Defining parameters
Level: | \( N \) | \(=\) | \( 555 = 3 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 555.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(152\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(555, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 36 | 44 |
Cusp forms | 72 | 36 | 36 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(555, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
555.2.c.a | $2$ | $4.432$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+2iq^{2}+iq^{3}-2q^{4}+(-1+2i)q^{5}+\cdots\) |
555.2.c.b | $8$ | $4.432$ | 8.0.309760000.3 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{4}+\beta _{5})q^{2}-\beta _{5}q^{3}+(1-\beta _{1}+\cdots)q^{4}+\cdots\) |
555.2.c.c | $26$ | $4.432$ | None | \(0\) | \(0\) | \(-2\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(555, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(555, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 2}\)