Properties

Label 5520.2.a.u
Level $5520$
Weight $2$
Character orbit 5520.a
Self dual yes
Analytic conductor $44.077$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5520 = 2^{4} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5520.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.0774219157\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} - q^{5} - q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} - q^{5} - q^{7} + q^{9} - 4 q^{11} - q^{15} + 5 q^{17} - q^{21} - q^{23} + q^{25} + q^{27} + 5 q^{29} - 3 q^{31} - 4 q^{33} + q^{35} - 5 q^{37} + 3 q^{41} + 4 q^{43} - q^{45} - 6 q^{47} - 6 q^{49} + 5 q^{51} - 3 q^{53} + 4 q^{55} - 9 q^{59} + 10 q^{61} - q^{63} + 7 q^{67} - q^{69} - 7 q^{71} - 12 q^{73} + q^{75} + 4 q^{77} - 8 q^{79} + q^{81} + q^{83} - 5 q^{85} + 5 q^{87} + 16 q^{89} - 3 q^{93} - 6 q^{97} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 −1.00000 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5520.2.a.u 1
4.b odd 2 1 345.2.a.c 1
12.b even 2 1 1035.2.a.e 1
20.d odd 2 1 1725.2.a.m 1
20.e even 4 2 1725.2.b.l 2
60.h even 2 1 5175.2.a.k 1
92.b even 2 1 7935.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
345.2.a.c 1 4.b odd 2 1
1035.2.a.e 1 12.b even 2 1
1725.2.a.m 1 20.d odd 2 1
1725.2.b.l 2 20.e even 4 2
5175.2.a.k 1 60.h even 2 1
5520.2.a.u 1 1.a even 1 1 trivial
7935.2.a.g 1 92.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5520))\):

\( T_{7} + 1 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17} - 5 \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 5 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 1 \) Copy content Toggle raw display
$29$ \( T - 5 \) Copy content Toggle raw display
$31$ \( T + 3 \) Copy content Toggle raw display
$37$ \( T + 5 \) Copy content Toggle raw display
$41$ \( T - 3 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T + 6 \) Copy content Toggle raw display
$53$ \( T + 3 \) Copy content Toggle raw display
$59$ \( T + 9 \) Copy content Toggle raw display
$61$ \( T - 10 \) Copy content Toggle raw display
$67$ \( T - 7 \) Copy content Toggle raw display
$71$ \( T + 7 \) Copy content Toggle raw display
$73$ \( T + 12 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T - 1 \) Copy content Toggle raw display
$89$ \( T - 16 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less