Properties

Label 5520.2.a.s.1.1
Level $5520$
Weight $2$
Character 5520.1
Self dual yes
Analytic conductor $44.077$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5520 = 2^{4} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5520.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.0774219157\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 5520.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -4.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -1.00000 q^{5} -4.00000 q^{7} +1.00000 q^{9} +6.00000 q^{11} -4.00000 q^{13} -1.00000 q^{15} +2.00000 q^{17} -4.00000 q^{21} -1.00000 q^{23} +1.00000 q^{25} +1.00000 q^{27} +8.00000 q^{29} -8.00000 q^{31} +6.00000 q^{33} +4.00000 q^{35} -6.00000 q^{37} -4.00000 q^{39} -2.00000 q^{41} -6.00000 q^{43} -1.00000 q^{45} +12.0000 q^{47} +9.00000 q^{49} +2.00000 q^{51} +6.00000 q^{53} -6.00000 q^{55} -4.00000 q^{59} +2.00000 q^{61} -4.00000 q^{63} +4.00000 q^{65} -6.00000 q^{67} -1.00000 q^{69} +6.00000 q^{71} +14.0000 q^{73} +1.00000 q^{75} -24.0000 q^{77} +1.00000 q^{81} -2.00000 q^{85} +8.00000 q^{87} +12.0000 q^{89} +16.0000 q^{91} -8.00000 q^{93} +12.0000 q^{97} +6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 8.00000 1.48556 0.742781 0.669534i \(-0.233506\pi\)
0.742781 + 0.669534i \(0.233506\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 6.00000 1.04447
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) −4.00000 −0.503953
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −6.00000 −0.733017 −0.366508 0.930415i \(-0.619447\pi\)
−0.366508 + 0.930415i \(0.619447\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −24.0000 −2.73505
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) 0 0
\(87\) 8.00000 0.857690
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.0000 1.21842 0.609208 0.793011i \(-0.291488\pi\)
0.609208 + 0.793011i \(0.291488\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 4.00000 0.390360
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −18.0000 −1.59724 −0.798621 0.601834i \(-0.794437\pi\)
−0.798621 + 0.601834i \(0.794437\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 22.0000 1.87959 0.939793 0.341743i \(-0.111017\pi\)
0.939793 + 0.341743i \(0.111017\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) −24.0000 −2.00698
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) 0 0
\(147\) 9.00000 0.742307
\(148\) 0 0
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) −24.0000 −1.87983 −0.939913 0.341415i \(-0.889094\pi\)
−0.939913 + 0.341415i \(0.889094\pi\)
\(164\) 0 0
\(165\) −6.00000 −0.467099
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) 0 0
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 4.00000 0.286446
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) −6.00000 −0.423207
\(202\) 0 0
\(203\) −32.0000 −2.24596
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) 6.00000 0.409197
\(216\) 0 0
\(217\) 32.0000 2.17230
\(218\) 0 0
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −28.0000 −1.85843 −0.929213 0.369546i \(-0.879513\pi\)
−0.929213 + 0.369546i \(0.879513\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) −24.0000 −1.57908
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −9.00000 −0.574989
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.0000 0.631194 0.315597 0.948893i \(-0.397795\pi\)
0.315597 + 0.948893i \(0.397795\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 0 0
\(255\) −2.00000 −0.125245
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 24.0000 1.49129
\(260\) 0 0
\(261\) 8.00000 0.495188
\(262\) 0 0
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 16.0000 0.968364
\(274\) 0 0
\(275\) 6.00000 0.361814
\(276\) 0 0
\(277\) 4.00000 0.240337 0.120168 0.992754i \(-0.461657\pi\)
