\(348\) 6.00000 0.321634
\(349\) 5.25544 0.281317 0.140659 0.990058i \(-0.455078\pi\)
0.140659 + 0.990058i \(0.455078\pi\)
\(350\) 0 0
\(351\) 4.37228 0.233375
\(352\) 4.37228 0.233043
\(353\) 19.4891 1.03730 0.518651 0.854986i \(-0.326435\pi\)
0.518651 + 0.854986i \(0.326435\pi\)
\(354\) 3.25544 0.173025
\(355\) 0 0
\(356\) 7.62772 0.404268
\(357\) 10.3723 0.548959
\(358\) −17.4891 −0.924329
\(359\) −36.4674 −1.92467 −0.962337 0.271858i \(-0.912362\pi\)
−0.962337 + 0.271858i \(0.912362\pi\)
\(360\) 0 0
\(361\) 0.116844 0.00614968
\(362\) 24.9783 1.31283
\(363\) 8.11684 0.426024
\(364\) −10.3723 −0.543655
\(365\) 0 0
\(366\) 8.74456 0.457086
\(367\) −26.3723 −1.37662 −0.688311 0.725416i \(-0.741648\pi\)
−0.688311 + 0.725416i \(0.741648\pi\)
\(368\) 2.37228 0.123664
\(369\) −2.74456 −0.142876
\(370\) 0 0
\(371\) −0.883156 −0.0458512
\(372\) −8.74456 −0.453384
\(373\) 19.4891 1.00911 0.504554 0.863380i \(-0.331657\pi\)
0.504554 + 0.863380i \(0.331657\pi\)
\(374\) −19.1168 −0.988508
\(375\) 0 0
\(376\) −6.74456 −0.347824
\(377\) 26.2337 1.35110
\(378\) −2.37228 −0.122017
\(379\) −10.2337 −0.525669 −0.262835 0.964841i \(-0.584657\pi\)
−0.262835 + 0.964841i \(0.584657\pi\)
\(380\) 0 0
\(381\) 2.37228 0.121536
\(382\) −13.6277 −0.697255
\(383\) 12.6060 0.644135 0.322067 0.946717i \(-0.395622\pi\)
0.322067 + 0.946717i \(0.395622\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 12.7446 0.648681
\(387\) 4.00000 0.203331
\(388\) 9.48913 0.481737
\(389\) 0.510875 0.0259024 0.0129512 0.999916i \(-0.495877\pi\)
0.0129512 + 0.999916i \(0.495877\pi\)
\(390\) 0 0
\(391\) −10.3723 −0.524549
\(392\) −1.37228 −0.0693107
\(393\) 0 0
\(394\) −9.86141 −0.496810
\(395\) 0 0
\(396\) 4.37228 0.219715
\(397\) −9.25544 −0.464517 −0.232259 0.972654i \(-0.574612\pi\)
−0.232259 + 0.972654i \(0.574612\pi\)
\(398\) 8.00000 0.401004
\(399\) −10.3723 −0.519264
\(400\) 0 0
\(401\) −18.8832 −0.942980 −0.471490 0.881871i \(-0.656284\pi\)
−0.471490 + 0.881871i \(0.656284\pi\)
\(402\) 8.74456 0.436139
\(403\) −38.2337 −1.90456
\(404\) −0.744563 −0.0370434
\(405\) 0 0
\(406\) −14.2337 −0.706406
\(407\) 4.37228 0.216726
\(408\) −4.37228 −0.216460
\(409\) 2.74456 0.135710 0.0678549 0.997695i \(-0.478384\pi\)
0.0678549 + 0.997695i \(0.478384\pi\)
\(410\) 0 0
\(411\) 0.744563 0.0367266
\(412\) −10.7446 −0.529347
\(413\) −7.72281 −0.380015
\(414\) 2.37228 0.116591
\(415\) 0 0
\(416\) 4.37228 0.214369
\(417\) −8.74456 −0.428223
\(418\) 19.1168 0.935035
\(419\) 25.1168 1.22704 0.613519 0.789680i \(-0.289753\pi\)
0.613519 + 0.789680i \(0.289753\pi\)
\(420\) 0 0
\(421\) −10.2337 −0.498759 −0.249380 0.968406i \(-0.580227\pi\)
−0.249380 + 0.968406i \(0.580227\pi\)
\(422\) −20.7446 −1.00983
\(423\) −6.74456 −0.327932
\(424\) 0.372281 0.0180796
\(425\) 0 0
\(426\) 12.7446 0.617476
\(427\) −20.7446 −1.00390
