Properties

Label 555.2.c
Level $555$
Weight $2$
Character orbit 555.c
Rep. character $\chi_{555}(334,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $3$
Sturm bound $152$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 555 = 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 555.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(152\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(555, [\chi])\).

Total New Old
Modular forms 80 36 44
Cusp forms 72 36 36
Eisenstein series 8 0 8

Trace form

\( 36 q - 32 q^{4} - 4 q^{5} - 36 q^{9} + O(q^{10}) \) \( 36 q - 32 q^{4} - 4 q^{5} - 36 q^{9} + 8 q^{11} - 8 q^{14} + 24 q^{16} - 16 q^{19} + 8 q^{20} + 20 q^{25} + 24 q^{26} - 16 q^{29} + 24 q^{31} + 8 q^{34} - 4 q^{35} + 32 q^{36} - 16 q^{39} - 16 q^{40} - 16 q^{44} + 4 q^{45} - 8 q^{46} - 68 q^{49} - 44 q^{50} + 8 q^{51} + 24 q^{55} + 72 q^{56} + 40 q^{59} - 4 q^{60} + 8 q^{61} - 32 q^{64} - 24 q^{65} + 32 q^{66} - 8 q^{69} - 64 q^{70} - 24 q^{71} + 8 q^{75} + 112 q^{76} - 64 q^{79} - 88 q^{80} + 36 q^{81} - 16 q^{84} - 16 q^{85} + 112 q^{86} + 40 q^{91} - 32 q^{94} + 24 q^{95} - 40 q^{96} - 8 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(555, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
555.2.c.a 555.c 5.b $2$ $4.432$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2iq^{2}+iq^{3}-2q^{4}+(-1+2i)q^{5}+\cdots\)
555.2.c.b 555.c 5.b $8$ $4.432$ 8.0.309760000.3 None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{4}+\beta _{5})q^{2}-\beta _{5}q^{3}+(1-\beta _{1}+\cdots)q^{4}+\cdots\)
555.2.c.c 555.c 5.b $26$ $4.432$ None \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(555, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(555, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)