0.120168 + 0.992754i \(0.461657\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) −18.0000 −1.06999 −0.534994 0.844856i \(-0.679686\pi\)
−0.534994 + 0.844856i \(0.679686\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 12.0000 0.703452
\(292\) 0 0
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 0 0
\(297\) 6.00000 0.348155
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) 24.0000 1.38334
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) 24.0000 1.35656 0.678280 0.734803i \(-0.262726\pi\)
0.678280 + 0.734803i \(0.262726\pi\)
\(314\) 0 0
\(315\) 4.00000 0.225374
\(316\) 0 0
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) 48.0000 2.68748
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) −2.00000 −0.110600
\(328\) 0 0
\(329\) −48.0000 −2.64633
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) −32.0000 −1.74315 −0.871576 0.490261i \(-0.836901\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 0 0
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) −48.0000 −2.59935
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) 1.00000 0.0538382
\(346\) 0 0
\(347\) 36.0000 1.93258 0.966291 0.257454i \(-0.0828835\pi\)
0.966291 + 0.257454i \(0.0828835\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) 0 0
\(357\) −8.00000 −0.423405
\(358\) 0 0
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 25.0000 1.31216
\(364\) 0 0
\(365\) −14.0000 −0.732793
\(366\) 0 0
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −32.0000 −1.64808
\(378\) 0 0
\(379\) 36.0000 1.84920 0.924598 0.380945i \(-0.124401\pi\)
0.924598 + 0.380945i \(0.124401\pi\)
\(380\) 0 0
\(381\) −18.0000 −0.922168
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 24.0000 1.22315
\(386\) 0 0
\(387\) −6.00000 −0.304997
\(388\) 0 0
\(389\) −34.0000 −1.72387 −0.861934 0.507020i \(-0.830747\pi\)
−0.861934 + 0.507020i \(0.830747\pi\)
\(390\) 0 0
\(391\) −2.00000 −0.101144
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 12.0000 0.602263 0.301131 0.953583i \(-0.402636\pi\)
0.301131 + 0.953583i \(0.402636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −16.0000 −0.799002 −0.399501 0.916733i \(-0.630817\pi\)
−0.399501 + 0.916733i \(0.630817\pi\)
\(402\) 0 0
\(403\) 32.0000 1.59403
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −36.0000 −1.78445
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 22.0000 1.08518
\(412\) 0 0
\(413\) 16.0000 0.787309
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) −38.0000 −1.85201 −0.926003 0.377515i \(-0.876779\pi\)
−0.926003 + 0.377515i \(0.876779\pi\)
\(422\) 0 0
\(423\) 12.0000 0.583460
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) −8.00000 −0.387147
\(428\) 0 0
\(429\) −24.0000 −1.15873
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) −28.0000 −1.34559 −0.672797 0.739827i \(-0.734907\pi\)
−0.672797 + 0.739827i \(0.734907\pi\)
\(434\) 0 0
\(435\) −8.00000 −0.383571
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −20.0000 −0.954548 −0.477274 0.878755i \(-0.658375\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 0 0
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) 0 0
\(453\) 12.0000 0.563809
\(454\) 0 0
\(455\) −16.0000 −0.750092
\(456\) 0 0
\(457\) −12.0000 −0.561336 −0.280668 0.959805i \(-0.590556\pi\)
−0.280668 + 0.959805i \(0.590556\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −22.0000 −1.02243 −0.511213 0.859454i \(-0.670804\pi\)
−0.511213 + 0.859454i \(0.670804\pi\)
\(464\) 0 0
\(465\) 8.00000 0.370991
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 24.0000 1.10822
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) 0 0
\(473\) −36.0000 −1.65528
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 8.00000 0.365529 0.182765 0.983157i \(-0.441495\pi\)