\(428\) 2.37228 0.114669
\(429\) 19.1168 0.922970
\(430\) 0 0
\(431\) 8.60597 0.414535 0.207267 0.978284i \(-0.433543\pi\)
0.207267 + 0.978284i \(0.433543\pi\)
\(432\) 1.00000 0.0481125
\(433\) −17.8614 −0.858364 −0.429182 0.903218i \(-0.641198\pi\)
−0.429182 + 0.903218i \(0.641198\pi\)
\(434\) 20.7446 0.995771
\(435\) 0 0
\(436\) 10.3723 0.496742
\(437\) 10.3723 0.496174
\(438\) −13.1168 −0.626747
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 0 0
\(441\) −1.37228 −0.0653467
\(442\) −19.1168 −0.909296
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 1.00000 0.0474579
\(445\) 0 0
\(446\) 26.9783 1.27746
\(447\) 20.7446 0.981184
\(448\) −2.37228 −0.112080
\(449\) −8.97825 −0.423710 −0.211855 0.977301i \(-0.567950\pi\)
−0.211855 + 0.977301i \(0.567950\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) 3.48913 0.164115
\(453\) 2.37228 0.111459
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) 4.37228 0.204751
\(457\) −28.4674 −1.33165 −0.665824 0.746109i \(-0.731920\pi\)
−0.665824 + 0.746109i \(0.731920\pi\)
\(458\) −6.00000 −0.280362
\(459\) −4.37228 −0.204081
\(460\) 0 0
\(461\) −15.4891 −0.721400 −0.360700 0.932682i \(-0.617462\pi\)
−0.360700 + 0.932682i \(0.617462\pi\)
\(462\) −10.3723 −0.482562
\(463\) −37.7228 −1.75313 −0.876564 0.481285i \(-0.840170\pi\)
−0.876564 + 0.481285i \(0.840170\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 11.2554 0.521398
\(467\) 21.4891 0.994398 0.497199 0.867636i \(-0.334362\pi\)
0.497199 + 0.867636i \(0.334362\pi\)
\(468\) 4.37228 0.202109
\(469\) −20.7446 −0.957895
\(470\) 0 0
\(471\) −14.7446 −0.679394
\(472\) 3.25544 0.149844
\(473\) 17.4891 0.804151
\(474\) 4.00000 0.183726
\(475\) 0 0
\(476\) 10.3723 0.475413
\(477\) 0.372281 0.0170456
\(478\) 17.4891 0.799934
\(479\) −0.883156 −0.0403524 −0.0201762 0.999796i \(-0.506423\pi\)
−0.0201762 + 0.999796i \(0.506423\pi\)
\(480\) 0 0
\(481\) 4.37228 0.199359
\(482\) −23.4891 −1.06990
\(483\) −5.62772 −0.256070
\(484\) 8.11684 0.368947
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) −38.4674 −1.74312 −0.871562 0.490286i \(-0.836892\pi\)
−0.871562 + 0.490286i \(0.836892\pi\)
\(488\) 8.74456 0.395848
\(489\) 23.8614 1.07905
\(490\) 0 0
\(491\) 8.37228 0.377836 0.188918 0.981993i \(-0.439502\pi\)
0.188918 + 0.981993i \(0.439502\pi\)
\(492\) −2.74456 −0.123734
\(493\) −26.2337 −1.18151
\(494\) 19.1168 0.860107
\(495\) 0 0
\(496\) −8.74456 −0.392642
\(497\) −30.2337 −1.35617
\(498\) −6.37228 −0.285549
\(499\) −31.3505 −1.40344 −0.701721 0.712452i \(-0.747585\pi\)
−0.701721 + 0.712452i \(0.747585\pi\)
\(500\) 0 0
\(501\) 19.1168 0.854078
\(502\) −15.2554 −0.680883
\(503\) 17.4891 0.779802 0.389901 0.920857i \(-0.372509\pi\)
0.389901 + 0.920857i \(0.372509\pi\)
\(504\) −2.37228 −0.105670
\(505\) 0 0
\(506\) 10.3723 0.461104
\(507\) 6.11684 0.271659
