Properties

Label 5550.2.a.bd
Level $5550$
Weight $2$
Character orbit 5550.a
Self dual yes
Analytic conductor $44.317$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5550 = 2 \cdot 3 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5550.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.3169731218\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{6} + 4q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} + q^{4} - q^{6} + 4q^{7} + q^{8} + q^{9} + 6q^{11} - q^{12} - 2q^{13} + 4q^{14} + q^{16} + 6q^{17} + q^{18} + 2q^{19} - 4q^{21} + 6q^{22} - q^{24} - 2q^{26} - q^{27} + 4q^{28} + 6q^{29} + 8q^{31} + q^{32} - 6q^{33} + 6q^{34} + q^{36} - q^{37} + 2q^{38} + 2q^{39} - 6q^{41} - 4q^{42} - 8q^{43} + 6q^{44} - 6q^{47} - q^{48} + 9q^{49} - 6q^{51} - 2q^{52} - 6q^{53} - q^{54} + 4q^{56} - 2q^{57} + 6q^{58} - 12q^{59} + 8q^{61} + 8q^{62} + 4q^{63} + q^{64} - 6q^{66} + 4q^{67} + 6q^{68} + q^{72} - 14q^{73} - q^{74} + 2q^{76} + 24q^{77} + 2q^{78} - 16q^{79} + q^{81} - 6q^{82} + 12q^{83} - 4q^{84} - 8q^{86} - 6q^{87} + 6q^{88} + 6q^{89} - 8q^{91} - 8q^{93} - 6q^{94} - q^{96} - 8q^{97} + 9q^{98} + 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 0 −1.00000 4.00000 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(37\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5550.2.a.bd 1
5.b even 2 1 1110.2.a.h 1
15.d odd 2 1 3330.2.a.m 1
20.d odd 2 1 8880.2.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1110.2.a.h 1 5.b even 2 1
3330.2.a.m 1 15.d odd 2 1
5550.2.a.bd 1 1.a even 1 1 trivial
8880.2.a.n 1 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5550))\):

\( T_{7} - 4 \)
\( T_{11} - 6 \)
\( T_{13} + 2 \)
\( T_{17} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( 1 + T \)
$5$ \( T \)
$7$ \( -4 + T \)
$11$ \( -6 + T \)
$13$ \( 2 + T \)
$17$ \( -6 + T \)
$19$ \( -2 + T \)
$23$ \( T \)
$29$ \( -6 + T \)
$31$ \( -8 + T \)
$37$ \( 1 + T \)
$41$ \( 6 + T \)
$43$ \( 8 + T \)
$47$ \( 6 + T \)
$53$ \( 6 + T \)
$59$ \( 12 + T \)
$61$ \( -8 + T \)
$67$ \( -4 + T \)
$71$ \( T \)
$73$ \( 14 + T \)
$79$ \( 16 + T \)
$83$ \( -12 + T \)
$89$ \( -6 + T \)
$97$ \( 8 + T \)
show more
show less