0.182765 + 0.983157i \(0.441495\pi\)
\(480\) 0 0
\(481\) 24.0000 1.09431
\(482\) 0 0
\(483\) 4.00000 0.182006
\(484\) 0 0
\(485\) −12.0000 −0.544892
\(486\) 0 0
\(487\) −22.0000 −0.996915 −0.498458 0.866914i \(-0.666100\pi\)
−0.498458 + 0.866914i \(0.666100\pi\)
\(488\) 0 0
\(489\) −24.0000 −1.08532
\(490\) 0 0
\(491\) −8.00000 −0.361035 −0.180517 0.983572i \(-0.557777\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(492\) 0 0
\(493\) 16.0000 0.720604
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) −24.0000 −1.07655
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.00000 0.133235
\(508\) 0 0
\(509\) 8.00000 0.354594 0.177297 0.984157i \(-0.443265\pi\)
0.177297 + 0.984157i \(0.443265\pi\)
\(510\) 0 0
\(511\) −56.0000 −2.47729
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.00000 0.176261
\(516\) 0 0
\(517\) 72.0000 3.16656
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) −44.0000 −1.92767 −0.963837 0.266491i \(-0.914136\pi\)
−0.963837 + 0.266491i \(0.914136\pi\)
\(522\) 0 0
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) 0 0
\(525\) −4.00000 −0.174574
\(526\) 0 0
\(527\) −16.0000 −0.696971
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 0 0
\(537\) 20.0000 0.863064
\(538\) 0 0
\(539\) 54.0000 2.32594
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 0 0
\(543\) 10.0000 0.429141
\(544\) 0 0
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 6.00000 0.254686
\(556\) 0 0
\(557\) −38.0000 −1.61011 −0.805056 0.593199i \(-0.797865\pi\)
−0.805056 + 0.593199i \(0.797865\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 18.0000 0.757266
\(566\) 0 0
\(567\) −4.00000 −0.167984
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) 2.00000 0.0831172
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 36.0000 1.49097
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) 0 0
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) 0 0
\(597\) 16.0000 0.654836
\(598\) 0 0
\(599\) 10.0000 0.408589 0.204294 0.978909i \(-0.434510\pi\)
0.204294 + 0.978909i \(0.434510\pi\)
\(600\) 0 0
\(601\) 6.00000 0.244745 0.122373 0.992484i \(-0.460950\pi\)
0.122373 + 0.992484i \(0.460950\pi\)
\(602\) 0 0
\(603\) −6.00000 −0.244339
\(604\) 0 0
\(605\) −25.0000 −1.01639
\(606\) 0 0
\(607\) 10.0000 0.405887 0.202944 0.979190i \(-0.434949\pi\)
0.202944 + 0.979190i \(0.434949\pi\)
\(608\) 0 0
\(609\) −32.0000 −1.29671
\(610\) 0 0
\(611\) −48.0000 −1.94187
\(612\) 0 0
\(613\) 22.0000 0.888572 0.444286 0.895885i \(-0.353457\pi\)
0.444286 + 0.895885i \(0.353457\pi\)
\(614\) 0 0
\(615\) 2.00000 0.0806478
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 0 0
\(619\) −8.00000 −0.321547 −0.160774 0.986991i \(-0.551399\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(620\) 0 0
\(621\) −1.00000 −0.0401286
\(622\) 0 0
\(623\) −48.0000 −1.92308
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) −20.0000 −0.794929
\(634\) 0 0
\(635\) 18.0000 0.714308
\(636\) 0 0
\(637\) −36.0000 −1.42637
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) −4.00000 −0.157991 −0.0789953 0.996875i \(-0.525171\pi\)
−0.0789953 + 0.996875i \(0.525171\pi\)
\(642\) 0 0
\(643\) −10.0000 −0.394362 −0.197181 0.980367i \(-0.563179\pi\)
−0.197181 + 0.980367i \(0.563179\pi\)
\(644\) 0 0
\(645\) 6.00000 0.236250
\(646\) 0 0
\(647\) 44.0000 1.72982 0.864909 0.501928i \(-0.167376\pi\)
0.864909 + 0.501928i \(0.167376\pi\)
\(648\) 0 0
\(649\) −24.0000 −0.942082
\(650\) 0 0
\(651\) 32.0000 1.25418
\(652\) 0 0
\(653\) 22.0000 0.860927 0.430463 0.902608i \(-0.358350\pi\)
0.430463 + 0.902608i \(0.358350\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 14.0000 0.546192
\(658\) 0 0
\(659\) −10.0000 −0.389545 −0.194772 0.980848i \(-0.562397\pi\)