\(508\) 2.37228 0.105253
\(509\) −33.3505 −1.47824 −0.739118 0.673576i \(-0.764758\pi\)
−0.739118 + 0.673576i \(0.764758\pi\)
\(510\) 0 0
\(511\) 31.1168 1.37653
\(512\) 1.00000 0.0441942
\(513\) 4.37228 0.193041
\(514\) −0.372281 −0.0164206
\(515\) 0 0
\(516\) 4.00000 0.176090
\(517\) −29.4891 −1.29693
\(518\) −2.37228 −0.104232
\(519\) −21.8614 −0.959609
\(520\) 0 0
\(521\) −40.2337 −1.76267 −0.881335 0.472492i \(-0.843355\pi\)
−0.881335 + 0.472492i \(0.843355\pi\)
\(522\) 6.00000 0.262613
\(523\) −38.9783 −1.70440 −0.852200 0.523216i \(-0.824732\pi\)
−0.852200 + 0.523216i \(0.824732\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 24.2337 1.05664
\(527\) 38.2337 1.66549
\(528\) 4.37228 0.190279
\(529\) −17.3723 −0.755317
\(530\) 0 0
\(531\) 3.25544 0.141274
\(532\) −10.3723 −0.449695
\(533\) −12.0000 −0.519778
\(534\) 7.62772 0.330084
\(535\) 0 0
\(536\) 8.74456 0.377708
\(537\) −17.4891 −0.754711
\(538\) 6.37228 0.274729
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −23.8614 −1.02588 −0.512941 0.858424i \(-0.671444\pi\)
−0.512941 + 0.858424i \(0.671444\pi\)
\(542\) −9.48913 −0.407593
\(543\) 24.9783 1.07192
\(544\) −4.37228 −0.187460
\(545\) 0 0
\(546\) −10.3723 −0.443893
\(547\) −15.1168 −0.646350 −0.323175 0.946339i \(-0.604750\pi\)
−0.323175 + 0.946339i \(0.604750\pi\)
\(548\) 0.744563 0.0318061
\(549\) 8.74456 0.373209
\(550\) 0 0
\(551\) 26.2337 1.11759
\(552\) 2.37228 0.100971
\(553\) −9.48913 −0.403519
\(554\) 14.6060 0.620548
\(555\) 0 0
\(556\) −8.74456 −0.370852
\(557\) −29.2554 −1.23959 −0.619796 0.784763i \(-0.712785\pi\)
−0.619796 + 0.784763i \(0.712785\pi\)
\(558\) −8.74456 −0.370187
\(559\) 17.4891 0.739711
\(560\) 0 0
\(561\) −19.1168 −0.807114
\(562\) −4.37228 −0.184434
\(563\) −24.7446 −1.04286 −0.521429 0.853294i \(-0.674601\pi\)
−0.521429 + 0.853294i \(0.674601\pi\)
\(564\) −6.74456 −0.283997
\(565\) 0 0
\(566\) −28.6060 −1.20240
\(567\) −2.37228 −0.0996265
\(568\) 12.7446 0.534750
\(569\) 19.3505 0.811216 0.405608 0.914047i \(-0.367060\pi\)
0.405608 + 0.914047i \(0.367060\pi\)
\(570\) 0 0
\(571\) −12.7446 −0.533343 −0.266672 0.963787i \(-0.585924\pi\)
−0.266672 + 0.963787i \(0.585924\pi\)
\(572\) 19.1168 0.799315
\(573\) −13.6277 −0.569306
\(574\) 6.51087 0.271759
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −15.2554 −0.635092 −0.317546 0.948243i \(-0.602859\pi\)
−0.317546 + 0.948243i \(0.602859\pi\)
\(578\) 2.11684 0.0880491
\(579\) 12.7446 0.529646
\(580\) 0 0
\(581\) 15.1168 0.627152
\(582\) 9.48913 0.393337
\(583\) 1.62772 0.0674132
\(584\) −13.1168 −0.542779
\(585\) 0 0
\(586\) −13.1168 −0.541852
\(587\) 21.4891 0.886951 0.443476 0.896286i \(-0.353745\pi\)
0.443476 + 0.896286i \(0.353745\pi\)
\(588\) −1.37228 −0.0565919
\(589\) −38.2337 −1.57539
\(590\) 0 0
\(591\) −9.86141 −0.405644
\(592\) 1.00000 0.0410997
