Properties

Label 5520.2.a.bv
Level $5520$
Weight $2$
Character orbit 5520.a
Self dual yes
Analytic conductor $44.077$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 5520 = 2^{4} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5520.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.0774219157\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.3144.1
Defining polynomial: \(x^{3} - x^{2} - 16 x - 8\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1380)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} - q^{5} + ( -1 + \beta_{1} ) q^{7} + q^{9} +O(q^{10})\) \( q - q^{3} - q^{5} + ( -1 + \beta_{1} ) q^{7} + q^{9} + ( -1 - \beta_{2} ) q^{11} + ( 1 - \beta_{2} ) q^{13} + q^{15} + ( \beta_{1} - \beta_{2} ) q^{17} + ( -3 - \beta_{2} ) q^{19} + ( 1 - \beta_{1} ) q^{21} - q^{23} + q^{25} - q^{27} + ( -\beta_{1} + \beta_{2} ) q^{29} + ( -3 - \beta_{1} ) q^{31} + ( 1 + \beta_{2} ) q^{33} + ( 1 - \beta_{1} ) q^{35} + ( 1 + \beta_{1} - 2 \beta_{2} ) q^{37} + ( -1 + \beta_{2} ) q^{39} + ( 2 + 3 \beta_{1} - \beta_{2} ) q^{41} + ( -6 + 2 \beta_{1} ) q^{43} - q^{45} + ( 1 + 2 \beta_{1} - \beta_{2} ) q^{47} + ( 4 - \beta_{1} + 2 \beta_{2} ) q^{49} + ( -\beta_{1} + \beta_{2} ) q^{51} + ( 2 + 3 \beta_{1} - \beta_{2} ) q^{53} + ( 1 + \beta_{2} ) q^{55} + ( 3 + \beta_{2} ) q^{57} + ( -\beta_{1} + \beta_{2} ) q^{59} + ( 3 + 2 \beta_{1} - \beta_{2} ) q^{61} + ( -1 + \beta_{1} ) q^{63} + ( -1 + \beta_{2} ) q^{65} + ( -3 - \beta_{1} ) q^{67} + q^{69} + ( 2 + 3 \beta_{1} - \beta_{2} ) q^{71} + ( 5 + 3 \beta_{2} ) q^{73} - q^{75} + ( -3 - 4 \beta_{1} + \beta_{2} ) q^{77} + ( -4 - 2 \beta_{1} ) q^{79} + q^{81} + ( -4 + \beta_{1} + \beta_{2} ) q^{83} + ( -\beta_{1} + \beta_{2} ) q^{85} + ( \beta_{1} - \beta_{2} ) q^{87} + ( 2 - 2 \beta_{1} - 2 \beta_{2} ) q^{89} + ( -5 - 2 \beta_{1} + \beta_{2} ) q^{91} + ( 3 + \beta_{1} ) q^{93} + ( 3 + \beta_{2} ) q^{95} + ( -6 - 4 \beta_{1} + 2 \beta_{2} ) q^{97} + ( -1 - \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 3q^{3} - 3q^{5} - 2q^{7} + 3q^{9} + O(q^{10}) \) \( 3q - 3q^{3} - 3q^{5} - 2q^{7} + 3q^{9} - 4q^{11} + 2q^{13} + 3q^{15} - 10q^{19} + 2q^{21} - 3q^{23} + 3q^{25} - 3q^{27} - 10q^{31} + 4q^{33} + 2q^{35} + 2q^{37} - 2q^{39} + 8q^{41} - 16q^{43} - 3q^{45} + 4q^{47} + 13q^{49} + 8q^{53} + 4q^{55} + 10q^{57} + 10q^{61} - 2q^{63} - 2q^{65} - 10q^{67} + 3q^{69} + 8q^{71} + 18q^{73} - 3q^{75} - 12q^{77} - 14q^{79} + 3q^{81} - 10q^{83} + 2q^{89} - 16q^{91} + 10q^{93} + 10q^{95} - 20q^{97} - 4q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 16 x - 8\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{2} - \nu - 10 \)\()/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(2 \beta_{2} + \beta_{1} + 10\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.20905
−0.526440
4.73549
0 −1.00000 0 −1.00000 0 −4.20905 0 1.00000 0
1.2 0 −1.00000 0 −1.00000 0 −1.52644 0 1.00000 0
1.3 0 −1.00000 0 −1.00000 0 3.73549 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5520.2.a.bv 3
4.b odd 2 1 1380.2.a.j 3
12.b even 2 1 4140.2.a.s 3
20.d odd 2 1 6900.2.a.x 3
20.e even 4 2 6900.2.f.r 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1380.2.a.j 3 4.b odd 2 1
4140.2.a.s 3 12.b even 2 1
5520.2.a.bv 3 1.a even 1 1 trivial
6900.2.a.x 3 20.d odd 2 1
6900.2.f.r 6 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5520))\):

\( T_{7}^{3} + 2 T_{7}^{2} - 15 T_{7} - 24 \)
\( T_{11}^{3} + 4 T_{11}^{2} - 14 T_{11} - 48 \)
\( T_{13}^{3} - 2 T_{13}^{2} - 18 T_{13} - 12 \)
\( T_{17}^{3} - 21 T_{17} + 18 \)
\( T_{19}^{3} + 10 T_{19}^{2} + 14 T_{19} - 52 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \)
$3$ \( ( 1 + T )^{3} \)
$5$ \( ( 1 + T )^{3} \)
$7$ \( -24 - 15 T + 2 T^{2} + T^{3} \)
$11$ \( -48 - 14 T + 4 T^{2} + T^{3} \)
$13$ \( -12 - 18 T - 2 T^{2} + T^{3} \)
$17$ \( 18 - 21 T + T^{3} \)
$19$ \( -52 + 14 T + 10 T^{2} + T^{3} \)
$23$ \( ( 1 + T )^{3} \)
$29$ \( -18 - 21 T + T^{3} \)
$31$ \( -4 + 17 T + 10 T^{2} + T^{3} \)
$37$ \( -108 - 63 T - 2 T^{2} + T^{3} \)
$41$ \( 582 - 101 T - 8 T^{2} + T^{3} \)
$43$ \( -304 + 20 T + 16 T^{2} + T^{3} \)
$47$ \( 216 - 50 T - 4 T^{2} + T^{3} \)
$53$ \( 582 - 101 T - 8 T^{2} + T^{3} \)
$59$ \( -18 - 21 T + T^{3} \)
$61$ \( 292 - 22 T - 10 T^{2} + T^{3} \)
$67$ \( -4 + 17 T + 10 T^{2} + T^{3} \)
$71$ \( 582 - 101 T - 8 T^{2} + T^{3} \)
$73$ \( 1492 - 66 T - 18 T^{2} + T^{3} \)
$79$ \( -96 + 14 T^{2} + T^{3} \)
$83$ \( -228 - 17 T + 10 T^{2} + T^{3} \)
$89$ \( 912 - 200 T - 2 T^{2} + T^{3} \)
$97$ \( -2336 - 88 T + 20 T^{2} + T^{3} \)
show more
show less