−0.194772 + 0.980848i \(0.562397\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) −8.00000 −0.310694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 −0.309761
\(668\) 0 0
\(669\) 10.0000 0.386622
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 42.0000 1.61419 0.807096 0.590421i \(-0.201038\pi\)
0.807096 + 0.590421i \(0.201038\pi\)
\(678\) 0 0
\(679\) −48.0000 −1.84207
\(680\) 0 0
\(681\) −28.0000 −1.07296
\(682\) 0 0
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) 0 0
\(685\) −22.0000 −0.840577
\(686\) 0 0
\(687\) 6.00000 0.228914
\(688\) 0 0
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 0 0
\(693\) −24.0000 −0.911685
\(694\) 0 0
\(695\) −12.0000 −0.455186
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) −2.00000 −0.0746914
\(718\) 0 0
\(719\) −38.0000 −1.41716 −0.708580 0.705630i \(-0.750664\pi\)
−0.708580 + 0.705630i \(0.750664\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 18.0000 0.669427
\(724\) 0 0
\(725\) 8.00000 0.297113
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) −9.00000 −0.331970
\(736\) 0 0
\(737\) −36.0000 −1.32608
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −40.0000 −1.46746 −0.733729 0.679442i \(-0.762222\pi\)
−0.733729 + 0.679442i \(0.762222\pi\)
\(744\) 0 0
\(745\) −18.0000 −0.659469
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −48.0000 −1.75388
\(750\) 0 0
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) 0 0
\(753\) 10.0000 0.364420
\(754\) 0 0
\(755\) −12.0000 −0.436725
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) −6.00000 −0.217786
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 8.00000 0.289619
\(764\) 0 0
\(765\) −2.00000 −0.0723102
\(766\) 0 0
\(767\) 16.0000 0.577727
\(768\) 0 0
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) 38.0000 1.36677 0.683383 0.730061i \(-0.260508\pi\)
0.683383 + 0.730061i \(0.260508\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 24.0000 0.860995
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 8.00000 0.285897
\(784\) 0 0
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) 38.0000 1.35455 0.677277 0.735728i \(-0.263160\pi\)
0.677277 + 0.735728i \(0.263160\pi\)
\(788\) 0 0
\(789\) −8.00000 −0.284808
\(790\) 0 0
\(791\) 72.0000 2.56003
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) 0 0
\(795\) −6.00000 −0.212798
\(796\) 0 0
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) 12.0000 0.423999
\(802\) 0 0
\(803\) 84.0000 2.96430
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 0 0
\(807\) 12.0000 0.422420
\(808\) 0 0
\(809\) −14.0000 −0.492214 −0.246107 0.969243i \(-0.579151\pi\)
−0.246107 + 0.969243i \(0.579151\pi\)
\(810\) 0 0
\(811\) 52.0000 1.82597 0.912983 0.407997i \(-0.133772\pi\)
0.912983 + 0.407997i \(0.133772\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 16.0000 0.559085
\(820\) 0 0
\(821\) 36.0000 1.25641 0.628204 0.778048i \(-0.283790\pi\)
0.628204 + 0.778048i \(0.283790\pi\)
\(822\) 0 0
\(823\) −18.0000 −0.627441 −0.313720 0.949515i \(-0.601575\pi\)
−0.313720 + 0.949515i \(0.601575\pi\)
\(824\) 0 0
\(825\) 6.00000 0.208893
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) 4.00000 0.138758
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) 28.0000 0.966667 0.483334 0.875436i \(-0.339426\pi\)
0.483334 + 0.875436i \(0.339426\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) 20.0000 0.688837
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −100.000 −3.43604
\(848\) 0 0
\(849\) −18.0000 −0.617758
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) 0 0
\(853\) −12.0000 −0.410872 −0.205436 0.978671i \(-0.565861\pi\)
−0.205436 + 0.978671i \(0.565861\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 38.0000 1.29806 0.649028 0.760765i \(-0.275176\pi\)