\(593\) −22.9783 −0.943604 −0.471802 0.881705i \(-0.656396\pi\)
−0.471802 + 0.881705i \(0.656396\pi\)
\(594\) 4.37228 0.179397
\(595\) 0 0
\(596\) 20.7446 0.849730
\(597\) 8.00000 0.327418
\(598\) 10.3723 0.424154
\(599\) 22.9783 0.938866 0.469433 0.882968i \(-0.344458\pi\)
0.469433 + 0.882968i \(0.344458\pi\)
\(600\) 0 0
\(601\) 2.13859 0.0872350 0.0436175 0.999048i \(-0.486112\pi\)
0.0436175 + 0.999048i \(0.486112\pi\)
\(602\) −9.48913 −0.386748
\(603\) 8.74456 0.356106
\(604\) 2.37228 0.0965268
\(605\) 0 0
\(606\) −0.744563 −0.0302458
\(607\) 30.4674 1.23663 0.618316 0.785929i \(-0.287815\pi\)
0.618316 + 0.785929i \(0.287815\pi\)
\(608\) 4.37228 0.177319
\(609\) −14.2337 −0.576778
\(610\) 0 0
\(611\) −29.4891 −1.19300
\(612\) −4.37228 −0.176739
\(613\) 38.4674 1.55368 0.776841 0.629696i \(-0.216821\pi\)
0.776841 + 0.629696i \(0.216821\pi\)
\(614\) −0.744563 −0.0300481
\(615\) 0 0
\(616\) −10.3723 −0.417911
\(617\) 2.23369 0.0899249 0.0449624 0.998989i \(-0.485683\pi\)
0.0449624 + 0.998989i \(0.485683\pi\)
\(618\) −10.7446 −0.432210
\(619\) 18.9783 0.762800 0.381400 0.924410i \(-0.375442\pi\)
0.381400 + 0.924410i \(0.375442\pi\)
\(620\) 0 0
\(621\) 2.37228 0.0951964
\(622\) −8.00000 −0.320771
\(623\) −18.0951 −0.724965
\(624\) 4.37228 0.175031
\(625\) 0 0
\(626\) −8.00000 −0.319744
\(627\) 19.1168 0.763453
\(628\) −14.7446 −0.588372
\(629\) −4.37228 −0.174334
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 4.00000 0.159111
\(633\) −20.7446 −0.824522
\(634\) −28.9783 −1.15087
\(635\) 0 0
\(636\) 0.372281 0.0147619
\(637\) −6.00000 −0.237729
\(638\) 26.2337 1.03860
\(639\) 12.7446 0.504167
\(640\) 0 0
\(641\) −13.7228 −0.542019 −0.271009 0.962577i \(-0.587357\pi\)
−0.271009 + 0.962577i \(0.587357\pi\)
\(642\) 2.37228 0.0936265
\(643\) 16.6060 0.654876 0.327438 0.944873i \(-0.393815\pi\)
0.327438 + 0.944873i \(0.393815\pi\)
\(644\) −5.62772 −0.221763
\(645\) 0 0
\(646\) −19.1168 −0.752142
\(647\) −0.605969 −0.0238231 −0.0119116 0.999929i \(-0.503792\pi\)
−0.0119116 + 0.999929i \(0.503792\pi\)
\(648\) 1.00000 0.0392837
\(649\) 14.2337 0.558721
\(650\) 0 0
\(651\) 20.7446 0.813044
\(652\) 23.8614 0.934485
\(653\) 37.7228 1.47621 0.738104 0.674687i \(-0.235721\pi\)
0.738104 + 0.674687i \(0.235721\pi\)
\(654\) 10.3723 0.405588
\(655\) 0 0
\(656\) −2.74456 −0.107157
\(657\) −13.1168 −0.511737
\(658\) 16.0000 0.623745
\(659\) 32.2337 1.25565 0.627823 0.778356i \(-0.283946\pi\)
0.627823 + 0.778356i \(0.283946\pi\)
\(660\) 0 0
\(661\) −8.88316 −0.345515 −0.172757 0.984964i \(-0.555268\pi\)
−0.172757 + 0.984964i \(0.555268\pi\)
\(662\) 2.74456 0.106670
\(663\) −19.1168 −0.742437
\(664\) −6.37228 −0.247292
\(665\) 0 0
\(666\) 1.00000 0.0387492
\(667\) 14.2337 0.551131
\(668\) 19.1168 0.739653
\(669\) 26.9783 1.04304
\(670\) 0 0
\(671\) 38.2337 1.47600
\(672\) −2.37228 −0.0915127
\(673\) 25.8614 0.996884 0.498442 0.866923i \(-0.333906\pi\)
0.498442 + 0.866923i \(0.333906\pi\)
\(674\) −13.1168 −0.505242
\(675\) 0 0
\(676\) 6.11684 0.235263
\(677\) −25.8614 −0.993935 −0.496967 0.867769i \(-0.665553\pi\)
−0.496967 + 0.867769i \(0.665553\pi\)
\(678\) 3.48913 0.133999
\(679\) −22.5109 −0.863888
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) −38.2337 −1.46404
\(683\) 14.9783 0.573127 0.286563 0.958061i \(-0.407487\pi\)
0.286563 + 0.958061i \(0.407487\pi\)
\(684\) 4.37228 0.167178
\(685\) 0 0
\(686\) 19.8614 0.758312
\(687\) −6.00000 −0.228914
\(688\) 4.00000 0.152499
\(689\) 1.62772 0.0620111
\(690\) 0 0
\(691\) 11.2554 0.428177 0.214089 0.976814i \(-0.431322\pi\)
0.214089 + 0.976814i \(0.431322\pi\)
\(692\) −21.8614 −0.831046
\(693\) −10.3723 −0.394010
\(694\) 21.4891 0.815716
\(695\) 0 0
\(696\) 6.00000 0.227429
\(697\) 12.0000 0.454532
\(698\) 5.25544 0.198921
\(699\) 11.2554 0.425720
\(700\) 0 0
\(701\) 9.72281 0.367226 0.183613 0.982999i \(-0.441221\pi\)
0.183613 + 0.982999i \(0.441221\pi\)
\(702\) 4.37228 0.165021
\(703\) 4.37228 0.164904
\(704\) 4.37228 0.164787
\(705\) 0 0
\(706\) 19.4891 0.733483
\(707\) 1.76631 0.0664290
\(708\) 3.25544 0.122347
\(709\) −26.3723 −0.990432 −0.495216 0.868770i \(-0.664911\pi\)
−0.495216 + 0.868770i \(0.664911\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 7.62772 0.285861
\(713\) −20.7446 −0.776890
\(714\) 10.3723 0.388173
\(715\) 0 0
\(716\) −17.4891 −0.653599
\(717\) 17.4891 0.653143
\(718\) −36.4674 −1.36095
\(719\) 43.7228 1.63059 0.815293 0.579049i \(-0.196576\pi\)
0.815293 + 0.579049i \(0.196576\pi\)
\(720\) 0 0
\(721\) 25.4891 0.949265
\(722\) 0.116844 0.00434848
\(723\) −23.4891 −0.873570
\(724\) 24.9783 0.928309
\(725\) 0 0
\(726\) 8.11684 0.301244
\(727\) 36.9783 1.37145 0.685724 0.727862i \(-0.259486\pi\)
0.685724 + 0.727862i \(0.259486\pi\)
\(728\) −10.3723 −0.384422
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −17.4891 −0.646859
\(732\) 8.74456 0.323208
\(733\) 19.4891 0.719847 0.359924 0.932982i \(-0.382803\pi\)
0.359924 + 0.932982i \(0.382803\pi\)
\(734\) −26.3723 −0.973419
\(735\) 0 0
\(736\) 2.37228 0.0874434
\(737\) 38.2337 1.40836
\(738\) −2.74456 −0.101029
\(739\) −31.7228 −1.16694 −0.583471 0.812134i \(-0.698306\pi\)
−0.583471 + 0.812134i \(0.698306\pi\)
\(740\) 0 0
\(741\) 19.1168 0.702275
\(742\) −0.883156 −0.0324217
\(743\) 46.4674 1.70472 0.852361 0.522953i \(-0.175170\pi\)
0.852361 + 0.522953i \(0.175170\pi\)
\(744\) −8.74456 −0.320591
\(745\) 0 0
\(746\) 19.4891 0.713548
\(747\) −6.37228 −0.233150
\(748\) −19.1168 −0.698981
\(749\) −5.62772 −0.205632
\(750\) 0 0
\(751\) −33.4891 −1.22204 −0.611018 0.791617i \(-0.709240\pi\)
−0.611018 + 0.791617i \(0.709240\pi\)
\(752\) −6.74456 −0.245949
\(753\) −15.2554 −0.555939
\(754\) 26.2337 0.955375