0.649028 + 0.760765i \(0.275176\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 8.00000 0.272639
\(862\) 0 0
\(863\) −44.0000 −1.49778 −0.748889 0.662696i \(-0.769412\pi\)
−0.748889 + 0.662696i \(0.769412\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) 0 0
\(873\) 12.0000 0.406138
\(874\) 0 0
\(875\) 4.00000 0.135225
\(876\) 0 0
\(877\) 4.00000 0.135070 0.0675352 0.997717i \(-0.478487\pi\)
0.0675352 + 0.997717i \(0.478487\pi\)
\(878\) 0 0
\(879\) −18.0000 −0.607125
\(880\) 0 0
\(881\) 28.0000 0.943344 0.471672 0.881774i \(-0.343651\pi\)
0.471672 + 0.881774i \(0.343651\pi\)
\(882\) 0 0
\(883\) 24.0000 0.807664 0.403832 0.914833i \(-0.367678\pi\)
0.403832 + 0.914833i \(0.367678\pi\)
\(884\) 0 0
\(885\) 4.00000 0.134459
\(886\) 0 0
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 0 0
\(889\) 72.0000 2.41480
\(890\) 0 0
\(891\) 6.00000 0.201008
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −20.0000 −0.668526
\(896\) 0 0
\(897\) 4.00000 0.133556
\(898\) 0 0
\(899\) −64.0000 −2.13452
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 24.0000 0.798670
\(904\) 0 0
\(905\) −10.0000 −0.332411
\(906\) 0 0
\(907\) −46.0000 −1.52740 −0.763702 0.645568i \(-0.776621\pi\)
−0.763702 + 0.645568i \(0.776621\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −2.00000 −0.0661180
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) 28.0000 0.922631
\(922\) 0 0
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 0 0
\(927\) −4.00000 −0.131377
\(928\) 0 0
\(929\) −26.0000 −0.853032 −0.426516 0.904480i \(-0.640259\pi\)
−0.426516 + 0.904480i \(0.640259\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 6.00000 0.196431
\(934\) 0 0
\(935\) −12.0000 −0.392442
\(936\) 0 0
\(937\) 12.0000 0.392023 0.196011 0.980602i \(-0.437201\pi\)
0.196011 + 0.980602i \(0.437201\pi\)
\(938\) 0 0
\(939\) 24.0000 0.783210
\(940\) 0 0
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) 0 0
\(943\) 2.00000 0.0651290
\(944\) 0 0
\(945\) 4.00000 0.130120
\(946\) 0 0
\(947\) 52.0000 1.68977 0.844886 0.534946i \(-0.179668\pi\)
0.844886 + 0.534946i \(0.179668\pi\)
\(948\) 0 0
\(949\) −56.0000 −1.81784
\(950\) 0 0
\(951\) 6.00000 0.194563
\(952\) 0 0
\(953\) −42.0000 −1.36051 −0.680257 0.732974i \(-0.738132\pi\)
−0.680257 + 0.732974i \(0.738132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 48.0000 1.55162
\(958\) 0 0
\(959\) −88.0000 −2.84167
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 12.0000 0.386695
\(964\) 0 0
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) 34.0000 1.09337 0.546683 0.837340i \(-0.315890\pi\)
0.546683 + 0.837340i \(0.315890\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −54.0000 −1.73294 −0.866471 0.499227i \(-0.833617\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 0 0
\(973\) −48.0000 −1.53881
\(974\) 0 0
\(975\) −4.00000 −0.128103
\(976\) 0 0
\(977\) −62.0000 −1.98356 −0.991778 0.127971i \(-0.959153\pi\)
−0.991778 + 0.127971i \(0.959153\pi\)
\(978\) 0 0
\(979\) 72.0000 2.30113
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 0 0
\(983\) 16.0000 0.510321 0.255160 0.966899i \(-0.417872\pi\)
0.255160 + 0.966899i \(0.417872\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 0 0
\(987\) −48.0000 −1.52786
\(988\) 0 0
\(989\) 6.00000 0.190789
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 0 0
\(993\) −4.00000 −0.126936
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) 0 0
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5520.2.a.s.1.1 1
4.3 odd 2 2760.2.a.c.1.1 1
12.11 even 2 8280.2.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2760.2.a.c.1.1 1 4.3 odd 2
5520.2.a.s.1.1 1 1.1 even 1 trivial
8280.2.a.w.1.1 1 12.11 even 2