\(755\) 0 0
\(756\) −2.37228 −0.0862790
\(757\) −26.8832 −0.977085 −0.488542 0.872540i \(-0.662471\pi\)
−0.488542 + 0.872540i \(0.662471\pi\)
\(758\) −10.2337 −0.371704
\(759\) 10.3723 0.376490
\(760\) 0 0
\(761\) −35.4891 −1.28648 −0.643240 0.765665i \(-0.722410\pi\)
−0.643240 + 0.765665i \(0.722410\pi\)
\(762\) 2.37228 0.0859387
\(763\) −24.6060 −0.890796
\(764\) −13.6277 −0.493034
\(765\) 0 0
\(766\) 12.6060 0.455472
\(767\) 14.2337 0.513949
\(768\) 1.00000 0.0360844
\(769\) −28.5109 −1.02813 −0.514064 0.857752i \(-0.671861\pi\)
−0.514064 + 0.857752i \(0.671861\pi\)
\(770\) 0 0
\(771\) −0.372281 −0.0134074
\(772\) 12.7446 0.458687
\(773\) −2.88316 −0.103700 −0.0518500 0.998655i \(-0.516512\pi\)
−0.0518500 + 0.998655i \(0.516512\pi\)
\(774\) 4.00000 0.143777
\(775\) 0 0
\(776\) 9.48913 0.340640
\(777\) −2.37228 −0.0851051
\(778\) 0.510875 0.0183157
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 55.7228 1.99392
\(782\) −10.3723 −0.370912
\(783\) 6.00000 0.214423
\(784\) −1.37228 −0.0490100
\(785\) 0 0
\(786\) 0 0
\(787\) 0.744563 0.0265408 0.0132704 0.999912i \(-0.495776\pi\)
0.0132704 + 0.999912i \(0.495776\pi\)
\(788\) −9.86141 −0.351298
\(789\) 24.2337 0.862742
\(790\) 0 0
\(791\) −8.27719 −0.294303
\(792\) 4.37228 0.155362
\(793\) 38.2337 1.35772
\(794\) −9.25544 −0.328463
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) −27.4891 −0.973715 −0.486857 0.873481i \(-0.661857\pi\)
−0.486857 + 0.873481i \(0.661857\pi\)
\(798\) −10.3723 −0.367175
\(799\) 29.4891 1.04325
\(800\) 0 0
\(801\) 7.62772 0.269512
\(802\) −18.8832 −0.666787
\(803\) −57.3505 −2.02386
\(804\) 8.74456 0.308397
\(805\) 0 0
\(806\) −38.2337 −1.34672
\(807\) 6.37228 0.224315
\(808\) −0.744563 −0.0261936
\(809\) −6.88316 −0.241999 −0.120999 0.992653i \(-0.538610\pi\)
−0.120999 + 0.992653i \(0.538610\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) −14.2337 −0.499505
\(813\) −9.48913 −0.332798
\(814\) 4.37228 0.153248
\(815\) 0 0
\(816\) −4.37228 −0.153060
\(817\) 17.4891 0.611867
\(818\) 2.74456 0.0959614
\(819\) −10.3723 −0.362437
\(820\) 0 0
\(821\) −25.3505 −0.884740 −0.442370 0.896833i \(-0.645862\pi\)
−0.442370 + 0.896833i \(0.645862\pi\)
\(822\) 0.744563 0.0259696
\(823\) −43.1168 −1.50296 −0.751479 0.659757i \(-0.770659\pi\)
−0.751479 + 0.659757i \(0.770659\pi\)
\(824\) −10.7446 −0.374305
\(825\) 0 0
\(826\) −7.72281 −0.268711
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 2.37228 0.0824425
\(829\) 38.8397 1.34896 0.674479 0.738294i \(-0.264369\pi\)
0.674479 + 0.738294i \(0.264369\pi\)
\(830\) 0 0
\(831\) 14.6060 0.506675
\(832\) 4.37228 0.151582
\(833\) 6.00000 0.207888
\(834\) −8.74456 −0.302799
\(835\) 0 0
\(836\) 19.1168 0.661170
\(837\) −8.74456 −0.302256
\(838\) 25.1168 0.867647
\(839\) −20.7446 −0.716182 −0.358091 0.933687i \(-0.616572\pi\)
−0.358091 + 0.933687i \(0.616572\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −10.2337 −0.352676
\(843\) −4.37228 −0.150589
\(844\) −20.7446 −0.714057
\(845\) 0 0
\(846\) −6.74456 −0.231883
\(847\) −19.2554 −0.661625
\(848\) 0.372281 0.0127842
\(849\) −28.6060 −0.981754
\(850\) 0 0
\(851\) 2.37228 0.0813208
\(852\) 12.7446 0.436622
\(853\) 11.3505 0.388635 0.194317 0.980939i \(-0.437751\pi\)
0.194317 + 0.980939i \(0.437751\pi\)
\(854\) −20.7446 −0.709864
\(855\) 0 0
\(856\) 2.37228 0.0810829
\(857\) 56.8397 1.94161 0.970803 0.239879i \(-0.0771077\pi\)
0.970803 + 0.239879i \(0.0771077\pi\)
\(858\) 19.1168 0.652638
\(859\) −56.8397 −1.93934 −0.969672 0.244410i \(-0.921406\pi\)
−0.969672 + 0.244410i \(0.921406\pi\)
\(860\) 0 0
\(861\) 6.51087 0.221890
\(862\) 8.60597 0.293120
\(863\) −14.7446 −0.501911 −0.250955 0.967999i \(-0.580745\pi\)
−0.250955 + 0.967999i \(0.580745\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −17.8614 −0.606955
\(867\) 2.11684 0.0718918
\(868\) 20.7446 0.704116
\(869\) 17.4891 0.593278
\(870\) 0 0
\(871\) 38.2337 1.29550
\(872\) 10.3723 0.351250
\(873\) 9.48913 0.321158
\(874\) 10.3723 0.350848
\(875\) 0 0
\(876\) −13.1168 −0.443177
\(877\) 19.7663 0.667461 0.333730 0.942669i \(-0.391692\pi\)
0.333730 + 0.942669i \(0.391692\pi\)
\(878\) −32.0000 −1.07995
\(879\) −13.1168 −0.442420
\(880\) 0 0
\(881\) 20.2337 0.681690 0.340845 0.940119i \(-0.389287\pi\)
0.340845 + 0.940119i \(0.389287\pi\)
\(882\) −1.37228 −0.0462071
\(883\) 32.8832 1.10661 0.553303 0.832980i \(-0.313367\pi\)
0.553303 + 0.832980i \(0.313367\pi\)
\(884\) −19.1168 −0.642969
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 42.0000 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(888\) 1.00000 0.0335578
\(889\) −5.62772 −0.188748
\(890\) 0 0
\(891\) 4.37228 0.146477
\(892\) 26.9783 0.903299
\(893\) −29.4891 −0.986816
\(894\) 20.7446 0.693802
\(895\) 0 0
\(896\) −2.37228 −0.0792524
\(897\) 10.3723 0.346320
\(898\) −8.97825 −0.299608
\(899\) −52.4674 −1.74988
\(900\) 0 0
\(901\) −1.62772 −0.0542272
\(902\) −12.0000 −0.399556
\(903\) −9.48913 −0.315778
\(904\) 3.48913 0.116047
\(905\) 0 0
\(906\) 2.37228 0.0788138
\(907\) −36.6060 −1.21548 −0.607741 0.794136i \(-0.707924\pi\)
−0.607741 + 0.794136i \(0.707924\pi\)
\(908\) −4.00000 −0.132745
\(909\) −0.744563 −0.0246956
\(910\) 0 0
\(911\) −10.9783 −0.363726 −0.181863 0.983324i \(-0.558213\pi\)
−0.181863 + 0.983324i \(0.558213\pi\)
\(912\) 4.37228 0.144781
\(913\) −27.8614 −0.922078
\(914\) −28.4674 −0.941617
\(915\) 0 0
\(916\) −6.00000 −0.198246
\(917\) 0 0
\(918\) −4.37228 −0.144307
\(919\) −57.4891 −1.89639 −0.948196 0.317687i \(-0.897094\pi\)
−0.948196 + 0.317687i \(0.897094\pi\)
\(920\) 0 0
\(921\) −0.744563 −0.0245342
\(922\) −15.4891 −0.510107
\(923\) 55.7228 1.83414
\(924\) −10.3723 −0.341223
\(925\) 0 0
\(926\) −37.7228 −1.23965
\(927\) −10.7446 −0.352898
\(928\) 6.00000 0.196960
\(929\) −35.4891 −1.16436 −0.582180 0.813060i \(-0.697800\pi\)
−0.582180 + 0.813060i \(0.697800\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 11.2554 0.368684
\(933\) −8.00000 −0.261908
\(934\) 21.4891 0.703146
\(935\) 0 0
\(936\) 4.37228 0.142912
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) −20.7446 −0.677334
\(939\) −8.00000 −0.261070
\(940\) 0 0
\(941\) 50.2337 1.63757 0.818786 0.574099i \(-0.194648\pi\)
0.818786 + 0.574099i \(0.194648\pi\)
\(942\) −14.7446 −0.480404
\(943\) −6.51087 −0.212023
\(944\) 3.25544 0.105955
\(945\) 0 0
\(946\) 17.4891 0.568621
\(947\) −40.4674 −1.31501 −0.657507 0.753449i \(-0.728389\pi\)
−0.657507 + 0.753449i \(0.728389\pi\)
\(948\) 4.00000 0.129914
\(949\) −57.3505 −1.86168
\(950\) 0 0
\(951\) −28.9783 −0.939684
\(952\) 10.3723 0.336168
\(953\) 39.2554 1.27161 0.635804 0.771850i \(-0.280669\pi\)
0.635804 + 0.771850i \(0.280669\pi\)
\(954\) 0.372281 0.0120531
\(955\) 0 0
\(956\) 17.4891 0.565639
\(957\) 26.2337 0.848015
\(958\) −0.883156 −0.0285335
\(959\) −1.76631 −0.0570372
\(960\) 0 0
\(961\) 45.4674 1.46669
\(962\) 4.37228 0.140968
\(963\) 2.37228 0.0764457
\(964\) −23.4891 −0.756534
\(965\) 0 0
\(966\) −5.62772 −0.181069
\(967\) −28.9783 −0.931878 −0.465939 0.884817i \(-0.654283\pi\)
−0.465939 + 0.884817i \(0.654283\pi\)
\(968\) 8.11684 0.260885
\(969\) −19.1168 −0.614122
\(970\) 0 0
\(971\) 15.7663 0.505965 0.252983 0.967471i \(-0.418588\pi\)
0.252983 + 0.967471i \(0.418588\pi\)
\(972\) 1.00000 0.0320750
\(973\) 20.7446 0.665040
\(974\) −38.4674 −1.23257
\(975\) 0 0
\(976\) 8.74456 0.279907
\(977\) −53.8614 −1.72318 −0.861590 0.507606i \(-0.830531\pi\)
−0.861590 + 0.507606i \(0.830531\pi\)
\(978\) 23.8614 0.763004
\(979\) 33.3505 1.06589
\(980\) 0 0
\(981\) 10.3723 0.331161
\(982\) 8.37228 0.267170
\(983\) 35.4891 1.13193 0.565964 0.824430i \(-0.308504\pi\)
0.565964 + 0.824430i \(0.308504\pi\)
\(984\) −2.74456 −0.0874935
\(985\) 0 0
\(986\) −26.2337 −0.835451
\(987\) 16.0000 0.509286
\(988\) 19.1168 0.608188
\(989\) 9.48913 0.301737
\(990\) 0 0
\(991\) −22.9783 −0.729928 −0.364964 0.931022i \(-0.618919\pi\)
−0.364964 + 0.931022i \(0.618919\pi\)
\(992\) −8.74456 −0.277640
\(993\) 2.74456 0.0870961
\(994\) −30.2337 −0.958954
\(995\) 0 0
\(996\) −6.37228 −0.201913
\(997\) 1.11684 0.0353708 0.0176854 0.999844i \(-0.494370\pi\)
0.0176854 + 0.999844i \(0.494370\pi\)
\(998\) −31.3505 −0.992384
\(999\) 1.00000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5550.2.a.ca.1.1 2
5.4 even 2 1110.2.a.p.1.2 2
15.14 odd 2 3330.2.a.be.1.2 2
20.19 odd 2 8880.2.a.br.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1110.2.a.p.1.2 2 5.4 even 2
3330.2.a.be.1.2 2 15.14 odd 2
5550.2.a.ca.1.1 2 1.1 even 1 trivial
8880.2.a.br.1.1 2 20.19 odd 2